N-acetylmethionine (BioDeep_00000001687)

 

Secondary id: BioDeep_00000399948, BioDeep_00000405611, BioDeep_00000405923, BioDeep_00000605348

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(2S)-2-Acetamido-4-(methylsulphanyl)butanoic acid

化学式: C7H13NO3S (191.0616)
中文名称: N-乙酰蛋氨酸, N-乙酰-L-蛋氨酸, N-乙酰-DL-甲硫氨酸, N-乙酰基-L-蛋氨酸, N-乙酰-L-蛋氨酸(NAM)
谱图信息: 最多检出来源 Mus musculus(plant) 4.05%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

N-acetylmethionine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/n-acetylmethionine (retrieved 2024-12-23) (BioDeep RN: BioDeep_00000001687). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(=O)NC(CCSC)C(=O)O
InChI: InChI=1S/C7H13NO3S/c1-5(9)8-6(7(10)11)3-4-12-2/h6H,3-4H2,1-2H3,(H,8,9)(H,10,11)

描述信息

N-Acetyl-L-methionine or N-Acetylmethionine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylmethionine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylmethionine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-methionine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylmethionine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free methionine can also occur. In particular, N-Acetylmethionine can be biosynthesized from L-methionine and acetyl-CoA by the enzyme methionine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylmethionine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylmethionine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557).
Nutrient supplement used as a source of L-methionine.
KEIO_ID A065
N-Acetyl-DL-methionine is an endogenous metabolite.
N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].

同义名列表

28 个代谢物同义名

(2S)-2-Acetamido-4-(methylsulphanyl)butanoic acid; (2S)-2-Acetamido-4-(methylsulfanyl)butanoic acid; (2S)-2-Acetamido-4-methylsulfanylbutanoic acid; (2S)-2-Acetamido-4-(methylsulphanyl)butanoate; (2S)-2-Acetamido-4-(methylsulfanyl)butanoate; (S)-2-Acetamido-4-(methylthio)butanoic acid; N-Acetylmethionine monopotassium salt; N-Acetylmethionine monosodium salt; N-Acetylmethionine, (DL)-isomer; N-Acetylmethionine, (D)-isomer; Nalpha-acetyl-L-methionine; L-(N-Acetyl)methionine; N-Acetyl-DL-methionine; (S)-N-Acetylmethionine; N-acetyl-L-methionine; N-Acetyl-methionine; Acetyl-L-methionine; N-Acetylmethionine; N-Ac-L-methionine; Acetylmethionine; Methionamine; Methionin; N-Ac-met; Hepsan; AcMet; N-Acetylmethionine; N-Acetylmethionine; N-Acetyl-L-methionine



数据库引用编号

29 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

7 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ACY1, AFP, ALB, ANPEP, APEH, POMC, PRNP, TXN
Endoplasmic reticulum membrane 3 FMO1, FMO3, FMO5
Nucleus 4 ALB, DACH1, MPO, TXN
cytosol 9 ACY1, ALB, APEH, DACH1, FMO5, GPT, PRNP, SLC7A5, TXN
dendrite 2 PDYN, PRNP
centrosome 1 ALB
nucleoplasm 3 DACH1, MPO, TXN
Cell membrane 3 ANPEP, PRNP, SLC7A5
Multi-pass membrane protein 1 SLC7A5
Synapse 2 PDYN, TAC1
cell surface 1 PRNP
Golgi apparatus 4 ALB, DACH1, PRNP, SERPINA1
lysosomal membrane 2 ANPEP, SLC7A5
neuronal cell body 2 PDYN, TAC1
postsynapse 1 PRNP
Lysosome 1 MPO
plasma membrane 4 ANPEP, PDYN, PRNP, SLC7A5
terminal bouton 1 PRNP
Membrane 2 PRNP, SLC7A5
apical plasma membrane 1 SLC7A5
axon 1 TAC1
basolateral plasma membrane 1 SLC7A5
extracellular exosome 11 ACY1, ALB, ANPEP, APEH, GPT, LYZ, MPO, PRNP, SERPINA1, SLC7A5, TXN
Lysosome membrane 1 SLC7A5
endoplasmic reticulum 6 ALB, FMO1, FMO3, FMO5, PRNP, SERPINA1
extracellular space 9 AFP, ALB, ANPEP, DCN, LYZ, MPO, POMC, SERPINA1, TAC1
lysosomal lumen 1 DCN
mitochondrion 1 PRNP
protein-containing complex 1 ALB
intracellular membrane-bounded organelle 5 FMO3, MPO, PRNP, SERPINA1, SLC7A5
Microsome membrane 2 FMO3, FMO5
postsynaptic density 1 PRNP
Secreted 6 AFP, ALB, DCN, PDYN, POMC, TXN
extracellular region 10 ALB, APEH, DCN, LYZ, MPO, PDYN, POMC, SERPINA1, TAC1, TXN
Mitochondrion outer membrane 1 PRNP
Single-pass membrane protein 3 FMO1, FMO3, PRNP
mitochondrial outer membrane 1 PRNP
hippocampal mossy fiber to CA3 synapse 1 PDYN
anchoring junction 1 ALB
transcription regulator complex 1 DACH1
nuclear membrane 2 APEH, PRNP
external side of plasma membrane 2 ANPEP, PRNP
Secreted, extracellular space, extracellular matrix 1 DCN
COPII-coated ER to Golgi transport vesicle 1 SERPINA1
Single-pass type II membrane protein 1 ANPEP
Apical cell membrane 1 SLC7A5
Membrane raft 1 PRNP
collagen-containing extracellular matrix 2 DCN, SERPINA1
secretory granule 2 MPO, POMC
nuclear speck 1 DACH1
ciliary basal body 1 ALB
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 1 ALB
Lipid-anchor, GPI-anchor 1 PRNP
microvillus membrane 1 SLC7A5
side of membrane 1 PRNP
basal plasma membrane 1 SLC7A5
azurophil granule 1 MPO
ficolin-1-rich granule lumen 2 APEH, SERPINA1
secretory granule lumen 1 POMC
secretory granule membrane 1 ANPEP
Golgi lumen 1 DCN
endoplasmic reticulum lumen 4 AFP, ALB, FMO1, SERPINA1
platelet alpha granule lumen 2 ALB, SERPINA1
axon terminus 1 PDYN
specific granule lumen 1 LYZ
tertiary granule lumen 1 LYZ
extrinsic component of membrane 1 PRNP
azurophil granule lumen 2 LYZ, MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 SERPINA1
neuronal dense core vesicle 1 PDYN
phagocytic vesicle lumen 1 MPO
endoplasmic reticulum-Golgi intermediate compartment 1 ANPEP
external side of apical plasma membrane 1 SLC7A5
inclusion body 1 PRNP
amino acid transport complex 1 SLC7A5
ciliary transition fiber 1 ALB


文献列表

  • S L Liang, Z H Wei, J J Wu, X L Dong, J X Liu, D M Wang. Effect of N-acetyl-l-methionine supplementation on lactation performance and plasma variables in mid-lactating dairy cows. Journal of dairy science. 2019 Jun; 102(6):5182-5190. doi: 10.3168/jds.2018-15716. [PMID: 30904299]
  • Ayman Y Waddad, Pritika Ramharack, Mahmoud E S Soliman, Thirumala Govender. Grafted hyaluronic acid N-acetyl-l-methionine for targeting of LAT1 receptor: In-silico, synthesis and microscale thermophoresis studies. International journal of biological macromolecules. 2019 Mar; 125(?):767-777. doi: 10.1016/j.ijbiomac.2018.12.104. [PMID: 30553855]
  • Akito Kawai, Victor T G Chuang, Yosuke Kouno, Keishi Yamasaki, Shuichi Miyamoto, Makoto Anraku, Masaki Otagiri. Crystallographic analysis of the ternary complex of octanoate and N-acetyl-l-methionine with human serum albumin reveals the mode of their stabilizing interactions. Biochimica et biophysica acta. Proteins and proteomics. 2017 Aug; 1865(8):979-984. doi: 10.1016/j.bbapap.2017.04.004. [PMID: 28473296]
  • Theresa A Laguna, Cavan S Reilly, Cynthia B Williams, Cole Welchlin, Chris H Wendt. Metabolomics analysis identifies novel plasma biomarkers of cystic fibrosis pulmonary exacerbation. Pediatric pulmonology. 2015 Sep; 50(9):869-77. doi: 10.1002/ppul.23225. [PMID: 26115542]
  • Yousuke Kouno, Makoto Anraku, Keishi Yamasaki, Yoshiro Okayama, Daisuke Iohara, Yu Ishima, Toru Maruyama, Ulrich Kragh-Hansen, Fumitoshi Hirayama, Masaki Otagiri. N-acetyl-l-methionine is a superior protectant of human serum albumin against photo-oxidation and reactive oxygen species compared to N-acetyl-L-tryptophan. Biochimica et biophysica acta. 2014 Sep; 1840(9):2806-12. doi: 10.1016/j.bbagen.2014.04.014. [PMID: 24769178]
  • A Rizzo, M Pantaleo, M Mutinati, G Minoia, C Trisolini, E Ceci, R L Sciorsci. Blood and milk oxidative status after administration of different antioxidants during early postpartum in dairy cows. Research in veterinary science. 2013 Dec; 95(3):1171-4. doi: 10.1016/j.rvsc.2013.07.016. [PMID: 23962855]
  • Hans J Leis, Fabrizio Donnarumma, Reinhold Wintersteiger, Regina Lazarus, Barbara Braml, Astrid Ortner, Werner Windischhofer. Bis-pentafluorobenzyl derivatives of N-acetyl-L-methionine and N-acetyl-L-selenomethionine for the quantitative determination in human plasma by gas chromatography-negative ion chemical ionisation mass spectrometry. Journal of chromatography. A. 2012 Jun; 1242(?):92-100. doi: 10.1016/j.chroma.2012.04.028. [PMID: 22552200]
  • Brad T Benedetti, Susana Quintal, Nicholas P Farrell. Modulation of drug activation profiles through carboxylate ligand modification in cytotoxic trans-platinum planar amine compounds. Dalton transactions (Cambridge, England : 2003). 2011 Nov; 40(41):10983-8. doi: 10.1039/c1dt10964b. [PMID: 21918760]
  • Anke Sommer, Ernst Christensen, Susanne Schwenger, Ralf Seul, Dorothea Haas, Heike Olbrich, Heymut Omran, Jörn Oliver Sass. The molecular basis of aminoacylase 1 deficiency. Biochimica et biophysica acta. 2011 Jun; 1812(6):685-90. doi: 10.1016/j.bbadis.2011.03.005. [PMID: 21414403]
  • Tao Dong, Lin Zhao, Yu Huang, Xin Tan. Preparation of cross-linked aggregates of aminoacylase from Aspergillus melleus by using bovine serum albumin as an inert additive. Bioresource technology. 2010 Aug; 101(16):6569-71. doi: 10.1016/j.biortech.2010.03.061. [PMID: 20363123]
  • Makoto Anraku, Yousuke Kouno, Toshiya Kai, Yasufumi Tsurusaki, Keishi Yamasaki, Masaki Otagiri. The role of N-acetyl-methioninate as a new stabilizer for albumin products. International journal of pharmaceutics. 2007 Feb; 329(1-2):19-24. doi: 10.1016/j.ijpharm.2006.08.014. [PMID: 17045433]
  • Joseph T Dever, Adnan A Elfarra. In vivo metabolism of L-methionine in mice: evidence for stereoselective formation of methionine-d-sulfoxide and quantitation of other major metabolites. Drug metabolism and disposition: the biological fate of chemicals. 2006 Dec; 34(12):2036-43. doi: 10.1124/dmd.106.012104. [PMID: 16963488]
  • David I Pattison, Michael J Davies. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry. 2004 Apr; 43(16):4799-809. doi: 10.1021/bi035946a. [PMID: 15096049]
  • Kathryn E S Dean, Gérard Klein, Olivier Renaudet, Jean-Louis Reymond. A green fluorescent chemosensor for amino acids provides a versatile high-throughput screening (HTS) assay for proteases. Bioorganic & medicinal chemistry letters. 2003 May; 13(10):1653-6. doi: 10.1016/s0960-894x(03)00280-4. [PMID: 12729634]
  • Magnus Stödeman, Frederick P Schwarz. Importance of product inhibition in the kinetics of the acylase hydrolysis reaction by differential stopped flow microcalorimetry. Analytical biochemistry. 2002 Sep; 308(2):285-93. doi: 10.1016/s0003-2697(02)00339-1. [PMID: 12419341]
  • S Pittelkow, H Lindner, K H Röhm. Human and porcine aminoacylase I overproduced in a baculovirus expression vector system: evidence for structural and functional identity with enzymes isolated from kidney. Protein expression and purification. 1998 Mar; 12(2):269-76. doi: 10.1006/prep.1997.0816. [PMID: 9518469]
  • S J Hagen, J Hofrichter, A Szabo, W A Eaton. Diffusion-limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding. Proceedings of the National Academy of Sciences of the United States of America. 1996 Oct; 93(21):11615-7. doi: 10.1073/pnas.93.21.11615. [PMID: 8876184]
  • M Mályusz, A Hackl, P Wrigge, M Lange, T Mályusz, H Sick, G Gronow. Ammonia production from hippurate by the rat kidney in vitro. Renal physiology and biochemistry. 1994 Nov; 17(6):307-15. doi: 10.1159/000173863. [PMID: 7533310]
  • K Lertratanangkoon, J M Scimeca. Prevention of bromobenzene toxicity by N-acetylmethionine: correlation between toxicity and the impairment in O- and S-methylation of bromothiocatechols. Toxicology and applied pharmacology. 1993 Oct; 122(2):191-9. doi: 10.1006/taap.1993.1187. [PMID: 8212001]
  • L A Skoglund, K Ingebrigtsen, I Nafstad, O Aalen. Efficacy of paracetamol-esterified methionine versus cysteine or methionine on paracetamol-induced hepatic GSH depletion and plasma ALAT level in mice. Biochemical pharmacology. 1986 Sep; 35(18):3071-5. doi: 10.1016/0006-2952(86)90388-6. [PMID: 3753517]
  • L A Skoglund, K Ingebrigtsen, I Nafstad. Effects of N-acetyl-DL-methionine on the liver, GSH synthesis and plasma ALAT level in male Bom:NMRI mice. General pharmacology. 1986; 17(6):647-9. doi: 10.1016/0306-3623(86)90294-6. [PMID: 3817431]
  • T T Daabees, D W Andersen, W L Zike, L J Filer, L D Stegink. Portal and vena caval plasma methionine concentrations in young pigs administered L-methionine, N-acetyl-L-methionine and N-acetyl-D-methionine. The Journal of nutrition. 1984 Sep; 114(9):1541-7. doi: 10.1093/jn/114.9.1541. [PMID: 6470816]
  • B D Preston, J A Miller, E C Miller. Reactions of 2,2',5,5'-tetrachlorobiphenyl 3,4-oxide with methionine, cysteine and glutathione in relation to the formation of methylthio-metabolites of 2,2',5,5'-tetrachlorobiphenyl in the rat and mouse. Chemico-biological interactions. 1984 Aug; 50(3):289-312. doi: 10.1016/0009-2797(84)90038-3. [PMID: 6430573]
  • L D Stegink, L J Filer, G L Baker. Plasma and urinary methionine levels in one-year-old infants after oral loading with L-methionine and N-acetyl-L-methionine. The Journal of nutrition. 1982 Apr; 112(4):597-603. doi: 10.1093/jn/112.4.597. [PMID: 7069504]
  • Galaev IYu, V K Svedas. A kinetic study of hog kidney aminoacylase. Biochimica et biophysica acta. 1982 Mar; 701(3):389-94. doi: 10.1016/0167-4838(82)90242-4. [PMID: 7066334]
  • V Iu Shviadas, I Iu Galaev, I V Berezin. [Kinetics and thermodynamics of the hydrolysis-synthesis reaction of acetyl-L-methionine catalyzed by acylase I from hog kidney]. Biokhimiia (Moscow, Russia). 1980 Oct; 45(10):1833-9. doi: . [PMID: 7236771]