Malonyl-CoA (BioDeep_00000001517)
Secondary id: BioDeep_00000630377, BioDeep_00001868615
natural product human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C24H38N7O19P3S (853.1156)
中文名称: 丙二酰辅酶A
谱图信息:
最多检出来源 Homo sapiens(otcml) 7.17%
分子结构信息
SMILES: CC(C)(COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)C(C(=O)NCCC(=O)NCCSC(=O)CC(=O)O)O
InChI: InChI=1S/C24H38N7O19P3S/c1-24(2,19(37)22(38)27-4-3-13(32)26-5-6-54-15(35)7-14(33)34)9-47-53(44,45)50-52(42,43)46-8-12-18(49-51(39,40)41)17(36)23(48-12)31-11-30-16-20(25)28-10-29-21(16)31/h10-12,17-19,23,36-37H,3-9H2,1-2H3,(H,26,32)(H,27,38)(H,33,34)(H,42,43)(H,44,45)(H2,25,28,29)(H2,39,40,41)/t12-,17-,18-,19+,23-/m1/s1
描述信息
Malonyl-CoA belongs to the class of organic compounds known as acyl-CoAs. These are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, malonyl-CoA is considered to be a fatty ester lipid molecule. Malonyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Within humans, malonyl-CoA participates in a number of enzymatic reactions. In particular, malonyl-CoA can be biosynthesized from acetyl-CoA; which is mediated by the enzyme acetyl-CoA carboxylase 1. In addition, malonyl-CoA can be converted into malonic acid and coenzyme A; which is catalyzed by the enzyme fatty acid synthase. Outside of the human body, malonyl-CoA has been detected, but not quantified in, several different foods, such as rapes, mamey sapotes, jews ears, pepper (C. chinense), and Alaska wild rhubarbs. This could make malonyl-CoA a potential biomarker for the consumption of these foods. Malonyl-CoA is a coenzyme A derivative that plays a key role in fatty acid synthesis in the cytoplasmic and microsomal systems.
Malonyl-coa, also known as malonyl coenzyme a or coenzyme a, s-(hydrogen propanedioate), is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, malonyl-coa is considered to be a fatty ester lipid molecule. Malonyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Malonyl-coa can be found in a number of food items such as root vegetables, sourdock, ceylon cinnamon, and buffalo currant, which makes malonyl-coa a potential biomarker for the consumption of these food products. Malonyl-coa exists in E.coli (prokaryote) and yeast (eukaryote).
同义名列表
21 个代谢物同义名
3-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-3-oxopropanoic acid; 3-[2-[3-[[4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethylsulfanyl]-3-oxopropanoic acid; coenzyme A, S-(Hydrogen propanedioic acid); coenzyme A, S-(Hydrogen propanedioate); S-(hydrogen propanedioate) Coenzyme A; Malonyl coenzyme A lithium salt; S-(Hydrogen malonyl)coenzyme A; S-(hydrogen propanedioate) CoA; ω-Carboxyacyl-Coenzyme A; S-(hydrogen propanedioic acid; S-(hydrogen propanedioate; ω-Carboxyacyl-CoA; coenzyme A, Malonyl; Malonyl coenzyme A; malonyl-Coenzyme A; CoA, Malonyl; Malonyl CoA; Malonyl-CoA; Q424593; Malonyl-CoA; Malonyl-CoA
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:15531
- KEGG: C00083
- PubChem: 644066
- PubChem: 10663
- PubChem: 869
- HMDB: HMDB0001175
- Metlin: METLIN452
- DrugBank: DB04524
- ChEMBL: CHEMBL1234355
- Wikipedia: Malonyl-CoA
- MeSH: Malonyl Coenzyme A
- MetaCyc: MALONYL-COA
- KNApSAcK: C00007260
- foodb: FDB030990
- chemspider: 559121
- CAS: 524-14-1
- MoNA: PS029301
- MoNA: PS029303
- PMhub: MS000000689
- PubChem: 3383
- LipidMAPS: LMFA07050345
- PDB-CCD: MLC
- 3DMET: B04627
- NIKKAJI: J203.864A
- RefMet: Malonyl-CoA
- KNApSAcK: 15531
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
374 个相关的代谢反应过程信息。
Reactome(25)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CoA + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Synthesis of very long-chain fatty acyl-CoAs:
ATP + CoA + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
ATP + CoA-SH + LA ⟶ AMP + LA-CoA + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Fatty acyl-CoA biosynthesis:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Import of palmitoyl-CoA into the mitochondrial matrix:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Peroxisomal lipid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Beta-oxidation of very long chain fatty acids:
C26:0 CoA + Oxygen ⟶ H2O2 + trans-2-hexacosenoyl-CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Fatty acyl-CoA biosynthesis:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Import of palmitoyl-CoA into the mitochondrial matrix:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Peroxisomal lipid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Beta-oxidation of very long chain fatty acids:
C26:0 CoA + Oxygen ⟶ H2O2 + trans-2-hexacosenoyl-CoA
- Import of palmitoyl-CoA into the mitochondrial matrix:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of very long chain fatty acids:
C26:0 CoA + Oxygen ⟶ H2O2 + trans-2-hexacosenoyl-CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
BioCyc(1)
- fatty acid biosynthesis -- elongase pathway:
an acyl-CoA + malonyl-CoA ⟶ CO2 + a 3-oxoacyl-CoA + coenzyme A
WikiPathways(3)
- Fatty acid biosynthesis:
Citric acid ⟶ Acetyl-CoA
- Lipid metabolism pathway:
Acetate ⟶ Acetyl-CoA(cyt)
- Effect of L-carnitine on metabolism:
Phosphoenolpyruvate ⟶ pyruvate
Plant Reactome(277)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
- Pinobanksin biosynthesis:
(E)-cinnamoyl-CoA + Mal-CoA ⟶ CoA-SH + carbon dioxide + pinocembrin chalcone
INOH(2)
- Pyruvate metabolism ( Pyruvate metabolism ):
ATP + Acetic acid + CoA ⟶ AMP + Acetyl-CoA + Pyrophosphate
- Malonyl-CoA = Acetyl-CoA + CO2 ( Pyruvate metabolism ):
Malonyl-CoA ⟶ Acetyl-CoA + CO2
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(66)
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Leigh Syndrome:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Dehydrogenase Complex Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Primary Hyperoxaluria II, PH2:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Kinase Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Palmitate Biosynthesis:
Hydrogen Ion + NADPH + acetoacetyl-[acp] ⟶ (R)-3-hydroxybutanoyl-[acp] + NADP
- Fatty Acid Elongation (Saturated):
3-oxoacyl-[acp] + Hydrogen Ion + NADPH ⟶ (3R)-3-hydroxyacyl-[acyl-carrier protein] + NADP
- Fatty Acid Biosynthesis:
3-oxoacyl-[acp] + Hydrogen Ion + NADPH ⟶ (3R)-3-hydroxyacyl-[acyl-carrier protein] + NADP
- Palmitate Biosynthesis 2:
Hydrogen Ion + NADPH + acetoacetyl-[acp] ⟶ (R)-3-hydroxybutanoyl-[acp] + NADP
- Biotin-Carboxyl Carrier Protein Assembly:
Adenosine triphosphate + Biotin + Biotin-Carboxyl Carrying Protein ⟶ Adenosine monophosphate + Biotinylated [BCCP monomer] + Hydrogen Ion + Pyrophosphate
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- Palmitate Biosynthesis:
Acetyl-CoA + Adenosine triphosphate + Hydrogen carbonate ⟶ Adenosine diphosphate + Hydrogen Ion + Malonyl-CoA + Phosphate
- Fatty Acid Elongation (Saturated):
Acetyl-CoA + Adenosine triphosphate + Hydrogen carbonate ⟶ Adenosine diphosphate + Hydrogen Ion + Malonyl-CoA + Phosphate
- Fatty Acid Biosynthesis:
Acetyl-CoA + Adenosine triphosphate + Hydrogen carbonate ⟶ Adenosine diphosphate + Hydrogen Ion + Malonyl-CoA + Phosphate
- Palmitate Biosynthesis 2:
Acetyl-CoA + Adenosine triphosphate + Hydrogen carbonate ⟶ Adenosine diphosphate + Hydrogen Ion + Malonyl-CoA + Phosphate
- Biotin-Carboxyl Carrier Protein Assembly:
Adenosine triphosphate + Biotin + Biotin-Carboxyl Carrying Protein ⟶ Adenosine monophosphate + Biotinylated [BCCP monomer] + Hydrogen Ion + Pyrophosphate
- Flavonoid Biosynthesis:
Hydrogen Ion + NADPH + Naringenin ⟶ Apiforol + NADP
- Flavanone Biosynthesis:
4-Hydroxycinnamic acid + Adenosine triphosphate + Coenzyme A ⟶ 4-Coumaroyl-CoA + Adenosine monophosphate + Pyrophosphate
- Phenolic Malonylglucosides Biosynthesis:
2-Naphthol + Uridine diphosphate glucose ⟶ 2-naphthol glucoside + Hydrogen Ion + Uridine 5'-diphosphate
- Biosynthesis of Unsaturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Biosynthesis of Unsaturated Fatty Acids (Tetracosanoyl-CoA):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Biosynthesis of Unsaturated Fatty Acids (Docosanoyl-CoA):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Biosynthesis of Unsaturated Fatty Acids (Icosanoyl-CoA):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Biosynthesis of Unsaturated Fatty Acids (Stearoyl-CoA):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
PharmGKB(0)
4 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 1906 - Streptomyces fradiae: 10.1007/S00253-004-1658-7
- 54571 - Streptomyces venezuelae: 10.1099/00221287-146-4-903
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Julia S Scott, Lake-Ee Quek, Andrew J Hoy, Johannes V Swinnen, Zeyad D Nassar, Lisa M Butler. Fatty acid elongation regulates mitochondrial β-oxidation and cell viability in prostate cancer by controlling malonyl-CoA levels.
Biochemical and biophysical research communications.
2024 Jan; 691(?):149273. doi:
10.1016/j.bbrc.2023.149273
. [PMID: 38029544] - Lin Tan, Sara A Martinez, Philip L Lorenzi, Anja Karlstaedt. Quantitative Analysis of Acetyl-CoA, Malonyl-CoA, and Succinyl-CoA in Myocytes.
Journal of the American Society for Mass Spectrometry.
2023 Oct; ?(?):. doi:
10.1021/jasms.3c00278
. [PMID: 37812744] - ". Malonyl-CoA links lipid metabolism to nutrient signalling by directly inhibiting mTORC1.
Nature cell biology.
2023 09; 25(9):1250-1251. doi:
10.1038/s41556-023-01206-9
. [PMID: 37563254] - Jiwei Mao, Marta Tous Mohedano, Jing Fu, Xiaowei Li, Quanli Liu, Jens Nielsen, Verena Siewers, Yun Chen. Fine-tuning of p-coumaric acid synthesis to increase (2S)-naringenin production in yeast.
Metabolic engineering.
2023 Aug; 79(?):192-202. doi:
10.1016/j.ymben.2023.08.003
. [PMID: 37611820] - Raffaele Nicastro, Laura Brohée, Josephine Alba, Julian Nüchel, Gianluca Figlia, Stefanie Kipschull, Peter Gollwitzer, Jesus Romero-Pozuelo, Stephanie A Fernandes, Andreas Lamprakis, Stefano Vanni, Aurelio A Teleman, Claudio De Virgilio, Constantinos Demetriades. Malonyl-CoA is a conserved endogenous ATP-competitive mTORC1 inhibitor.
Nature cell biology.
2023 Aug; ?(?):. doi:
10.1038/s41556-023-01198-6
. [PMID: 37563253] - Tamara Ivkovic, Snezana Tepavcevic, Snjezana Romic, Mojca Stojiljkovic, Milan Kostic, Jelena Stanisic, Goran Koricanac, Tijana Culafic. Cholecalciferol affects cardiac proteins regulating malonyl-CoA availability and intracellular calcium level.
General physiology and biophysics.
2023 May; 42(3):241-250. doi:
10.4149/gpb_2023005
. [PMID: 37098736] - Tobias Schwanemann, Maike Otto, Benedikt Wynands, Jan Marienhagen, Nick Wierckx. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis.
Metabolic engineering.
2023 Apr; 77(?):219-230. doi:
10.1016/j.ymben.2023.04.001
. [PMID: 37031949] - Haoya Yao, Yaoqing Wang, Xiao Zhang, Ping Li, Lin Shang, Xiaocui Chen, Jia Zeng. Targeting peroxisomal fatty acid oxidation improves hepatic steatosis and insulin resistance in obese mice.
The Journal of biological chemistry.
2023 02; 299(2):102845. doi:
10.1016/j.jbc.2022.102845
. [PMID: 36586435] - Juefeng Lu, Yuying Wang, Mingcheng Xu, Qiang Fei, Yang Gu, Yuanchan Luo, Hui Wu. Efficient biosynthesis of 3-hydroxypropionic acid from ethanol in metabolically engineered Escherichia coli.
Bioresource technology.
2022 Nov; 363(?):127907. doi:
10.1016/j.biortech.2022.127907
. [PMID: 36087655] - Markus M Rinschen, Oleg Palygin, Ashraf El-Meanawy, Xavier Domingo-Almenara, Amelia Palermo, Lashodya V Dissanayake, Daria Golosova, Michael A Schafroth, Carlos Guijas, Fatih Demir, Johannes Jaegers, Megan L Gliozzi, Jingchuan Xue, Martin Hoehne, Thomas Benzing, Bernard P Kok, Enrique Saez, Markus Bleich, Nina Himmerkus, Ora A Weisz, Benjamin F Cravatt, Marcus Krüger, H Paul Benton, Gary Siuzdak, Alexander Staruschenko. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension.
Nature communications.
2022 07; 13(1):4099. doi:
10.1038/s41467-022-31670-0
. [PMID: 35835746] - Nadine Godsman, Michael Kohlhaas, Alexander Nickel, Lesley Cheyne, Marco Mingarelli, Lutz Schweiger, Claire Hepburn, Chantal Munts, Andy Welch, Mirela Delibegovic, Marc Van Bilsen, Christoph Maack, Dana K Dawson. Metabolic alterations in a rat model of takotsubo syndrome.
Cardiovascular research.
2022 06; 118(8):1932-1946. doi:
10.1093/cvr/cvab081
. [PMID: 33711093] - Sarah Snanoudj, Stéphanie Torre, Bénédicte Sudrié-Arnaud, Lenaig Abily-Donval, Alice Goldenberg, Gajja S Salomons, Stéphane Marret, Soumeya Bekri, Abdellah Tebani. Heterogenous Clinical Landscape in a Consanguineous Malonic Aciduria Family.
International journal of molecular sciences.
2021 Nov; 22(23):. doi:
10.3390/ijms222312633
. [PMID: 34884438] - Satoshi Miyagaki, Ken Kikuchi, Jun Mori, Gary D Lopaschuk, Tomoko Iehara, Hajime Hosoi. Inhibition of lipid metabolism exerts antitumor effects on rhabdomyosarcoma.
Cancer medicine.
2021 09; 10(18):6442-6455. doi:
10.1002/cam4.4185
. [PMID: 34472721] - Dongni Ji, Jianhua Li, Fanglin Xu, Yuhong Ren, Yong Wang. Improve the Biosynthesis of Baicalein and Scutellarein via Manufacturing Self-Assembly Enzyme Reactor In Vivo.
ACS synthetic biology.
2021 05; 10(5):1087-1094. doi:
10.1021/acssynbio.0c00606
. [PMID: 33880917] - Jixing Xia, Zhaojiang Guo, Zezhong Yang, Haolin Han, Shaoli Wang, Haifeng Xu, Xin Yang, Fengshan Yang, Qingjun Wu, Wen Xie, Xuguo Zhou, Wannes Dermauw, Ted C J Turlings, Youjun Zhang. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins.
Cell.
2021 04; 184(7):1693-1705.e17. doi:
10.1016/j.cell.2021.02.014
. [PMID: 33770502] - Muhammad Zulfiqar Ahmad, Yanrui Zhang, Xiangsheng Zeng, Penghui Li, Xiaobo Wang, Vagner A Benedito, Jian Zhao. Isoflavone malonyl-CoA acyltransferase GmMaT2 is involved in nodulation of soybean by modifying synthesis and secretion of isoflavones.
Journal of experimental botany.
2021 02; 72(4):1349-1369. doi:
10.1093/jxb/eraa511
. [PMID: 33130852] - Rut Fadó, Rosalía Rodríguez-Rodríguez, Núria Casals. The return of malonyl-CoA to the brain: Cognition and other stories.
Progress in lipid research.
2021 01; 81(?):101071. doi:
10.1016/j.plipres.2020.101071
. [PMID: 33186641] - Meaghan A Valliere, Tyler P Korman, Mark A Arbing, James U Bowie. A bio-inspired cell-free system for cannabinoid production from inexpensive inputs.
Nature chemical biology.
2020 12; 16(12):1427-1433. doi:
10.1038/s41589-020-0631-9
. [PMID: 32839605] - Maria Casas, Rut Fadó, José Luis Domínguez, Aina Roig, Moena Kaku, Shigeru Chohnan, Montse Solé, Mercedes Unzeta, Alfredo Jesús Miñano-Molina, José Rodríguez-Álvarez, Eamonn James Dickson, Núria Casals. Sensing of nutrients by CPT1C controls SAC1 activity to regulate AMPA receptor trafficking.
The Journal of cell biology.
2020 10; 219(10):. doi:
10.1083/jcb.201912045
. [PMID: 32931550] - Xin'e Shi, Xiaomin Zhou, Jie Wang, Deming Zhang, Kuilong Huang, Xiao Li, Gongshe Yang. Tartronic acid promotes de novo lipogenesis and inhibits CPT-1β by upregulating acetyl-CoA and malonyl-CoA.
Life sciences.
2020 Oct; 258(?):118240. doi:
10.1016/j.lfs.2020.118240
. [PMID: 32781072] - Jingbo Ma, Yang Gu, Monireh Marsafari, Peng Xu. Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform.
Journal of industrial microbiology & biotechnology.
2020 Oct; 47(9-10):845-862. doi:
10.1007/s10295-020-02290-8
. [PMID: 32623653] - Sonja Giger, Larisa V Kovtonyuk, Sebastian G Utz, Mergim Ramosaj, Werner J Kovacs, Emanuel Schmid, Vassilios Ioannidis, Melanie Greter, Markus G Manz, Matthias P Lutolf, Sebastian Jessberger, Marlen Knobloch. A Single Metabolite which Modulates Lipid Metabolism Alters Hematopoietic Stem/Progenitor Cell Behavior and Promotes Lymphoid Reconstitution.
Stem cell reports.
2020 09; 15(3):566-576. doi:
10.1016/j.stemcr.2020.07.021
. [PMID: 32857979] - Seung Hoon Lee, Jung Min Ko, Mi-Kyoung Song, Junghan Song, Kyung Sun Park. A Korean child diagnosed with malonic aciduria harboring a novel start codon mutation following presentation with dilated cardiomyopathy.
Molecular genetics & genomic medicine.
2020 09; 8(9):e1379. doi:
10.1002/mgg3.1379
. [PMID: 32602666] - Eiichiro Kan, Yohei Katsuyama, Jun-Ichi Maruyama, Koichi Tamano, Yasuji Koyama, Yasuo Ohnishi. Efficient heterologous production of atrochrysone carboxylic acid-related polyketides in an Aspergillus oryzae host with enhanced malonyl-coenzyme A supply.
The Journal of general and applied microbiology.
2020 Aug; 66(3):195-199. doi:
10.2323/jgam.2019.07.001
. [PMID: 31776294] - Todd A Starich, Xiaofei Bai, David Greenstein. Gap junctions deliver malonyl-CoA from soma to germline to support embryogenesis in Caenorhabditis elegans.
eLife.
2020 07; 9(?):. doi:
10.7554/elife.58619
. [PMID: 32735213] - Xiaocui Chen, Lin Shang, Senwen Deng, Ping Li, Kai Chen, Ting Gao, Xiao Zhang, Zhilan Chen, Jia Zeng. Peroxisomal oxidation of erucic acid suppresses mitochondrial fatty acid oxidation by stimulating malonyl-CoA formation in the rat liver.
The Journal of biological chemistry.
2020 07; 295(30):10168-10179. doi:
10.1074/jbc.ra120.013583
. [PMID: 32493774] - Johann E Kufs, Sandra Hoefgen, Julia Rautschek, Alexander U Bissell, Carola Graf, Jonas Fiedler, Daniel Braga, Lars Regestein, Miriam A Rosenbaum, Julian Thiele, Vito Valiante. Rational Design of Flavonoid Production Routes Using Combinatorial and Precursor-Directed Biosynthesis.
ACS synthetic biology.
2020 07; 9(7):1823-1832. doi:
10.1021/acssynbio.0c00172
. [PMID: 32525654] - Shuo-Fu Yuan, Xiunan Yi, Trevor G Johnston, Hal S Alper. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
Microbial cell factories.
2020 Jul; 19(1):143. doi:
10.1186/s12934-020-01401-5
. [PMID: 32664999] - Shengfang Zhou, Suman Lama, Jihong Jiang, Mugesh Sankaranarayanan, Sunghoon Park. Use of acetate for the production of 3-hydroxypropionic acid by metabolically-engineered Pseudomonas denitrificans.
Bioresource technology.
2020 Jul; 307(?):123194. doi:
10.1016/j.biortech.2020.123194
. [PMID: 32234590] - Robert W McGarrah, Guo-Fang Zhang, Bridgette A Christopher, Yann Deleye, Jacquelyn M Walejko, Stephani Page, Olga Ilkayeva, Phillip J White, Christopher B Newgard. Dietary branched-chain amino acid restriction alters fuel selection and reduces triglyceride stores in hearts of Zucker fatty rats.
American journal of physiology. Endocrinology and metabolism.
2020 02; 318(2):E216-E223. doi:
10.1152/ajpendo.00334.2019
. [PMID: 31794262] - Leonardo Perez de Souza, Karolina Garbowicz, Yariv Brotman, Takayuki Tohge, Alisdair R Fernie. The Acetate Pathway Supports Flavonoid and Lipid Biosynthesis in Arabidopsis.
Plant physiology.
2020 02; 182(2):857-869. doi:
10.1104/pp.19.00683
. [PMID: 31719153] - Marc Prentki, Barbara E Corkey, S R Murthy Madiraju. Lipid-associated metabolic signalling networks in pancreatic beta cell function.
Diabetologia.
2020 01; 63(1):10-20. doi:
10.1007/s00125-019-04976-w
. [PMID: 31423551] - Getachew Debas Belew, Joao Silva, Joao Rito, Ludgero Tavares, Ivan Viegas, Jose Teixeira, Paulo J Oliveira, Maria Paula Macedo, John G Jones. Transfer of glucose hydrogens via acetyl-CoA, malonyl-CoA, and NADPH to fatty acids during de novo lipogenesis.
Journal of lipid research.
2019 12; 60(12):2050-2056. doi:
10.1194/jlr.ra119000354
. [PMID: 31575642] - Yongkun Lv, Monireh Marsafari, Mattheos Koffas, Jingwen Zhou, Peng Xu. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis.
ACS synthetic biology.
2019 11; 8(11):2514-2523. doi:
10.1021/acssynbio.9b00193
. [PMID: 31622552] - Jian-Ping Huang, Chengli Fang, Xiaoyan Ma, Li Wang, Jing Yang, Jianying Luo, Yijun Yan, Yu Zhang, Sheng-Xiong Huang. Tropane alkaloids biosynthesis involves an unusual type III polyketide synthase and non-enzymatic condensation.
Nature communications.
2019 09; 10(1):4036. doi:
10.1038/s41467-019-11987-z
. [PMID: 31492848] - Nitish Boodhoo, Nitin Kamble, Benedikt B Kaufer, Shahriar Behboudi. Replication of Marek's Disease Virus Is Dependent on Synthesis of De Novo Fatty Acid and Prostaglandin E2.
Journal of virology.
2019 07; 93(13):. doi:
10.1128/jvi.00352-19
. [PMID: 30971474] - Eiichiro Kan, Yohei Katsuyama, Jun-Ichi Maruyama, Koichi Tamano, Yasuji Koyama, Yasuo Ohnishi. Production of the plant polyketide curcumin in Aspergillus oryzae: strengthening malonyl-CoA supply for yield improvement.
Bioscience, biotechnology, and biochemistry.
2019 Jul; 83(7):1372-1381. doi:
10.1080/09168451.2019.1606699
. [PMID: 31023165] - Lars Milke, Patrícia Ferreira, Nicolai Kallscheuer, Adelaide Braga, Michael Vogt, Jannick Kappelmann, Joana Oliveira, Ana Rita Silva, Isabel Rocha, Michael Bott, Stephan Noack, Nuno Faria, Jan Marienhagen. Modulation of the central carbon metabolism of Corynebacterium glutamicum improves malonyl-CoA availability and increases plant polyphenol synthesis.
Biotechnology and bioengineering.
2019 06; 116(6):1380-1391. doi:
10.1002/bit.26939
. [PMID: 30684355] - William P Esler, Gregory J Tesz, Marc K Hellerstein, Carine Beysen, Raja Sivamani, Scott M Turner, Steven M Watkins, Paul A Amor, Santos Carvajal-Gonzalez, Frank J Geoly, Kathleen E Biddle, Julie J Purkal, Mark Fitch, Clare Buckeridge, Annette M Silvia, David A Griffith, Matthew Gorgoglione, Lauren Hassoun, Suzana S Bosanac, Nicholas B Vera, Timothy P Rolph, Jeffrey A Pfefferkorn, Gabriele E Sonnenberg. Human sebum requires de novo lipogenesis, which is increased in acne vulgaris and suppressed by acetyl-CoA carboxylase inhibition.
Science translational medicine.
2019 05; 11(492):. doi:
10.1126/scitranslmed.aau8465
. [PMID: 31092695] - Lars Milke, Nicolai Kallscheuer, Jannick Kappelmann, Jan Marienhagen. Tailoring Corynebacterium glutamicum towards increased malonyl-CoA availability for efficient synthesis of the plant pentaketide noreugenin.
Microbial cell factories.
2019 Apr; 18(1):71. doi:
10.1186/s12934-019-1117-x
. [PMID: 30975146] - Leila Motlagh Scholle, Diana Lehmann, Pushpa Raj Joshi, Stephan Zierz. Normal FGF-21-Serum Levels in Patients with Carnitine Palmitoyltransferase II (CPT II) Deficiency.
International journal of molecular sciences.
2019 Mar; 20(6):. doi:
10.3390/ijms20061400
. [PMID: 30897730] - Jianhua Li, Chenfei Tian, Yuhui Xia, Ishmael Mutanda, Kaibo Wang, Yong Wang. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine.
Metabolic engineering.
2019 03; 52(?):124-133. doi:
10.1016/j.ymben.2018.11.008
. [PMID: 30496827] - Ah-Reum Lee, Moonhyuk Kwon, Min-Kyoung Kang, Jeonghan Kim, Soo-Un Kim, Dae-Kyun Ro. Increased sesqui- and triterpene production by co-expression of HMG-CoA reductase and biotin carboxyl carrier protein in tobacco (Nicotiana benthamiana).
Metabolic engineering.
2019 03; 52(?):20-28. doi:
10.1016/j.ymben.2018.10.008
. [PMID: 30389612] - Jinjin Diao, Xinyu Song, Jinyu Cui, Liangsen Liu, Mengliang Shi, Fangzhong Wang, Weiwen Zhang. Rewiring metabolic network by chemical modulator based laboratory evolution doubles lipid production in Crypthecodinium cohnii.
Metabolic engineering.
2019 01; 51(?):88-98. doi:
10.1016/j.ymben.2018.10.004
. [PMID: 30393203] - Ying Zhao, Bi-Han Wu, Zhen-Ning Liu, Jianjun Qiao, Guang-Rong Zhao. Combinatorial Optimization of Resveratrol Production in Engineered E. coli.
Journal of agricultural and food chemistry.
2018 Dec; 66(51):13444-13453. doi:
10.1021/acs.jafc.8b05014
. [PMID: 30488696] - Ulrike Bruning, Francisco Morales-Rodriguez, Joanna Kalucka, Jermaine Goveia, Federico Taverna, Karla C S Queiroz, Charlotte Dubois, Anna Rita Cantelmo, Rongyuan Chen, Stefan Loroch, Evy Timmerman, Vanessa Caixeta, Katarzyna Bloch, Lena-Christin Conradi, Lucas Treps, An Staes, Kris Gevaert, Andrew Tee, Mieke Dewerchin, Clay F Semenkovich, Francis Impens, Birgit Schilling, Eric Verdin, Johannes V Swinnen, Jordan L Meier, Rhushikesh A Kulkarni, Albert Sickmann, Bart Ghesquière, Luc Schoonjans, Xuri Li, Massimiliano Mazzone, Peter Carmeliet. Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation.
Cell metabolism.
2018 12; 28(6):866-880.e15. doi:
10.1016/j.cmet.2018.07.019
. [PMID: 30146486] - A Braga, P Ferreira, J Oliveira, I Rocha, N Faria. Heterologous production of resveratrol in bacterial hosts: current status and perspectives.
World journal of microbiology & biotechnology.
2018 Jul; 34(8):122. doi:
10.1007/s11274-018-2506-8
. [PMID: 30054757] - Mei-Yu Sun, Jing-Yi Li, Dong Li, Feng-Jie Huang, Di Wang, Hui Li, Quan Xing, Hui-Bin Zhu, Lei Shi. Full-Length Transcriptome Sequencing and Modular Organization Analysis of the Naringin/Neoeriocitrin-Related Gene Expression Pattern in Drynaria roosii.
Plant & cell physiology.
2018 Jul; 59(7):1398-1414. doi:
10.1093/pcp/pcy072
. [PMID: 29660070] - Shamir Cassim, Valérie-Ann Raymond, Layla Dehbidi-Assadzadeh, Pascal Lapierre, Marc Bilodeau. Metabolic reprogramming enables hepatocarcinoma cells to efficiently adapt and survive to a nutrient-restricted microenvironment.
Cell cycle (Georgetown, Tex.).
2018; 17(7):903-916. doi:
10.1080/15384101.2018.1460023
. [PMID: 29633904] - Heng Li, Wei Chen, Ruinan Jin, Jian-Ming Jin, Shuang-Yan Tang. Biosensor-aided high-throughput screening of hyper-producing cells for malonyl-CoA-derived products.
Microbial cell factories.
2017 Nov; 16(1):187. doi:
10.1186/s12934-017-0794-6
. [PMID: 29096626] - J Andrew Jones, Victoria R Vernacchio, Shannon M Collins, Abhijit N Shirke, Yu Xiu, Jacob A Englaender, Brady F Cress, Catherine C McCutcheon, Robert J Linhardt, Richard A Gross, Mattheos A G Koffas. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures.
mBio.
2017 06; 8(3):. doi:
10.1128/mbio.00621-17
. [PMID: 28588129] - Yves Mugabo, Shangang Zhao, Julien Lamontagne, Anfal Al-Mass, Marie-Line Peyot, Barbara E Corkey, Erik Joly, S R Murthy Madiraju, Marc Prentki. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells.
The Journal of biological chemistry.
2017 05; 292(18):7407-7422. doi:
10.1074/jbc.m116.763060
. [PMID: 28280244] - Junjun Wu, Xia Zhang, Yingjie Zhu, Qinyu Tan, Jiacheng He, Mingsheng Dong. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin.
Scientific reports.
2017 05; 7(1):1459. doi:
10.1038/s41598-017-01700-9
. [PMID: 28469159] - Chandra Shekar R Ambati, Furong Yuan, Lutfi A Abu-Elheiga, Yiqing Zhang, Vivekananda Shetty. Identification and Quantitation of Malonic Acid Biomarkers of In-Born Error Metabolism by Targeted Metabolomics.
Journal of the American Society for Mass Spectrometry.
2017 05; 28(5):929-938. doi:
10.1007/s13361-017-1631-1
. [PMID: 28315235] - Jenny Lindberg Yilmaz, Ze Long Lim, Mirela Beganovic, Steven Breazeale, Carl Andre, Sten Stymne, Patricia Vrinten, Toralf Senger. Determination of Substrate Preferences for Desaturases and Elongases for Production of Docosahexaenoic Acid from Oleic Acid in Engineered Canola.
Lipids.
2017 03; 52(3):207-222. doi:
10.1007/s11745-017-4235-4
. [PMID: 28197856] - Paula M Miotto, Gregory R Steinberg, Graham P Holloway. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise.
The Biochemical journal.
2017 02; 474(4):557-569. doi:
10.1042/bcj20160913
. [PMID: 27941154] - Diana Lehmann, Leila Motlagh, Dina Robaa, Stephan Zierz. Muscle Carnitine Palmitoyltransferase II Deficiency: A Review of Enzymatic Controversy and Clinical Features.
International journal of molecular sciences.
2017 Jan; 18(1):. doi:
10.3390/ijms18010082
. [PMID: 28054946] - Mingji Li, Konstantin Schneider, Mette Kristensen, Irina Borodina, Jens Nielsen. Engineering yeast for high-level production of stilbenoid antioxidants.
Scientific reports.
2016 11; 6(?):36827. doi:
10.1038/srep36827
. [PMID: 27833117] - L Meng, Z Xiong, J Chu, Y Wang. Enhanced production of avermectin by deletion of type III polyketide synthases biosynthetic cluster rpp in Streptomyces avermitilis.
Letters in applied microbiology.
2016 Nov; 63(5):384-390. doi:
10.1111/lam.12635
. [PMID: 27538855] - Junjun Wu, Xia Zhang, Jingwen Zhou, Mingsheng Dong. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy.
Bioresource technology.
2016 Oct; 218(?):999-1007. doi:
10.1016/j.biortech.2016.07.066
. [PMID: 27450982] - Eliska Vavrova, Véronique Lenoir, Marie-Clotilde Alves-Guerra, Raphaël G Denis, Julien Castel, Catherine Esnous, Jason R B Dyck, Serge Luquet, Daniel Metzger, Frédéric Bouillaud, Carina Prip-Buus. Muscle expression of a malonyl-CoA-insensitive carnitine palmitoyltransferase-1 protects mice against high-fat/high-sucrose diet-induced insulin resistance.
American journal of physiology. Endocrinology and metabolism.
2016 09; 311(3):E649-60. doi:
10.1152/ajpendo.00020.2016
. [PMID: 27507552] - Jing-Long Liang, Li-Qiong Guo, Jun-Fang Lin, Ze-Qi He, Fa-Ji Cai, Jun-Fei Chen. A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli.
World journal of microbiology & biotechnology.
2016 Jun; 32(6):102. doi:
10.1007/s11274-016-2062-z
. [PMID: 27116968] - Jiancai Wang, Ronghua Xu, Ruling Wang, Mohammad Enamul Haque, Aizhong Liu. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.
Bioscience, biotechnology, and biochemistry.
2016 Jun; 80(6):1214-22. doi:
10.1080/09168451.2015.1136883
. [PMID: 26865376] - Huan Liu, Dongqiong Tan, Lianshu Han, Jun Ye, Wenjuan Qiu, Xuefan Gu, Huiwen Zhang. A new case of malonyl-CoA decarboxylase deficiency with mild clinical features.
American journal of medical genetics. Part A.
2016 May; 170A(5):1347-51. doi:
10.1002/ajmg.a.37590
. [PMID: 26858006] - Juliette Martin, Maria L Balmer, Saranya Rajendran, Olivier Maurhofer, Jean-François Dufour, Marie V St-Pierre. Nutritional stress exacerbates hepatic steatosis induced by deletion of the histidine nucleotide-binding (Hint2) mitochondrial protein.
American journal of physiology. Gastrointestinal and liver physiology.
2016 04; 310(7):G497-509. doi:
10.1152/ajpgi.00178.2015
. [PMID: 26767982] - Joshua P Gray, Delaine Zayasbazan Burgos, Tao Yuan, Navindra Seeram, Rebecca Rebar, Rebecca Follmer, Emma A Heart. Thymoquinone, a bioactive component of Nigella sativa, normalizes insulin secretion from pancreatic β-cells under glucose overload via regulation of malonyl-CoA.
American journal of physiology. Endocrinology and metabolism.
2016 Mar; 310(6):E394-404. doi:
10.1152/ajpendo.00250.2015
. [PMID: 26786775] - Orly Levitan, Jorge Dinamarca, Ehud Zelzion, Maxim Y Gorbunov, Paul G Falkowski. An RNA interference knock-down of nitrate reductase enhances lipid biosynthesis in the diatom Phaeodactylum tricornutum.
The Plant journal : for cell and molecular biology.
2015 Dec; 84(5):963-73. doi:
10.1111/tpj.13052
. [PMID: 26473332] - Masashi Morita, Misato Kawamichi, Yusuke Shimura, Kosuke Kawaguchi, Shiro Watanabe, Tsuneo Imanaka. Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase.
Metabolic brain disease.
2015 Dec; 30(6):1359-67. doi:
10.1007/s11011-015-9701-1
. [PMID: 26108493] - In-Wook Hwang, Yu Makishima, Tomohiro Suzuki, Tatsuya Kato, Sungjo Park, Andre Terzic, Shin-Kyo Chung, Enoch Y Park. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity.
Applied microbiology and biotechnology.
2015 Nov; 99(21):8977-86. doi:
10.1007/s00253-015-6687-x
. [PMID: 26004805] - Lianshu Han, Shengnan Wu, Jun Ye, Wenjuan Qiu, Huiwen Zhang, Xiaolan Gao, Yu Wang, Zhuwen Gong, Jing Jin, Xuefan Gu. Biochemical, molecular and outcome analysis of eight chinese asymptomatic individuals with methyl malonic acidemia detected through newborn screening.
American journal of medical genetics. Part A.
2015 Oct; 167A(10):2300-5. doi:
10.1002/ajmg.a.37147
. [PMID: 25982642] - Ashraf Virmani, Luigi Pinto, Otto Bauermann, Saf Zerelli, Andreas Diedenhofen, Zbigniew K Binienda, Syed F Ali, Feike R van der Leij. The Carnitine Palmitoyl Transferase (CPT) System and Possible Relevance for Neuropsychiatric and Neurological Conditions.
Molecular neurobiology.
2015 Oct; 52(2):826-36. doi:
10.1007/s12035-015-9238-7
. [PMID: 26041663] - Junjun Wu, Guocheng Du, Jian Chen, Jingwen Zhou. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli.
Scientific reports.
2015 Sep; 5(?):13477. doi:
10.1038/srep13477
. [PMID: 26323217] - Omri Avidan, Alexander Brandis, Ilana Rogachev, Uri Pick. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata.
Journal of experimental botany.
2015 Jul; 66(13):3725-35. doi:
10.1093/jxb/erv166
. [PMID: 25922486] - Camille Loubière, Thomas Goiran, Kathiane Laurent, Zied Djabari, Jean-François Tanti, Frédéric Bost. Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells.
Oncotarget.
2015 Jun; 6(17):15652-61. doi:
10.18632/oncotarget.3404
. [PMID: 26002551] - Bo-Wen Gao, Xiao-Hui Wang, Xiao Liu, She-Po Shi, Peng-Fei Tu. Rapid preparation of (methyl)malonyl coenzyme A and enzymatic formation of unusual polyketides by type III polyketide synthase from Aquilaria sinensis.
Bioorganic & medicinal chemistry letters.
2015 Mar; 25(6):1279-83. doi:
10.1016/j.bmcl.2015.01.045
. [PMID: 25677661] - Pablo B Martínez de Morentin, Ricardo Lage, Ismael González-García, Francisco Ruíz-Pino, Luís Martins, Diana Fernández-Mallo, Rosalía Gallego, Johan Fernø, Rosa Señarís, Asish K Saha, Sulay Tovar, Carlos Diéguez, Rubén Nogueiras, Manuel Tena-Sempere, Miguel López. Pregnancy induces resistance to the anorectic effect of hypothalamic malonyl-CoA and the thermogenic effect of hypothalamic AMPK inhibition in female rats.
Endocrinology.
2015 Mar; 156(3):947-60. doi:
10.1210/en.2014-1611
. [PMID: 25535827] - Fabian Baertling, Ertan Mayatepek, Eva Thimm, Andrea Schlune, Alexander Kovacevic, Felix Distelmaier, Gajja S Salomons, Thomas Meissner. Malonic aciduria: long-term follow-up of new patients detected by newborn screening.
European journal of pediatrics.
2014 Dec; 173(12):1719-22. doi:
10.1007/s00431-014-2421-4
. [PMID: 25233985] - Junjun Wu, Oliver Yu, Guocheng Du, Jingwen Zhou, Jian Chen. Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli.
Applied and environmental microbiology.
2014 Dec; 80(23):7283-92. doi:
10.1128/aem.02411-14
. [PMID: 25239896] - Jamie Imbriolo, Rudo F Mapanga, M Faadiel Essop. The hexosamine biosynthetic pathway induces gene promoter activity of acetyl-CoA carboxylase beta.
Biochemical and biophysical research communications.
2014 Sep; 452(3):734-9. doi:
10.1016/j.bbrc.2014.08.142
. [PMID: 25195817] - Mohamed M Sayed-Ahmed, Meshan L Aldelemy, Othman A Al-Shabanah, Mohamed M Hafez, Khaled A Al-Hosaini, Naif O Al-Harbi, Shakir D Al-Sharary, Mohamed M Al-Harbi. Inhibition of gene expression of carnitine palmitoyltransferase I and heart fatty acid binding protein in cyclophosphamide and ifosfamide-induced acute cardiotoxic rat models.
Cardiovascular toxicology.
2014 Sep; 14(3):232-42. doi:
10.1007/s12012-014-9247-1
. [PMID: 24469765] - Susanne Mandrup, Ormond A MacDougald, Joel Moss, James Ntambi, Phillip Pekala, Qi-Qun Tang, Michael Wolfgang, David A Bernlohr. In memoriam: M. Daniel Lane, 1930-2014.
Trends in endocrinology and metabolism: TEM.
2014 Sep; 25(9):437-9. doi:
10.1016/j.tem.2014.06.013
. [PMID: 25084731] - Hayley M O'Neill, James S Lally, Sandra Galic, Melissa Thomas, Paymon D Azizi, Morgan D Fullerton, Brennan K Smith, Thomas Pulinilkunnil, Zhiping Chen, M Constantine Samaan, Sebastian B Jorgensen, Jason R B Dyck, Graham P Holloway, Thomas J Hawke, Bryce J van Denderen, Bruce E Kemp, Gregory R Steinberg. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice.
Diabetologia.
2014 Aug; 57(8):1693-702. doi:
10.1007/s00125-014-3273-1
. [PMID: 24913514] - Shuobo Shi, Yun Chen, Verena Siewers, Jens Nielsen. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1.
mBio.
2014 May; 5(3):e01130-14. doi:
10.1128/mbio.01130-14
. [PMID: 24803522] - Ying Xu, Jing Huang, Wei Xin, Liyong Chen, Xu Zhao, Zhimei Lv, Yi Liu, Qiang Wan. Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy.
Metabolism: clinical and experimental.
2014 May; 63(5):716-26. doi:
10.1016/j.metabol.2014.02.010
. [PMID: 24650564] - Saijie Zhu, Junjun Wu, Guocheng Du, Jingwen Zhou, Jian Chen. Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli.
Applied and environmental microbiology.
2014 May; 80(10):3072-80. doi:
10.1128/aem.03986-13
. [PMID: 24610848] - Janos Kerner, Paul E Minkler, Edward J Lesnefsky, Charles L Hoppel. Fatty acid chain elongation in palmitate-perfused working rat heart: mitochondrial acetyl-CoA is the source of two-carbon units for chain elongation.
The Journal of biological chemistry.
2014 Apr; 289(14):10223-34. doi:
10.1074/jbc.m113.524314
. [PMID: 24558043] - Himanshi Bhatia, Gaurav Verma, Malabika Datta. miR-107 orchestrates ER stress induction and lipid accumulation by post-transcriptional regulation of fatty acid synthase in hepatocytes.
Biochimica et biophysica acta.
2014; 1839(4):334-43. doi:
10.1016/j.bbagrm.2014.02.009
. [PMID: 24560669] - V Fritz, Z Benfodda, C Henriquet, S Hure, J-P Cristol, F Michel, M-A Carbonneau, F Casas, L Fajas. Metabolic intervention on lipid synthesis converging pathways abrogates prostate cancer growth.
Oncogene.
2013 Oct; 32(42):5101-10. doi:
10.1038/onc.2012.523
. [PMID: 23208508] - Suryanarayanan Vandhana, Karunakaran Coral, Udayakumar Jayanthi, Perinkulam Ravi Deepa, Subramanian Krishnakumar. Biochemical changes accompanying apoptotic cell death in retinoblastoma cancer cells treated with lipogenic enzyme inhibitors.
Biochimica et biophysica acta.
2013 Sep; 1831(9):1458-66. doi:
10.1016/j.bbalip.2013.06.005
. [PMID: 23816424] - Gregory Bertoni. A key step in phlorotannin biosynthesis revealed.
The Plant cell.
2013 Aug; 25(8):2770. doi:
10.1105/tpc.113.250813
. [PMID: 23995082] - Shinji Miura, Yuko Kai, Miki Tadaishi, Yuka Tokutake, Kimitoshi Sakamoto, Clinton R Bruce, Mark A Febbraio, Kiyoshi Kita, Shigeru Chohnan, Osamu Ezaki. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm.
American journal of physiology. Endocrinology and metabolism.
2013 Jul; 305(2):E213-29. doi:
10.1152/ajpendo.00114.2013
. [PMID: 23695215] - Ramakrishnan Karunakaran, Alison K East, Philip S Poole. Malonate catabolism does not drive N2 fixation in legume nodules.
Applied and environmental microbiology.
2013 Jul; 79(14):4496-8. doi:
10.1128/aem.00919-13
. [PMID: 23666330] - Su Gao, Núria Casals, Wendy Keung, Timothy H Moran, Gary D Lopaschuk. Differential effects of central ghrelin on fatty acid metabolism in hypothalamic ventral medial and arcuate nuclei.
Physiology & behavior.
2013 Jun; 118(?):165-70. doi:
10.1016/j.physbeh.2013.03.030
. [PMID: 23680429] - Nicholas E Kimber, David Cameron-Smith, Sean L McGee, Mark Hargreaves. Skeletal muscle fat metabolism after exercise in humans: influence of fat availability.
Journal of applied physiology (Bethesda, Md. : 1985).
2013 Jun; 114(11):1577-85. doi:
10.1152/japplphysiol.00824.2012
. [PMID: 23519231] - Marlen Knobloch, Simon M G Braun, Luis Zurkirchen, Carolin von Schoultz, Nicola Zamboni, Marcos J Araúzo-Bravo, Werner J Kovacs, Ozlem Karalay, Ueli Suter, Raquel A C Machado, Marta Roccio, Matthias P Lutolf, Clay F Semenkovich, Sebastian Jessberger. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis.
Nature.
2013 Jan; 493(7431):226-30. doi:
10.1038/nature11689
. [PMID: 23201681] - Daniela Albanesi, Georgina Reh, Marcelo E Guerin, Francis Schaeffer, Michel Debarbouille, Alejandro Buschiazzo, Gustavo E Schujman, Diego de Mendoza, Pedro M Alzari. Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus.
PLoS pathogens.
2013 Jan; 9(1):e1003108. doi:
10.1371/journal.ppat.1003108
. [PMID: 23300457] - Yuka Tokutake, Wataru Iio, Naoki Onizawa, Yuta Ogata, Daisuke Kohari, Atsushi Toyoda, Shigeru Chohnan. Effect of diet composition on coenzyme A and its thioester pools in various rat tissues.
Biochemical and biophysical research communications.
2012 Jul; 423(4):781-4. doi:
10.1016/j.bbrc.2012.06.037
. [PMID: 22713453] - S Glund, C Schoelch, L Thomas, H G Niessen, D Stiller, G J Roth, H Neubauer. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice.
Diabetologia.
2012 Jul; 55(7):2044-53. doi:
10.1007/s00125-012-2554-9
. [PMID: 22532389] - Julia Monsénégo, Abdelhak Mansouri, Marie Akkaoui, Véronique Lenoir, Catherine Esnous, Véronique Fauveau, Valentin Tavernier, Jean Girard, Carina Prip-Buus. Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis.
Journal of hepatology.
2012 Mar; 56(3):632-9. doi:
10.1016/j.jhep.2011.10.008
. [PMID: 22037024]