L-Homoserine (BioDeep_00000001371)
Secondary id: BioDeep_00000400300
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C4H9NO3 (119.0582)
中文名称: DL-高丝氨酸, 高丝氨酸, L-高丝氨酸, D-高丝氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 20.49%
Last reviewed on 2024-07-02.
Cite this Page
L-Homoserine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/l-homoserine (retrieved
2024-12-23) (BioDeep RN: BioDeep_00000001371). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CO)C(C(=O)O)N
InChI: InChI=1S/C4H9NO3/c5-3(1-2-6)4(7)8/h3,6H,1-2,5H2,(H,7,8)
描述信息
L-homoserine, also known as 2-amino-4-hydroxybutanoic acid or isothreonine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-homoserine is soluble (in water) and a moderately acidic compound (based on its pKa). L-homoserine can be found in common pea, which makes L-homoserine a potential biomarker for the consumption of this food product. L-homoserine can be found primarily in blood, feces, and urine, as well as in human prostate tissue. L-homoserine exists in all living species, ranging from bacteria to humans. In humans, L-homoserine is involved in the methionine metabolism. L-homoserine is also involved in several metabolic disorders, some of which include glycine n-methyltransferase deficiency, hypermethioninemia, cystathionine beta-synthase deficiency, and methylenetetrahydrofolate reductase deficiency (MTHFRD). Homoserine (also called isothreonine) is an α-amino acid with the chemical formula HO2CCH(NH2)CH2CH2OH. L-Homoserine is not one of the common amino acids encoded by DNA. It differs from the proteinogenic amino acid serine by insertion of an additional -CH2- unit into the backbone. Homoserine, or its lactone form, is the product of a cyanogen bromide cleavage of a peptide by degradation of methionine .
Homoserine is a more reactive variant of the amino acid serine. In this variant, the hydroxyl side chain contains an additional CH2 group which brings the hydroxyl group closer to its own carboxyl group, allowing it to chemically react to form a five-membered ring. This occurs at the point that amino acids normally join to their neighbours in a peptide bond. Homoserine is therefore unsuitable for forming proteins and has been eliminated from the repertoire of amino acids used by living things. Homoserine is the final product on the C-terminal end of the N-terminal fragment following a cyanogen bromide cleavage. (wikipedia). Homoserine is also a microbial metabolite.
L-Homoserine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=672-15-1 (retrieved 2024-07-02) (CAS RN: 672-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Homoserine is a non - protein amino acid, which is an important biosynthetic intermediate of threonine, methionine and lysine.
L-Homoserine is a non - protein amino acid, which is an important biosynthetic intermediate of threonine, methionine and lysine.
同义名列表
28 个代谢物同义名
(2S)-2-Amino-4-hydroxybutanoic acid; (S)-2-Amino-4-hydroxy-butanoic acid; (S)-2-Amino-4-hydroxybutanoic acid; 2-Amino-4-hydroxy-L-butyric acid; (S)-2-Amino-4-hydroxy-butanoate; (2S)-2-Amino-4-hydroxybutanoate; 2-Amino-4-hydroxybutanoic acid; 2-Amino-4-hydroxy-butyric acid; (S)-2-Amino-4-hydroxybutanoate; 2-Amino-4-hydroxybutyric acid; 2-Amino-4-hydroxy-L-butyrate; 2-Amino-4-hydroxy-butyrate; 2-Amino-4-hydroxybutanoate; 2-Amino-4-hydroxybutyrate; L-Isomer OF homoserine; L Isomer OF homoserine; Homoserine L-isomer; L-(-)-Homoserine; (S)-Homoserine; dl -homoserine; DL-Homoserine; L-Homoserine; D-Homoserine; L-Homoserine; Homoserine; Homoserine; L-Homoserine; DL-Homoserine
数据库引用编号
47 个数据库交叉引用编号
- ChEBI: CHEBI:30653
- ChEBI: CHEBI:15699
- KEGG: C00263
- PubChem: 12647
- PubChem: 779
- HMDB: HMDB0000719
- Metlin: METLIN3713
- Metlin: METLIN288
- DrugBank: DB04193
- ChEMBL: CHEMBL11722
- Wikipedia: Homoserine
- MeSH: Homoserine
- MetaCyc: HOMO-SER
- KNApSAcK: C00001366
- foodb: FDB006683
- chemspider: 12126
- CAS: 672-15-1
- MoNA: KNA00143
- MoNA: KO003060
- MoNA: KNA00728
- MoNA: KNA00730
- MoNA: PS062803
- MoNA: KNA00555
- MoNA: KNA00729
- MoNA: KNA00142
- MoNA: KO003062
- MoNA: KNA00342
- MoNA: PR100726
- MoNA: KO003059
- MoNA: KNA00141
- MoNA: PS062801
- MoNA: KNA00341
- MoNA: KNA00554
- MoNA: KNA00340
- MoNA: KO003061
- MoNA: PS062802
- MoNA: PR100294
- PMhub: MS000000406
- PDB-CCD: HSE
- 3DMET: B01202
- NIKKAJI: J9.199E
- medchemexpress: HY-W002292
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-79
- PubChem: 3561
- KNApSAcK: 15699
- CAS: 1927-25-9
- LOTUS: LTS0150040
分类词条
相关代谢途径
Reactome(0)
BioCyc(7)
PlantCyc(0)
代谢反应
595 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(28)
- isoleucine biosynthesis I:
thr ⟶ 2-oxobutanoate + H+ + ammonia
- methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae):
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- threonine biosynthesis:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- homoserine biosynthesis:
ATP + asp ⟶ ADP + H+ + L-aspartyl-4-phosphate
- threonine biosynthesis from homoserine:
ATP + L-homoserine ⟶ ADP + H+ + O-phospho-L-homoserine
- cysteine biosynthesis IV (fungi):
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- canavanine biosynthesis:
L-homoserine + ammonia ⟶ H+ + L-canaline
- threonine biosynthesis from homoserine:
H2O + O-phospho-L-homoserine ⟶ phosphate + thr
- homoserine biosynthesis:
L-aspartate-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- methionine biosynthesis:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- aspartate superpathway:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- superpathway of lysine, threonine and methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- isoleucine biosynthesis I:
thr ⟶ 2-oxobutanoate + H+ + ammonia
- superpathway of lysine, threonine and methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- threonine biosynthesis:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- threonine biosynthesis from homoserine:
H2O + O-phospho-L-homoserine ⟶ phosphate + thr
- homoserine biosynthesis:
L-aspartate-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- homoserine biosynthesis:
ATP + asp ⟶ ADP + L-aspartyl-4-phosphate
- aspartate superpathway:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- threonine biosynthesis from homoserine:
ATP + L-homoserine ⟶ ADP + H+ + O-phospho-L-homoserine
- canavanine degradation:
H+ + L-canaline + NADPH ⟶ L-homoserine + NADP+ + ammonia
- superpathway of lysine, threonine and methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- threonine biosynthesis:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
WikiPathways(0)
Plant Reactome(531)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
ATP + L-Asp ⟶ ADP + L-aspartyl-4-phosphate
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Canavanine biosynthesis:
ATP + L-Asp + O-ureidohomoserine ⟶ AMP + PPi + canavaninosuccinate
- Homocysteine biosynthesis:
H2S + O-acetyl-L-homoserine ⟶ CH3COO- + LHCYS
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- Homoserine biosynthesis:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Threonine biosynthesis from homoserine:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(36)
- Cysteine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Methionine Metabolism and Salvage:
2-Oxo-4-methylthiobutanoic acid + L-Phenylalanine ⟶ 2-Ketobutyric acid + L-Methionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Biosynthesis:
L-Cysteine + O-succinyl-L-homoserine ⟶ Hydrogen Ion + L-Cystathionine + Succinic acid
- Threonine Biosynthesis:
L-Glutamic acid + Oxalacetic acid ⟶ L-Aspartic acid + Oxoglutaric acid
- Secondary Metabolites: Threonine Biosynthesis from Aspartate:
O-Phosphohomoserine + Water ⟶ L-Threonine + Phosphate
- Threonine Metabolism:
L-Threonine ⟶ Acetaldehyde + Glycine
- Methionine Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Threonine Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Biosynthesis:
L-Cysteine + O-succinyl-L-homoserine ⟶ Hydrogen Ion + L-Cystathionine + Succinic acid
- Threonine Biosynthesis:
L-Glutamic acid + Oxalacetic acid ⟶ L-Aspartic acid + Oxoglutaric acid
- Secondary Metabolites: Threonine Biosynthesis from Aspartate:
O-Phosphohomoserine + Water ⟶ L-Threonine + Phosphate
PharmGKB(0)
68 个相关的物种来源信息
- 3701 - Arabidopsis: LTS0150040
- 3702 - Arabidopsis thaliana: 10.1104/PP.104.053793
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: LTS0150040
- 4890 - Ascomycota: LTS0150040
- 33849 - Bacillariophyceae: LTS0150040
- 2836 - Bacillariophyta: LTS0150040
- 91061 - Bacilli: LTS0150040
- 2 - Bacteria: LTS0150040
- 3700 - Brassicaceae: LTS0150040
- 5475 - Candida: LTS0150040
- 5476 - Candida albicans: LTS0150040
- 3051 - Chlamydomonadaceae: LTS0150040
- 3052 - Chlamydomonas: LTS0150040
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0150040
- 3166 - Chlorophyceae: LTS0150040
- 3041 - Chlorophyta: LTS0150040
- 33836 - Coscinodiscophyceae: LTS0150040
- 766764 - Debaryomycetaceae: LTS0150040
- 543 - Enterobacteriaceae: LTS0150040
- 561 - Escherichia: LTS0150040
- 562 - Escherichia coli: LTS0150040
- 33682 - Euglenozoa: LTS0150040
- 2759 - Eukaryota: LTS0150040
- 3803 - Fabaceae: LTS0150040
- 4751 - Fungi: LTS0150040
- 1236 - Gammaproteobacteria: LTS0150040
- 9606 - Homo sapiens: -
- 5653 - Kinetoplastea: LTS0150040
- 3853 - Lathyrus: LTS0150040
- 154494 - Lathyrus latifolius: 10.1016/S0031-9422(96)00425-6
- 154494 - Lathyrus latifolius: LTS0150040
- 3867 - Lotus: LTS0150040
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0150040
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: LTS0150040
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0150040
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0150040
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: LTS0150040
- 3398 - Magnoliopsida: LTS0150040
- 589449 - Mediophyceae: LTS0150040
- 2696291 - Ochrophyta: LTS0150040
- 4891 - Saccharomycetes: LTS0150040
- 590 - Salmonella: LTS0150040
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0150040
- 90964 - Staphylococcaceae: LTS0150040
- 1279 - Staphylococcus: LTS0150040
- 1280 - Staphylococcus aureus: LTS0150040
- 35493 - Streptophyta: LTS0150040
- 35127 - Thalassiosira: LTS0150040
- 35128 - Thalassiosira pseudonana: 10.1016/J.PROTIS.2019.05.004
- 35128 - Thalassiosira pseudonana: LTS0150040
- 29202 - Thalassiosiraceae: LTS0150040
- 58023 - Tracheophyta: LTS0150040
- 5690 - Trypanosoma: LTS0150040
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0150040
- 5654 - Trypanosomatidae: LTS0150040
- 33090 - Viridiplantae: LTS0150040
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yaguang Zhao, Fenghua Zhang, Bede Mickan, Dan Wang. Inoculation of wheat with Bacillus sp. wp-6 altered amino acid and flavonoid metabolism and promoted plant growth.
Plant cell reports.
2023 Jan; 42(1):165-179. doi:
10.1007/s00299-022-02947-x
. [PMID: 36348065] - Umang Dhaubhadel, Abiud E Portillo, Ondřej Horáček, Yu-Sheng Sung, Daniel W Armstrong. Unusual enantiomeric D,L-N-acyl homoserine lactones in Pectobacterium atrosepticum and Pseudomonas aeruginosa.
PloS one.
2023; 18(3):e0283657. doi:
10.1371/journal.pone.0283657
. [PMID: 37000717] - Xiaozhen Liu, Qinmeng Liu, Sihuai Sun, Hengxi Sun, Yao Wang, Xihui Shen, Lei Zhang. Exploring AI-2-mediated interspecies communications within rumen microbial communities.
Microbiome.
2022 10; 10(1):167. doi:
10.1186/s40168-022-01367-z
. [PMID: 36203182] - Rudi Hendra, Mariam N Salib, Tadeusz F Molinski. Spiroisoxazoline Inhibitors of Acetylcholinesterase from Pseudoceratina verrucosa. Quantitative Chiroptical Analysis of Configurational Heterogeneity, and Total Synthesis of (±)-Methyl Purpuroceratate C.
Journal of natural products.
2022 09; 85(9):2207-2216. doi:
10.1021/acs.jnatprod.2c00595
. [PMID: 36095307] - Radhika Khera, Ahmad R Mehdipour, Jani R Bolla, Joerg Kahnt, Sonja Welsch, Ulrich Ermler, Cornelia Muenke, Carol V Robinson, Gerhard Hummer, Hao Xie, Hartmut Michel. Cryo-EM structures of pentameric autoinducer-2 exporter from Escherichia coli reveal its transport mechanism.
The EMBO journal.
2022 09; 41(18):e109990. doi:
10.15252/embj.2021109990
. [PMID: 35698912] - Wei Cheng, Zhenyu Wang, Yi Xiong, Zhifeng Wu, Xiang Tan, Yapeng Yang, Hang Zhang, Xi Zhu, Hong Wei, Shiyu Tao. N-(3-oxododecanoyl)-homoserine lactone disrupts intestinal barrier and induces systemic inflammation through perturbing gut microbiome in mice.
The Science of the total environment.
2021 Jul; 778(?):146347. doi:
10.1016/j.scitotenv.2021.146347
. [PMID: 34030388] - Qinqin Pu, Kai Guo, Ping Lin, Zhihan Wang, Shugang Qin, Pan Gao, Colin Combs, Nadeem Khan, Zhenwei Xia, Min Wu. Bitter receptor TAS2R138 facilitates lipid droplet degradation in neutrophils during Pseudomonas aeruginosa infection.
Signal transduction and targeted therapy.
2021 06; 6(1):210. doi:
10.1038/s41392-021-00602-7
. [PMID: 34083514] - Sapir Ya'ar Bar, Shlomit Dor, Mayan Erov, Livnat Afriat-Jurnou. Identification and Characterization of a New Quorum-Quenching N-acyl Homoserine Lactonase in the Plant Pathogen Erwinia amylovora.
Journal of agricultural and food chemistry.
2021 May; 69(20):5652-5662. doi:
10.1021/acs.jafc.1c00366
. [PMID: 33974427] - Charles Ar Cotton, Iria Bernhardsgrütter, Hai He, Simon Burgener, Luca Schulz, Nicole Paczia, Beau Dronsella, Alexander Erban, Stepan Toman, Marian Dempfle, Alberto De Maria, Joachim Kopka, Steffen N Lindner, Tobias J Erb, Arren Bar-Even. Underground isoleucine biosynthesis pathways in E. coli.
eLife.
2020 08; 9(?):. doi:
10.7554/elife.54207
. [PMID: 32831171] - Qin Xiong, Di Liu, Huihui Zhang, Xiaoyan Dong, Guishan Zhang, Yunpeng Liu, Ruifu Zhang. Quorum sensing signal autoinducer-2 promotes root colonization of Bacillus velezensis SQR9 by affecting biofilm formation and motility.
Applied microbiology and biotechnology.
2020 Aug; 104(16):7177-7185. doi:
10.1007/s00253-020-10713-w
. [PMID: 32621125] - Narendranath Bhokisham, Yi Liu, Adam D Brown, Gregory F Payne, James N Culver, William E Bentley. Transglutaminase-mediated assembly of multi-enzyme pathway onto TMV brush surfaces for synthesis of bacterial autoinducer-2.
Biofabrication.
2020 07; 12(4):045017. doi:
10.1088/1758-5090/ab9e7a
. [PMID: 32559753] - Ajay Patel, Lillian Abdelmalek, Austin Thompson, Ishwarlal Jialal. Decreased homoserine levels in metabolic syndrome.
Diabetes & metabolic syndrome.
2020 Jul; 14(4):555-559. doi:
10.1016/j.dsx.2020.04.052
. [PMID: 32413818] - Hai He, Rune Höper, Moritz Dodenhöft, Philippe Marlière, Arren Bar-Even. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli.
Metabolic engineering.
2020 07; 60(?):1-13. doi:
10.1016/j.ymben.2020.03.002
. [PMID: 32169542] - Tong Liu, Xiang Gu, Li-Xiang Li, Ming Li, Bing Li, Xiao Cui, Xiu-Li Zuo. Microbial and metabolomic profiles in correlation with depression and anxiety co-morbidities in diarrhoea-predominant IBS patients.
BMC microbiology.
2020 06; 20(1):168. doi:
10.1186/s12866-020-01841-4
. [PMID: 32552668] - Eleanor F Vesty, Amy L Whitbread, Sarah Needs, Wesal Tanko, Kirsty Jones, Nigel Halliday, Fatemeh Ghaderiardakani, Xiaoguang Liu, Miguel Cámara, Juliet C Coates. Cross-kingdom signalling regulates spore germination in the moss Physcomitrella patens.
Scientific reports.
2020 02; 10(1):2614. doi:
10.1038/s41598-020-59467-5
. [PMID: 32054953] - Tomohiro Morohoshi, Yuto Ogasawara, Xiaonan Xie, Hiroshi Hamamoto, Nobutaka Someya. Genetic and Biochemical Diversity for N-acylhomoserine Lactone Biosynthesis in the Plant Pathogen Pectobacterium carotovorum subsp. carotovorum.
Microbes and environments.
2019 Dec; 34(4):429-435. doi:
10.1264/jsme2.me19105
. [PMID: 31666459] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - I Matityahu, I Godo, Y Hacham, R Amir. The level of threonine in tobacco seeds is limited by substrate availability, while the level of methionine is limited also by the activity of cystathionine γ-synthase.
Plant science : an international journal of experimental plant biology.
2019 Jun; 283(?):195-201. doi:
10.1016/j.plantsci.2019.02.020
. [PMID: 31128689] - Yu V Zaitseva, V A Lipasova, V A Plyuta, O A Koksharova, I V Demidyuk, S V Kostrov, I A Khmel. Effect of inactivation of luxS gene on the properties of Serratia proteamaculans 94 strain.
Folia microbiologica.
2019 May; 64(3):265-272. doi:
10.1007/s12223-018-0657-5
. [PMID: 30361877] - Fusheng Wang, Weizhong Li, Guanghuan Wang, Menglu Yu, Jun Zhong, Chenbin Xu, Danli Li, Yongcui Zhou. Gas chromatography-mass spectrometry based serum metabolic analysis for premature infants and the relationship with necrotizing enterocolitis: a cross-sectional study.
Italian journal of pediatrics.
2019 Apr; 45(1):54. doi:
10.1186/s13052-019-0646-6
. [PMID: 31036043] - Zujie Yao, Zhuang Guo, Yuqian Wang, Wanxin Li, Yuying Fu, Yuexu Lin, Wenxiong Lin, Xiangmin Lin. Integrated Succinylome and Metabolome Profiling Reveals Crucial Role of S-Ribosylhomocysteine Lyase in Quorum Sensing and Metabolism of Aeromonas hydrophila.
Molecular & cellular proteomics : MCP.
2019 02; 18(2):200-215. doi:
10.1074/mcp.ra118.001035
. [PMID: 30352804] - Dingka Song, Junchen Meng, Jie Cheng, Zheng Fan, Pengyu Chen, Hefei Ruan, Zhongyuan Tu, Ning Kang, Nan Li, Ying Xu, Xiaobo Wang, Fei Shu, Libing Mu, Tengfei Li, Wenran Ren, Xin Lin, Jun Zhu, Xiaohong Fang, Matthias W Amrein, Weihui Wu, Li-Tang Yan, Junhong Lü, Tie Xia, Yan Shi. Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution.
Nature microbiology.
2019 01; 4(1):97-111. doi:
10.1038/s41564-018-0290-8
. [PMID: 30510173] - Will Buswell, Roland E Schwarzenbacher, Estrella Luna, Matthew Sellwood, Beining Chen, Victor Flors, Pierre Pétriacq, Jurriaan Ton. Chemical priming of immunity without costs to plant growth.
The New phytologist.
2018 05; 218(3):1205-1216. doi:
10.1111/nph.15062
. [PMID: 29465773] - Zhangjian Hu, Shujun Shao, Chenfei Zheng, Zenghui Sun, Junying Shi, Jingquan Yu, Zhenyu Qi, Kai Shi. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling.
Planta.
2018 May; 247(5):1217-1227. doi:
10.1007/s00425-018-2860-7
. [PMID: 29445868] - Loureen Dahli, Dana Atrahimovich, Jacob Vaya, Soliman Khatib. Lyso-DGTS lipid isolated from microalgae enhances PON1 activities in vitro and in vivo, increases PON1 penetration into macrophages and decreases cellular lipid accumulation.
BioFactors (Oxford, England).
2018 May; 44(3):299-310. doi:
10.1002/biof.1427
. [PMID: 29659105] - Michael Rothballer, Jenny Uhl, Josie Kunze, Philippe Schmitt-Kopplin, Anton Hartmann. Detection of the Bacterial Quorum-Sensing Signaling Molecules N-Acyl-Homoserine Lactones (HSL) and N-Acyl-Homoserine (HS) with an Enzyme-Linked Immunosorbent Assay (ELISA) and via Ultrahigh-Performance Liquid Chromatography Coupled to Mass Spectrometry (UHPLC-MS).
Methods in molecular biology (Clifton, N.J.).
2018; 1673(?):61-72. doi:
10.1007/978-1-4939-7309-5_5
. [PMID: 29130164] - Xiaoka Wu, Xiaolong Lv, Jinye Lu, Shengqing Yu, Yawei Jin, Jiangang Hu, Jiakun Zuo, Rongsheng Mi, Yan Huang, Kezong Qi, Zhaoguo Chen, Xiangan Han. The role of the ptsI gene on AI-2 internalization and pathogenesis of avian pathogenic Escherichia coli.
Microbial pathogenesis.
2017 Dec; 113(?):321-329. doi:
10.1016/j.micpath.2017.10.048
. [PMID: 29111323] - Shama Naz, Hector Gallart-Ayala, Stacey N Reinke, Caroline Mathon, Richard Blankley, Romanas Chaleckis, Craig E Wheelock. Development of a Liquid Chromatography-High Resolution Mass Spectrometry Metabolomics Method with High Specificity for Metabolite Identification Using All Ion Fragmentation Acquisition.
Analytical chemistry.
2017 08; 89(15):7933-7942. doi:
10.1021/acs.analchem.7b00925
. [PMID: 28641411] - Marta Woźniak-Karczewska, Kamila Myszka, Agata Sznajdrowska, Alicja Szulc, Agnieszka Zgoła-Grześkowiak, Łukasz Ławniczak, Philippe F-X Corvini, Łukasz Chrzanowski. Isolation of rhamnolipids-producing cultures from faeces: Influence of interspecies communication on the yield of rhamnolipid congeners.
New biotechnology.
2017 May; 36(?):17-25. doi:
10.1016/j.nbt.2016.12.008
. [PMID: 28043869] - Z Lou, H Wang, Y Tang, X Chen. The effect of burdock leaf fraction on adhesion, biofilm formation, quorum sensing and virulence factors of Pseudomonas aeruginosa.
Journal of applied microbiology.
2017 Mar; 122(3):615-624. doi:
10.1111/jam.13348
. [PMID: 27860087] - Anne M Fink, Caron Dean, Mariann R Piano, David W Carley. The pedunculopontine tegmentum controls renal sympathetic nerve activity and cardiorespiratory activities in nembutal-anesthetized rats.
PloS one.
2017; 12(11):e0187956. doi:
10.1371/journal.pone.0187956
. [PMID: 29121095] - Nathalie M Grob, Martin Behe, Elisabeth von Guggenberg, Roger Schibli, Thomas L Mindt. Methoxinine - an alternative stable amino acid substitute for oxidation-sensitive methionine in radiolabelled peptide conjugates.
Journal of peptide science : an official publication of the European Peptide Society.
2017 Jan; 23(1):38-44. doi:
10.1002/psc.2948
. [PMID: 28054429] - Feifei Cheng, Anzhou Ma, Xuliang Zhuang, Xiaojia He, Guoqiang Zhuang. N-(3-oxo-hexanoyl)-homoserine lactone has a critical contribution to the quorum-sensing-dependent regulation in phytopathogen Pseudomonas syringae pv. tabaci 11528.
FEMS microbiology letters.
2016 12; 363(23):. doi:
10.1093/femsle/fnw265
. [PMID: 27864298] - Lina Sheng, Barbara Rasco, Mei-Jun Zhu. Cinnamon Oil Inhibits Shiga Toxin Type 2 Phage Induction and Shiga Toxin Type 2 Production in Escherichia coli O157:H7.
Applied and environmental microbiology.
2016 11; 82(22):6531-6540. doi:
10.1128/aem.01702-16
. [PMID: 27590808] - Cheng-Shan Lang, Siew-Hoon Wong, Sharon Chow, Victoria L Challinor, Ken W L Yong, Mary T Fletcher, Dionne M Arthur, Jack C Ng, James J De Voss. Synthesis of l-indospicine, [5,5,6-(2)H3]-l-indospicine and l-norindospicine.
Organic & biomolecular chemistry.
2016 Jul; 14(28):6826-32. doi:
10.1039/c6ob01187j
. [PMID: 27338015] - Shiyu Tao, Yanwen Luo, Bin He, Jie Liu, Xi Qian, Yingdong Ni, Ruqian Zhao. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone.
Scientific reports.
2016 07; 6(?):28778. doi:
10.1038/srep28778
. [PMID: 27364593] - Robson Ee, Munusamy Madhaiyan, Lianghui Ji, Yan-Lue Lim, Nuruddin Muhammad Nor, Kok-Keng Tee, Jian-Woon Chen, Wai-Fong Yin. Chania multitudinisentens gen. nov., sp. nov., an N-acyl-homoserine-lactone-producing bacterium in the family Enterobacteriaceae isolated from landfill site soil.
International journal of systematic and evolutionary microbiology.
2016 Jun; 66(6):2297-2304. doi:
10.1099/ijsem.0.001025
. [PMID: 26978486] - Matthias Martin Gaida, Ulrike Dapunt, Gertrud Maria Hänsch. Sensing developing biofilms: the bitter receptor T2R38 on myeloid cells.
Pathogens and disease.
2016 Apr; 74(3):. doi:
10.1093/femspd/ftw004
. [PMID: 26782143] - Paul K Grant, Neil Dalchau, James R Brown, Fernan Federici, Timothy J Rudge, Boyan Yordanov, Om Patange, Andrew Phillips, Jim Haseloff. Orthogonal intercellular signaling for programmed spatial behavior.
Molecular systems biology.
2016 Jan; 12(1):849. doi:
10.15252/msb.20156590
. [PMID: 26814193] - Bohyun Yun, Seunghan Oh, Minyu Song, Young-Shick Hong, Sungsu Park, Dong-June Park, Mansel W Griffiths, Sejong Oh. Inhibitory Effect of Epigallocatechin Gallate on the Virulence of Clostridium difficile PCR Ribotype 027.
Journal of food science.
2015 Dec; 80(12):M2925-31. doi:
10.1111/1750-3841.13145
. [PMID: 26556797] - Yangcheng Ding, Huajun Feng, Wenkun Huang, Dongsheng Shen, Meizhen Wang. A sustainable method for effective regulation of anaerobic granular sludge: artificially increasing the concentration of signal molecules by cultivating a secreting strain.
Bioresource technology.
2015 Nov; 196(?):273-8. doi:
10.1016/j.biortech.2015.07.066
. [PMID: 26253911] - Isar Dejban Golpasha, Seyed Fazlollah Mousavi, Parviz Owlia, Seyed Davar Siadat, Shiva Irani. Immunization with 3-oxododecanoyl-L-homoserine lactone-r-PcrV conjugate enhances survival of mice against lethal burn infections caused by Pseudomonas aeruginosa.
Bosnian journal of basic medical sciences.
2015 May; 15(2):15-24. doi:
10.17305/bjbms.2015.292
. [PMID: 26042508] - Patrycja Bronowicka-Adamska, Jacek Zagajewski, Maria Wróbel. An application of RP-HPLC for determination of the activity of cystathionine β-synthase and γ-cystathionase in tissue homogenates.
Nitric oxide : biology and chemistry.
2015 Apr; 46(?):186-91. doi:
10.1016/j.niox.2014.09.159
. [PMID: 25307719] - Christian Schwarzer, Zhu Fu, Takeshi Morita, Aaron G Whitt, Aaron M Neely, Chi Li, Terry E Machen. Paraoxonase 2 serves a proapopotic function in mouse and human cells in response to the Pseudomonas aeruginosa quorum-sensing molecule N-(3-Oxododecanoyl)-homoserine lactone.
The Journal of biological chemistry.
2015 Mar; 290(11):7247-58. doi:
10.1074/jbc.m114.620039
. [PMID: 25627690] - Yang Wang, Li Yi, Shaohui Wang, Hongjie Fan, Chan Ding, Xiang Mao, Chengping Lu. Crystal Structure and Identification of Two Key Amino Acids Involved in AI-2 Production and Biofilm Formation in Streptococcus suis LuxS.
PloS one.
2015; 10(10):e0138826. doi:
10.1371/journal.pone.0138826
. [PMID: 26484864] - O Priha, V Virkajärvi, R Juvonen, R Puupponen-Pimiä, L Nohynek, S Alakurtti, M Pirttimaa, E Storgårds. Quorum sensing signalling and biofilm formation of brewery-derived bacteria, and inhibition of signalling by natural compounds.
Current microbiology.
2014 Nov; 69(5):617-27. doi:
10.1007/s00284-014-0627-3
. [PMID: 24944110] - Andrew G Palmer, Amanda C Senechal, Arijit Mukherjee, Jean-Michel Ané, Helen E Blackwell. Plant responses to bacterial N-acyl L-homoserine lactones are dependent on enzymatic degradation to L-homoserine.
ACS chemical biology.
2014 Aug; 9(8):1834-45. doi:
10.1021/cb500191a
. [PMID: 24918118] - Sung Yong Eum, Dima Jaraki, Luc Bertrand, Ibolya E András, Michal Toborek. Disruption of epithelial barrier by quorum-sensing N-3-(oxododecanoyl)-homoserine lactone is mediated by matrix metalloproteinases.
American journal of physiology. Gastrointestinal and liver physiology.
2014 Jun; 306(11):G992-G1001. doi:
10.1152/ajpgi.00016.2014
. [PMID: 24742991] - Wen-Si Tan, Nina Yusrina Muhamad Yunos, Pui-Wan Tan, Nur Izzati Mohamad, Tan-Guan-Sheng Adrian, Wai-Fong Yin, Kok-Gan Chan. Pantoea sp. isolated from tropical fresh water exhibiting N-acyl homoserine lactone production.
TheScientificWorldJournal.
2014; 2014(?):828971. doi:
10.1155/2014/828971
. [PMID: 25197715] - Hui Yuan, Dong Liu. Genetic evidence that Arabidopsis ALTERED ROOT ARCHITECTURE encodes a putative dehydrogenase involved in homoserine biosynthesis.
Plant cell reports.
2014 Jan; 33(1):25-33. doi:
10.1007/s00299-013-1509-z
. [PMID: 24101201] - Elizabeth M Vanderlinde, Michael F Hynes, Christopher K Yost. Homoserine catabolism by Rhizobium leguminosarum bv. viciae 3841 requires a plasmid-borne gene cluster that also affects competitiveness for nodulation.
Environmental microbiology.
2014 Jan; 16(1):205-17. doi:
10.1111/1462-2920.12196
. [PMID: 23859230] - Nilesh Raut, Patrizia Pasini, Sylvia Daunert. Deciphering bacterial universal language by detecting the quorum sensing signal, autoinducer-2, with a whole-cell sensing system.
Analytical chemistry.
2013 Oct; 85(20):9604-9. doi:
10.1021/ac401776k
. [PMID: 24047052] - S M Nayeemul Bari, M Kamruzzaman Roky, M Mohiuddin, M Kamruzzaman, John J Mekalanos, Shah M Faruque. Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples.
Proceedings of the National Academy of Sciences of the United States of America.
2013 Jun; 110(24):9926-31. doi:
10.1073/pnas.1307697110
. [PMID: 23716683] - Clayton E Cox, Michael McClelland, Max Teplitski. Consequences of disrupting Salmonella AI-2 signaling on interactions within soft rots.
Phytopathology.
2013 Apr; 103(4):352-61. doi:
10.1094/phyto-09-12-0237-fi
. [PMID: 23324045] - Robin P Huibers, Annelies E H M Loonen, Dongli Gao, Guido Van den Ackerveken, Richard G F Visser, Yuling Bai. Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1.
PloS one.
2013; 8(6):e67467. doi:
10.1371/journal.pone.0067467
. [PMID: 23818978] - Gisela von Hoven, Nicole Kloft, Claudia Neukirch, Sabrina Ebinger, Wiesia Bobkiewicz, Silvia Weis, Klaus Boller, Kim D Janda, Matthias Husmann. Modulation of translation and induction of autophagy by bacterial exoproducts.
Medical microbiology and immunology.
2012 Nov; 201(4):409-18. doi:
10.1007/s00430-012-0271-0
. [PMID: 22991039] - Chunjuan Miao, Fang Liu, Qian Zhao, Zhenhua Jia, Shuishan Song. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal.
Biochemical and biophysical research communications.
2012 Oct; 427(2):293-8. doi:
10.1016/j.bbrc.2012.09.044
. [PMID: 22995300] - Shailly Anand, Kiran Bala, Anjali Saxena, Peter Schumann, Rup Lal. Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site.
International journal of systematic and evolutionary microbiology.
2012 Sep; 62(Pt 9):2114-2120. doi:
10.1099/ijs.0.034439-0
. [PMID: 22039005] - Yuichiro Kawakita, Fumiko Taguchi, Yoshishige Inagaki, Kazuhiro Toyoda, Tomonori Shiraishi, Yuki Ichinose. Characterization of each aefR and mexT mutant in Pseudomonas syringae pv. tabaci 6605.
Molecular genetics and genomics : MGG.
2012 Jun; 287(6):473-84. doi:
10.1007/s00438-012-0693-9
. [PMID: 22552803] - Andrea Choe, Stephan H von Reuss, Dima Kogan, Robin B Gasser, Edward G Platzer, Frank C Schroeder, Paul W Sternberg. Ascaroside signaling is widely conserved among nematodes.
Current biology : CB.
2012 May; 22(9):772-80. doi:
10.1016/j.cub.2012.03.024
. [PMID: 22503501] - Monika Schmoll, Chaoguang Tian, Jianping Sun, Doris Tisch, N Louise Glass. Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa.
BMC genomics.
2012 Mar; 13(?):127. doi:
10.1186/1471-2164-13-127
. [PMID: 22462823] - Denis Coulon, Lionel Faure, Magali Salmon, Valerie Wattelet, Jean-Jacques Bessoule. N-Acylethanolamines and related compounds: aspects of metabolism and functions.
Plant science : an international journal of experimental plant biology.
2012 Mar; 184(?):129-40. doi:
10.1016/j.plantsci.2011.12.015
. [PMID: 22284717] - Xuegui Bai, Christopher D Todd, Radhika Desikan, Yongping Yang, Xiangyang Hu. N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean.
Plant physiology.
2012 Feb; 158(2):725-36. doi:
10.1104/pp.111.185769
. [PMID: 22138973] - Ali E McClean, Breck A Duerkop, E Peter Greenberg, Daniel A Kluepfel. AHL signals induce rubrifacine production in a bruI mutant of Brenneria rubrifaciens.
Phytopathology.
2012 Feb; 102(2):195-203. doi:
10.1094/phyto-04-11-0111
. [PMID: 22236075] - Brahma N Singh, H B Singh, Akanksha Singh, Braj R Singh, Aradhana Mishra, C S Nautiyal. Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa.
Microbiology (Reading, England).
2012 Feb; 158(Pt 2):529-538. doi:
10.1099/mic.0.052985-0
. [PMID: 22117007] - Shannon M Bell, Lyle D Burgoon, Robert L Last. MIPHENO: data normalization for high throughput metabolite analysis.
BMC bioinformatics.
2012 Jan; 13(?):10. doi:
10.1186/1471-2105-13-10
. [PMID: 22244038] - Lena Hauberg-Lotte, Hannah Klingenberg, Christian Scharf, Melanie Böhm, Jörg Plessl, Frauke Friedrich, Uwe Völker, Anke Becker, Barbara Reinhold-Hurek. Environmental factors affecting the expression of pilAB as well as the proteome and transcriptome of the grass endophyte Azoarcus sp. strain BH72.
PloS one.
2012; 7(1):e30421. doi:
10.1371/journal.pone.0030421
. [PMID: 22276194] - Laure Plener, Pierre Boistard, Adriana González, Christian Boucher, Stéphane Genin. Metabolic adaptation of Ralstonia solanacearum during plant infection: a methionine biosynthesis case study.
PloS one.
2012; 7(5):e36877. doi:
10.1371/journal.pone.0036877
. [PMID: 22615832] - Fabio Rezzonico, Theo H M Smits, Brion Duffy. Detection of AI-2 receptors in genomes of Enterobacteriaceae suggests a role of type-2 quorum sensing in closed ecosystems.
Sensors (Basel, Switzerland).
2012; 12(5):6645-65. doi:
10.3390/s120506645
. [PMID: 22778662] - Inga Kwiecień, Małgorzata Iciek, Lidia Włodek. Acceleration of anaerobic cysteine transformations to sulfane sulfur consequent to γ-glutamyl transpeptidase inhibition.
TheScientificWorldJournal.
2012; 2012(?):253724. doi:
10.1100/2012/253724
. [PMID: 22629124] - Lee Põllumaa, Tiina Alamäe, Andres Mäe. Quorum sensing and expression of virulence in pectobacteria.
Sensors (Basel, Switzerland).
2012; 12(3):3327-49. doi:
10.3390/s120303327
. [PMID: 22737011] - Fiorela Nievas, Pablo Bogino, Fernando Sorroche, Walter Giordano. Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia.
Sensors (Basel, Switzerland).
2012; 12(3):2851-73. doi:
10.3390/s120302851
. [PMID: 22736981] - Minoru Hasokawa, Masakazu Shinohara, Hiroshi Tsugawa, Takeshi Bamba, Eiichiro Fukusaki, Shin Nishiumi, Kunihiro Nishimura, Masaru Yoshida, Tatsuro Ishida, Ken-Ichi Hirata. Identification of biomarkers of stent restenosis with serum metabolomic profiling using gas chromatography/mass spectrometry.
Circulation journal : official journal of the Japanese Circulation Society.
2012; 76(8):1864-73. doi:
10.1253/circj.cj-11-0622
. [PMID: 22664753] - Xiaodan Cao, Sarah V Studer, Karen Wassarman, Yuanxing Zhang, Edward G Ruby, Tim Miyashiro. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri.
mBio.
2012; 3(1):. doi:
10.1128/mbio.00285-11
. [PMID: 22233679] - Thiba Krishnan, Wai-Fong Yin, Kok-Gan Chan. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract.
Sensors (Basel, Switzerland).
2012; 12(4):4016-30. doi:
10.3390/s120404016
. [PMID: 22666015] - Li Ying Tan, Wai-Fong Yin, Kok-Gan Chan. Silencing quorum sensing through extracts of Melicope lunu-ankenda.
Sensors (Basel, Switzerland).
2012; 12(4):4339-51. doi:
10.3390/s120404339
. [PMID: 22666033] - Wei Huang, Yongjun Lin, Shuyuan Yi, Pengfu Liu, Jie Shen, Zongze Shao, Ziduo Liu. QsdH, a novel AHL lactonase in the RND-type inner membrane of marine Pseudoalteromonas byunsanensis strain 1A01261.
PloS one.
2012; 7(10):e46587. doi:
10.1371/journal.pone.0046587
. [PMID: 23056356] - Qianqian Li, Hong Ni, Shan Meng, Yan He, Ziniu Yu, Lin Li. Suppressing Erwinia carotovora pathogenicity by projecting N-acyl homoserine lactonase onto the surface of Pseudomonas putida cells.
Journal of microbiology and biotechnology.
2011 Dec; 21(12):1330-5. doi:
10.4014/jmb.1107.07011
. [PMID: 22210621] - Ehud Katz, Kyung Hwan Boo, Ho Youn Kim, Richard A Eigenheer, Brett S Phinney, Vladimir Shulaev, Florence Negre-Zakharov, Avi Sadka, Eduardo Blumwald. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development.
Journal of experimental botany.
2011 Nov; 62(15):5367-84. doi:
10.1093/jxb/err197
. [PMID: 21841177] - Michiko E Taga, Karina B Xavier. Methods for analysis of bacterial autoinducer-2 production.
Current protocols in microbiology.
2011 Nov; Chapter 1(?):Unit1C.1. doi:
10.1002/9780471729259.mc01c01s23
. [PMID: 22045583] - Vinoy K Ramachandran, Alison K East, Ramakrishnan Karunakaran, J Allan Downie, Philip S Poole. Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics.
Genome biology.
2011 Oct; 12(10):R106. doi:
10.1186/gb-2011-12-10-r106
. [PMID: 22018401] - Diana V Dugas, Marcela K Monaco, Andrew Olsen, Robert R Klein, Sunita Kumari, Doreen Ware, Patricia E Klein. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid.
BMC genomics.
2011 Oct; 12(?):514. doi:
10.1186/1471-2164-12-514
. [PMID: 22008187] - Nabil M Wilf, Neil R Williamson, Joshua P Ramsay, Simon Poulter, Kasia J Bandyra, George P C Salmond. The RNA chaperone, Hfq, controls two luxR-type regulators and plays a key role in pathogenesis and production of antibiotics in Serratia sp. ATCC 39006.
Environmental microbiology.
2011 Oct; 13(10):2649-66. doi:
10.1111/j.1462-2920.2011.02532.x
. [PMID: 21824244] - Mariana S Silva, Alessandra A De Souza, Marco A Takita, Carlos A Labate, Marcos A Machado. Analysis of the biofilm proteome of Xylella fastidiosa.
Proteome science.
2011 Sep; 9(?):58. doi:
10.1186/1477-5956-9-58
. [PMID: 21939513] - Kang-Mu Lee, Jeesun Lim, Sunyoung Nam, Mi Young Yoon, Yong-Kuk Kwon, Byeong Yeal Jung, Yongjin Park, Sungsu Park, Sang Sun Yoon. Inhibitory effects of broccoli extract on Escherichia coli O157:H7 quorum sensing and in vivo virulence.
FEMS microbiology letters.
2011 Aug; 321(1):67-74. doi:
10.1111/j.1574-6968.2011.02311.x
. [PMID: 21592195] - Eva K F Chan, Heather C Rowe, Jason A Corwin, Bindu Joseph, Daniel J Kliebenstein. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana.
PLoS biology.
2011 Aug; 9(8):e1001125. doi:
10.1371/journal.pbio.1001125
. [PMID: 21857804] - Olivier M Vandeputte, Martin Kiendrebeogo, Tsiry Rasamiravaka, Caroline Stévigny, Pierre Duez, Sanda Rajaonson, Billo Diallo, Adeline Mol, Marie Baucher, Mondher El Jaziri. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1.
Microbiology (Reading, England).
2011 Jul; 157(Pt 7):2120-2132. doi:
10.1099/mic.0.049338-0
. [PMID: 21546585] - Bijay K Khajanchi, Michelle L Kirtley, Sheri M Brackman, Ashok K Chopra. Immunomodulatory and protective roles of quorum-sensing signaling molecules N-acyl homoserine lactones during infection of mice with Aeromonas hydrophila.
Infection and immunity.
2011 Jul; 79(7):2646-57. doi:
10.1128/iai.00096-11
. [PMID: 21536794] - Cristina Silva Pereira, José M L Ribeiro, Ada D Vatulescu, Kim Findlay, Alistair J MacDougall, Phil A P Jackson. Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H(2)O(2)-induced reduction in primary cell wall hydration.
BMC plant biology.
2011 Jun; 11(?):106. doi:
10.1186/1471-2229-11-106
. [PMID: 21672244] - P Kämpfer, P D Rekha, P Schumann, A B Arun, Chiu-Chung Young, Wen-Ming Chen, K R Sridhar. Microbacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems.
International journal of systematic and evolutionary microbiology.
2011 Jun; 61(Pt 6):1334-1337. doi:
10.1099/ijs.0.026401-0
. [PMID: 20656817] - Colette A ten Hove, Mark de Jong, Dmitry Lapin, Annemiek Andel, Gabino F Sanchez-Perez, Yoshiaki Tarutani, Yoshihito Suzuki, Renze Heidstra, Guido van den Ackerveken. Trans-repression of gene activity upstream of T-DNA tagged RLK902 links Arabidopsis root growth inhibition and downy mildew resistance.
PloS one.
2011 Apr; 6(4):e19028. doi:
10.1371/journal.pone.0019028
. [PMID: 21532992] - Rc Venu, Mv Sreerekha, Kan Nobuta, André Beló, Yuese Ning, Gynheung An, Blake C Meyers, Guo-Liang Wang. Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars.
BMC genomics.
2011 Apr; 12(?):190. doi:
10.1186/1471-2164-12-190
. [PMID: 21492454] - Khee Hoon Koh, Foong-Yee Tham. Screening of traditional Chinese medicinal plants for quorum-sensing inhibitors activity.
Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.
2011 Apr; 44(2):144-8. doi:
10.1016/j.jmii.2009.10.001
. [PMID: 21439518] - Kok-Gan Chan, Steve Atkinson, Kalai Mathee, Choon-Kook Sam, Siri Ram Chhabra, Miguel Cámara, Chong-Lek Koh, Paul Williams. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia.
BMC microbiology.
2011 Mar; 11(?):51. doi:
10.1186/1471-2180-11-51
. [PMID: 21385437] - Chen-Yu Tsao, Liang Wang, Yoshifumi Hashimoto, Hyunmin Yi, John C March, Matthew P DeLisa, Thomas K Wood, James J Valdes, William E Bentley. LuxS coexpression enhances yields of recombinant proteins in Escherichia coli in part through posttranscriptional control of GroEL.
Applied and environmental microbiology.
2011 Mar; 77(6):2141-52. doi:
10.1128/aem.02347-10
. [PMID: 21278275] - Kenny M Gomolplitinant, Milton H Saier. Evolution of the oligopeptide transporter family.
The Journal of membrane biology.
2011 Mar; 240(2):89-110. doi:
10.1007/s00232-011-9347-9
. [PMID: 21347612] - Stephen L Byrne, Alexandre Foito, Pete E Hedley, Jenny A Morris, Derek Stewart, Susanne Barth. Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency.
Annals of botany.
2011 Feb; 107(2):243-54. doi:
10.1093/aob/mcq234
. [PMID: 21148585] - Désirée van Noord, Peter B F Mensink, Robert J de Knegt, Martine Ouwendijk, Jan Francke, Anneke J van Vuuren, Bettina E Hansen, Ernst J Kuipers. Serum markers and intestinal mucosal injury in chronic gastrointestinal ischemia.
Digestive diseases and sciences.
2011 Feb; 56(2):506-12. doi:
10.1007/s10620-010-1303-5
. [PMID: 20628816] - Yuping Wei, Gina T Ryan, Ana L Flores-Mireles, Esther D Costa, David J Schneider, Stephen C Winans. Saturation mutagenesis of a CepR binding site as a means to identify new quorum-regulated promoters in Burkholderia cenocepacia.
Molecular microbiology.
2011 Feb; 79(3):616-32. doi:
10.1111/j.1365-2958.2010.07469.x
. [PMID: 21255107]