3-Sulfinoalanine (BioDeep_00000001365)
Secondary id: BioDeep_00000017819, BioDeep_00000399895
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C3H7NO4S (153.0096)
中文名称: L-半胱亚磺酸 一水合物, L-半胱氨酸亚磺酸
谱图信息:
最多检出来源 Homo sapiens(blood) 32.54%
分子结构信息
SMILES: C(C(C(=O)O)N)S(=O)O
InChI: InChI=1S/C3H6NO4S/c4-2(3(5)6)1-9(7)8/h2H,1,4H2,(H,5,6)/t2-/m0/s1
描述信息
3-Sulfinoalanine or cysteinesulfinic acid is a N-methyl-D-aspartate agonist. It is a product of cysteine dioxygenase or CDO [EC 1.13.11.20]. In humans cysteine catabolism is tightly regulated via regulation of cysteine dioxygenase (CDO) levels in the liver, with the turnover of CDO protein being dramatically decreased when intracellular cysteine levels increase. This occurs in response to changes in the intracellular cysteine concentration via changes in the rate of CDO ubiquitination and degradation. Expressed at high levels in the liver with lower levels in the kidney, brain, and lung, cysteine dioxygenase catalyzes the addition of molecular oxygen to the sulfhydryl group of cysteine, yielding cysteinesulfinic acid. The oxidative catabolism of cysteine to cysteinesulfinate by CDO represents an irreversible loss of cysteine from the free amino acid pool. Once generated, cysteinesulfinate is shuttled into several pathways including hypotaurine/taurine synthesis, sulfite/sulfate production, and the generation of pyruvate. [HMDB]
3-Sulfinoalanine or cysteinesulfinic acid is an N-methyl-D-aspartate agonist. It is a product of cysteine dioxygenase or CDO (EC 1.13.11.20). In humans, cysteine catabolism is tightly regulated via regulation of cysteine dioxygenase (CDO) levels in the liver, with the turnover of CDO protein being dramatically decreased when intracellular cysteine levels increase. This occurs in response to changes in the intracellular cysteine concentration via changes in the rate of CDO ubiquitination and degradation. Expressed at high levels in the liver with lower levels in the kidney, brain, and lung, cysteine dioxygenase catalyzes the addition of molecular oxygen to the sulfhydryl group of cysteine, yielding cysteinesulfinic acid. The oxidative catabolism of cysteine to cysteinesulfinate by CDO represents an irreversible loss of cysteine from the free amino acid pool. Once generated, cysteinesulfinate is shuttled into several pathways including hypotaurine/taurine synthesis, sulfite/sulfate production, and the generation of pyruvate.
[Spectral] 3-Sulfino-L-alanine (exact mass = 153.00958) and L-Isoleucine (exact mass = 131.09463) and alpha-D-Glucose 6-phosphate (exact mass = 260.02972) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] 3-Sulfino-L-alanine (exact mass = 153.00958) and alpha-D-Glucose 6-phosphate (exact mass = 260.02972) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] 3-Sulfino-L-alanine (exact mass = 153.00958) and sn-Glycerol 3-phosphate (exact mass = 172.01367) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
KEIO_ID C015
L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1].
L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1].
同义名列表
31 个代谢物同义名
(2R)-2-amino-3-[(R)-sulfino]propanoic acid; (2R)-2-Amino-3-sulphinopropanoic acid; (2R)-2-amino-3-sulfonylpropanoic acid; (2R)-2-Amino-3-sulfinopropanoic acid; (2R)-2-Amino-3-sulphinopropanoate; L-2-Amino-3-sulfinopropionic acid; (2R)-2-Amino-3-sulfinopropanoate; Cysteine hydrogen sulfite ester; 3-Sulphinato-L-alaninic acid; 3-Sulfinato-L-alaninic acid; L-Cysteinesulphinic acid; L-Cysteine sulfinic acid; 3-Sulphinato-L-alaninate; Alanine-3-sulfinic acid; Alanine 3-sulfinic acid; 3-Sulfinato-L-alaninate; L-Cysteinesulfinic acid; Cysteine sulfinic acid; Cysteinesulfinic acid; Alaninesulfinic acid; L-Cysteinesulphinate; 3-Sulphino-L-alanine; 3-Sulfino-L-alanine; L-Cysteinesulfinate; Cysteine sulfinate; 3-Sulfino- Alanine; Cysteinesulfinate; 3-Sulphinoalanine; 3-Sulfinoalanine; 3-Sulfino-L-alanine; L-Cysteinesulfinic acid
数据库引用编号
37 个数据库交叉引用编号
- ChEBI: CHEBI:16345
- KEGG: C00606
- PubChem: 1549098
- PubChem: 439270
- PubChem: 3881
- HMDB: HMDB0000996
- Metlin: METLIN5927
- DrugBank: DB02153
- ChEMBL: CHEMBL1160508
- Wikipedia: Cysteine_sulfinic_acid
- foodb: FDB022358
- chemspider: 1266065
- CAS: 1115-65-7
- MoNA: KO000396
- MoNA: KO000397
- MoNA: KNA00721
- MoNA: KO002535
- MoNA: KO002533
- MoNA: KNA00332
- MoNA: KO002532
- MoNA: KNA00720
- MoNA: KO000400
- MoNA: KNA00534
- MoNA: KO002536
- MoNA: KNA00535
- MoNA: KO002534
- MoNA: KNA00129
- MoNA: KNA00333
- MoNA: KO000399
- MoNA: KO000398
- MoNA: KNA00130
- PDB-CCD: CSD
- 3DMET: B01293
- NIKKAJI: J36.785K
- medchemexpress: HY-100804
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-111
- KNApSAcK: 16345
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
23 个相关的代谢反应过程信息。
Reactome(4)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
Plant Reactome(0)
INOH(2)
- Methionine and Cysteine metabolism ( Methionine and Cysteine metabolism ):
H2O + L-Cystathionine ⟶ 2-Oxo-butanoic acid + L-Cysteine + NH3
- 2-Oxo-glutaric acid + L-Cysteine-sulfinic acid = L-Glutamic acid + 3-Sulfinyl-pyruvic acid ( Methionine and Cysteine metabolism ):
2-Oxo-glutaric acid + L-Cysteine-sulfinic acid ⟶ 3-Sulfinyl-pyruvic acid + L-Glutamic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(15)
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Taurine and Hypotaurine Metabolism:
L-Cysteine + Oxygen ⟶ 3-Sulfinoalanine
- Taurine and Hypotaurine Biosynthesis:
3-Sulfinoalanine ⟶ Carbon dioxide + Hypotaurine
- Taurine and Hypotaurine Metabolism:
L-Cysteine + Oxygen ⟶ 3-Sulfinoalanine
- Taurine and Hypotaurine Metabolism:
L-Cysteine + Oxygen ⟶ 3-Sulfinoalanine
- Taurine and Hypotaurine Metabolism:
L-Cysteine + Oxygen ⟶ 3-Sulfinoalanine
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Francesco Vieceli Dalla Sega, Cecilia Prata, Laura Zambonin, Cristina Angeloni, Benedetta Rizzo, Silvana Hrelia, Diana Fiorentini. Intracellular cysteine oxidation is modulated by aquaporin-8-mediated hydrogen peroxide channeling in leukaemia cells.
BioFactors (Oxford, England).
2017 Mar; 43(2):232-242. doi:
10.1002/biof.1340
. [PMID: 27862460] - Jessica R Terrill, Miranda D Grounds, Peter G Arthur. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy.
The international journal of biochemistry & cell biology.
2015 Sep; 66(?):141-8. doi:
10.1016/j.biocel.2015.07.016
. [PMID: 26239309] - Glyn B Steventon, Stephen C Mitchell, Santigo Angulo, Coral Barbas. An investigation into possible xenobiotic-endobiotic inter-relationships involving the amino acid analogue drug, S-carboxymethyl-L-cysteine and plasma amino acids in humans.
Amino acids.
2012 May; 42(5):1967-73. doi:
10.1007/s00726-011-0926-y
. [PMID: 21559953] - S G Rhee, W Jeong, T-S Chang, H A Woo. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance.
Kidney international. Supplement.
2007 Aug; ?(106):S3-8. doi:
10.1038/sj.ki.5002380
. [PMID: 17653208] - Olga Boudker, Renae M Ryan, Dinesh Yernool, Keiko Shimamoto, Eric Gouaux. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter.
Nature.
2007 Jan; 445(7126):387-93. doi:
10.1038/nature05455
. [PMID: 17230192] - H Nakamura, J Yatsuki, T Ubuka. Production of hypotaurine, taurine and sulfate in rats and mice injected with L-cysteinesulfinate.
Amino acids.
2006 Jul; 31(1):27-33. doi:
10.1007/s00726-005-0277-7
. [PMID: 16680400] - Xian Peng Liu, Xue Ying Liu, Juan Zhang, Zong Liang Xia, Xin Liu, Huan Ju Qin, Dao Wen Wang. Molecular and functional characterization of sulfiredoxin homologs from higher plants.
Cell research.
2006 Mar; 16(3):287-96. doi:
10.1038/sj.cr.7310036
. [PMID: 16541127] - J David Van Horn, Grzegorz Bulaj, David P Goldenberg, Cynthia J Burrows. The Cys-Xaa-His metal-binding motif: [N] versus [S] coordination and nickel-mediated formation of cysteinyl sulfinic acid.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry.
2003 Jul; 8(6):601-10. doi:
10.1007/s00775-003-0454-7
. [PMID: 12827456] - M J Croucher, L S Thomas, H Ahmadi, V Lawrence, J R Harris. Endogenous sulphur-containing amino acids: potent agonists at presynaptic metabotropic glutamate autoreceptors in the rat central nervous system.
British journal of pharmacology.
2001 Jul; 133(6):815-24. doi:
10.1038/sj.bjp.0704138
. [PMID: 11454654] - S E Edgar, C A Kirk, Q R Rogers, J G Morris. Taurine status in cats is not maintained by dietary cysteinesulfinic acid.
The Journal of nutrition.
1998 Apr; 128(4):751-7. doi:
10.1093/jn/128.4.751
. [PMID: 9521639] - T Togawa, A Ohsawa, K Kawanabe, S Tanabe. Simultaneous determination of cysteine sulfinic acid and hypotaurine in rat tissues by column-switching high-performance liquid chromatography with electrochemical detection.
Journal of chromatography. B, Biomedical sciences and applications.
1997 Dec; 704(1-2):83-8. doi:
10.1016/s0378-4347(97)00449-0
. [PMID: 9518181] - C T Quinn, J C Griener, T Bottiglieri, K Hyland, A Farrow, B A Kamen. Elevation of homocysteine and excitatory amino acid neurotransmitters in the CSF of children who receive methotrexate for the treatment of cancer.
Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
1997 Aug; 15(8):2800-6. doi:
10.1200/jco.1997.15.8.2800
. [PMID: 9256122] - M E Suliman, B Anderstam, J Bergström. Evidence of taurine depletion and accumulation of cysteinesulfinic acid in chronic dialysis patients.
Kidney international.
1996 Nov; 50(5):1713-7. doi:
10.1038/ki.1996.490
. [PMID: 8914041] - P Guérin, Y Ménézo. Hypotaurine and taurine in gamete and embryo environments: de novo synthesis via the cysteine sulfinic acid pathway in oviduct cells.
Zygote (Cambridge, England).
1995 Nov; 3(4):333-43. doi:
10.1017/s0967199400002768
. [PMID: 8730898] - C R Santhosh-Kumar, J C Deutsch, J C Kolhouse, K L Hassell, J F Kolhouse. Measurement of excitatory sulfur amino acids, cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring.
Analytical biochemistry.
1994 Aug; 220(2):249-56. doi:
10.1006/abio.1994.1335
. [PMID: 7978266] - R H Juang, K F McCue, D W Ow. Two purine biosynthetic enzymes that are required for cadmium tolerance in Schizosaccharomyces pombe utilize cysteine sulfinate in vitro.
Archives of biochemistry and biophysics.
1993 Aug; 304(2):392-401. doi:
10.1006/abbi.1993.1367
. [PMID: 8346915] - J Dunlop, A Grieve, I Damgaard, A Schousboe, R Griffiths. Sulphur-containing excitatory amino acid-evoked Ca(2+)-independent release of D-[3H]aspartate from cultured cerebellar granule cells: the role of glutamate receptor activation coupled to reversal of the acidic amino acid plasma membrane carrier.
Neuroscience.
1992 Sep; 50(1):107-15. doi:
10.1016/0306-4522(92)90385-f
. [PMID: 1357589] - M H Stipanuk, J De la Rosa, L L Hirschberger. Catabolism of cyst(e)ine by rat renal cortical tubules.
The Journal of nutrition.
1990 May; 120(5):450-8. doi:
10.1093/jn/120.5.450
. [PMID: 2111378] - A Pastuszko, D F Wilson. Amino acids modulate calcium permeability of the plasma membrane of human neuroblastoma cells.
Cancer biochemistry biophysics.
1988 May; 9(4):359-66. doi:
NULL
. [PMID: 2899454] - A Pastuszko, D F Wilson. Cysteine sulfinate modulated calcium permeability in synaptosomes from rat brain.
Neuroscience letters.
1987 Nov; 82(1):71-6. doi:
10.1016/0304-3940(87)90173-x
. [PMID: 3696486] - K Kuriyama, Y Tanaka. Cysteinesulfinic acid and cysteic acid: high-performance liquid chromatography.
Methods in enzymology.
1987; 143(?):164-6. doi:
10.1016/0076-6879(87)43030-9
. [PMID: 3657531] - D F Wilson, A Pastuszko. Transport of cysteate by synaptosomes isolated from rat brain: evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate.
Journal of neurochemistry.
1986 Oct; 47(4):1091-7. doi:
10.1111/j.1471-4159.1986.tb00725.x
. [PMID: 2875128] - L L Hirschberger, J De La Rosa, M H Stipanuk. Determination of cysteinesulfinate, hypotaurine and taurine in physiological samples by reversed-phase high-performance liquid chromatography.
Journal of chromatography.
1985 Oct; 343(2):303-13. doi:
10.1016/s0378-4347(00)84599-5
. [PMID: 2866194] - A Baba, Y Kumagae, T Tatsuno, H Iwata. Modulation by bovine serum albumin of stimulated formation of cyclic AMP in guinea pig hippocampus.
Japanese journal of pharmacology.
1984 Oct; 36(2):272-4. doi:
10.1254/jjp.36.272
. [PMID: 6151013] - O W Griffith. Cysteinesulfinate metabolism. altered partitioning between transamination and decarboxylation following administration of beta-methyleneaspartate.
The Journal of biological chemistry.
1983 Feb; 258(3):1591-8. doi:
NULL
. [PMID: 6822523] - P FROMAGEOT, U PATINO-BUN. [Polarographic study of the desulfination of cysteinesulfinic acid by oat leaf extracts].
Biochimica et biophysica acta.
1961 Jan; 46(?):533-44. doi:
10.1016/0006-3002(61)90584-4
. [PMID: 13702219] - H PEREZ-MILAN, J SCHLIACK, P FROMAGEOT. [Transamination of cysteinesulfinic acid by extracts of oat leaves].
Biochimica et biophysica acta.
1959 Nov; 36(?):73-83. doi:
10.1016/0006-3002(59)90071-x
. [PMID: 14431823] - F CHAPEVILLE, P FROMAGEOT. [Enzymatic formation of cysteinesulfinic acid from sulfite].
Biochimica et biophysica acta.
1954 Jul; 14(3):415-20. doi:
10.1016/0006-3002(54)90201-2
. [PMID: 13181899] - H TABECHIAN, B BERGERET, F CHATAGNER. [Metabolism of L. cysteinesulfinic acid in the liver and kidneys of rat in vivo].
Bulletin de la Societe de chimie biologique.
1953; 35(7):615-22. doi:
NULL
. [PMID: 13094388] - . .
.
. doi:
. [PMID: 23038267]