Gene Association: ADO

UniProt Search: ADO (PROTEIN_CODING)
Function Description: 2-aminoethanethiol dioxygenase

found 11 associated metabolites with current gene based on the text mining result from the pubmed database.

3-Sulfinoalanine

(2R)-2-amino-3-[(R)-sulfino]propanoic acid

C3H7NO4S (153.0096)


3-Sulfinoalanine or cysteinesulfinic acid is a N-methyl-D-aspartate agonist. It is a product of cysteine dioxygenase or CDO [EC 1.13.11.20]. In humans cysteine catabolism is tightly regulated via regulation of cysteine dioxygenase (CDO) levels in the liver, with the turnover of CDO protein being dramatically decreased when intracellular cysteine levels increase. This occurs in response to changes in the intracellular cysteine concentration via changes in the rate of CDO ubiquitination and degradation. Expressed at high levels in the liver with lower levels in the kidney, brain, and lung, cysteine dioxygenase catalyzes the addition of molecular oxygen to the sulfhydryl group of cysteine, yielding cysteinesulfinic acid. The oxidative catabolism of cysteine to cysteinesulfinate by CDO represents an irreversible loss of cysteine from the free amino acid pool. Once generated, cysteinesulfinate is shuttled into several pathways including hypotaurine/taurine synthesis, sulfite/sulfate production, and the generation of pyruvate. [HMDB] 3-Sulfinoalanine or cysteinesulfinic acid is an N-methyl-D-aspartate agonist. It is a product of cysteine dioxygenase or CDO (EC 1.13.11.20). In humans, cysteine catabolism is tightly regulated via regulation of cysteine dioxygenase (CDO) levels in the liver, with the turnover of CDO protein being dramatically decreased when intracellular cysteine levels increase. This occurs in response to changes in the intracellular cysteine concentration via changes in the rate of CDO ubiquitination and degradation. Expressed at high levels in the liver with lower levels in the kidney, brain, and lung, cysteine dioxygenase catalyzes the addition of molecular oxygen to the sulfhydryl group of cysteine, yielding cysteinesulfinic acid. The oxidative catabolism of cysteine to cysteinesulfinate by CDO represents an irreversible loss of cysteine from the free amino acid pool. Once generated, cysteinesulfinate is shuttled into several pathways including hypotaurine/taurine synthesis, sulfite/sulfate production, and the generation of pyruvate. [Spectral] 3-Sulfino-L-alanine (exact mass = 153.00958) and L-Isoleucine (exact mass = 131.09463) and alpha-D-Glucose 6-phosphate (exact mass = 260.02972) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] 3-Sulfino-L-alanine (exact mass = 153.00958) and alpha-D-Glucose 6-phosphate (exact mass = 260.02972) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] 3-Sulfino-L-alanine (exact mass = 153.00958) and sn-Glycerol 3-phosphate (exact mass = 172.01367) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. KEIO_ID C015 L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1]. L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1].

   

Hypotaurine

2-aminoethane-1-sulfinic acid

C2H7NO2S (109.0197)


Hypotaurine belongs to the class of organic compounds known as sulfinic acids. Sulfinic acids are compounds containing a sulfinic acid functional group, with the general structure RS(=O)OH (R = organyl, not H). Hypotaurine exists in all living species, ranging from bacteria to humans. Within humans, hypotaurine participates in a number of enzymatic reactions. In particular, hypotaurine can be biosynthesized from cysteamine; which is catalyzed by the enzyme 2-aminoethanethiol dioxygenase. In addition, hypotaurine can be biosynthesized from 3-sulfinoalanine through its interaction with the enzyme cysteine sulfinic acid decarboxylase. In humans, hypotaurine is involved in taurine and hypotaurine metabolism. [Spectral] Hypotaurine (exact mass = 109.01975) and Cytosine (exact mass = 111.04326) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Hypotaurine is a product of enzyme cysteamine dioxygenase [EC 1.13.11.19] in taurine and hypotaurine metabolism pathway (KEGG). It may function as an antioxidant and a protective agent under physiological conditions (PMID 14992269). [HMDB] Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

Cysteamine

Dihydrochloride, cysteamine

C2H7NS (77.0299)


Cysteamine is a product of the constitutive degradation of coenzyme A, a process that occurs in all tissues, although some tissues such as brain and heart may have exceptionally high coenzyme A turnover rates. Cysteamine has only one known function, and that is as a precursor for the formation of hypotaurine, which is subsequently oxidized to taurine. The rate of cysteamine production as a result of coenzyme A breakdown is not well understood but it is clear that cysteamine levels are not as dramatically affected by dietary habits as are cysteine levels. Cysteamine is generated from hypotaurine by cysteamine dioxygenase (EC:1.13.11.19), an enzyme that was recently identified in mammals (PMID: 17581819). Cysteamine is the simplest stable aminothiol found in the body. It is used in the treatment of disorders of cystine excretion. Cysteamine cleaves the disulfide bond with cysteine to produce molecules that can escape the metabolic defect in cystinosis and cystinuria. Cyst(e)amine may also serve as an endogenous regulator of immune system activity as well as a potential therapeutic agent for the treatment of Huntington disease. Cysteamine is also used as a radiation-protective agent that oxidizes in air to form cystamine. It can be given intravenously or orally to treat radiation sickness. -- Wikipedia [HMDB] Cysteamine is a product of the constitutive degradation of coenzyme A, a process that occurs in all tissues, although some tissues such as brain and heart may have exceptionally high coenzyme A turnover rates. Cysteamine has only one known function, and that is as a precursor for the formation of hypotaurine, which is subsequently oxidized to taurine. The rate of cysteamine production as a result of coenzyme A breakdown is not well understood but it is clear that cysteamine levels are not as dramatically affected by dietary habits as are cysteine levels. Cysteamine is generated from hypotaurine by cysteamine dioxygenase (EC:1.13.11.19), an enzyme that was recently identified in mammals (PMID:17581819). Cysteamine is the simplest stable aminothiol found in the body. It is used in the treatment of disorders of cystine excretion. Cysteamine cleaves the disulfide bond with cysteine to produce molecules that can escape the metabolic defect in cystinosis and cystinuria. Cyst(e)amine may also serve as an endogenous regulator of immune system activity as well as a potential therapeutic agent for the treatment of Huntington disease. Cysteamine is also used as a radiation-protective agent that oxidizes in air to form cystamine. It can be given intravenously or orally to treat radiation sickness. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent S - Sensory organs > S01 - Ophthalmologicals D065104 - Cystine Depleting Agents

   

Cysteic acid

2-Amino-3-sulfopropionic acid

C3H7NO5S (169.0045)


Cysteic acid is a crystalline amino acid formed in the oxidation of cysteine; it is a precursor of taurine. A crystalline amino acid formed in the oxidation of cysteine; it is a precursor of taurine. [HMDB]

   

Fluoromethane

Fluoromethane, 18F-labeled

CH3F (34.0219)


   

L-Cysteinesulfinic acid

2-amino-3-sulfinopropanoic acid

C3H7NO4S (153.0096)


L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1]. L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1].

   

2-Aminoethanesulfinic acid

2-Aminoethanesulfinic acid

C2H7NO2S (109.0197)


An aminosulfinic acid comprising ethylamine having the sulfo group at the 2-position. Hypotaurine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=300-84-5 (retrieved 2024-07-15) (CAS RN: 300-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

L-Cysteinesulfinic acid

L-Cysteinesulfinic acid

C3H7NO4S (153.0096)


L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1]. L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1].

   

Cysteic Acid

dl-cysteic acid

C3H7NO5S (169.0045)


An amino sulfonic acid that is the sulfonic acid analogue of cysteine.

   

2-Aminoethanethiol

2-Aminoethanethiol

C2H7NS (77.0299)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives An amine that consists of an ethane skeleton substituted with a thiol group at C-1 and an amino group at C-2. C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent S - Sensory organs > S01 - Ophthalmologicals D065104 - Cystine Depleting Agents

   

Methyl fluoride

Graphite Fluoride

CH3F (34.0219)