Crotonoyl-CoA (BioDeep_00000001321)

Main id: BioDeep_00000630358

Secondary id: BioDeep_00001868996

natural product human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-[2-({2-[(2E)-but-2-enoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid

化学式: C25H40N7O17P3S (835.1414)
中文名称:
谱图信息: 最多检出来源 Rattus norvegicus(otcml) 4.3%

分子结构信息

SMILES: C/C=C/C(=O)SCCNC(=O)CCNC(=O)[C@@H](C(C)(C)COP(=O)(O)OP(=O)(O)OC[C@@H]1[C@H]([C@H]([C@H](n2cnc3c(N)ncnc23)O1)O)OP(=O)(O)O)O
InChI: InChI=1S/C25H40N7O17P3S/c1-4-5-16(34)53-9-8-27-15(33)6-7-28-23(37)20(36)25(2,3)11-46-52(43,44)49-51(41,42)45-10-14-19(48-50(38,39)40)18(35)24(47-14)32-13-31-17-21(26)29-12-30-22(17)32/h4-5,12-14,18-20,24,35-36H,6-11H2,1-3H3,(H,27,33)(H,28,37)(H,41,42)(H,43,44)(H2,26,29,30)(H2,38,39,40)/b5-4+/t14-,18-,19-,20+,24-/m1/s1

描述信息

Crotonoyl-CoA is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of a group of enzymes acyl-Coenzyme A oxidases 1, 2, 3 (E.C.: 1.3.3.6) corresponding to palmitoyl, branched chain, and pristanoyl, respectively, in the peroxisomal fatty acid beta-oxidation, producing hydrogen peroxide. Abnormality of this group of enzymes is linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. It is also a substrate of a group of enzymes called acyl-Coenzyme A dehydrogenase (E.C.:1.3.99-, including 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched chain amino acids in the mitochondria (Rozen et al., 1994). Acyl-Coenzyme A dehydrogenase (1.3.99.3) has shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, medium chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl coenzyme A hydratase (E.C.4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism, benzoate degradation via CoA ligation; in contrast it is the product of this enzyme in the butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-Hydroxybutyryl-CoA dehydratase (E.C.:4.2.1.55), glutaconyl-CoA decarboxylase (E.C.: 4.1.1.70), vinylacetyl-CoA Δ-isomerase (E.C.: 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (E.C.: 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl CoA is produced by glutaryl-Coenzyme A dehydrogenase (E.C.:1.3.99.7) lysine and tryptophan metabolic pathway. This enzyme is linked to type-1glutaric aciduria, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases. [HMDB]
Crotonoyl-CoA (CAS: 992-67-6) is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of acyl-coenzyme A oxidases 1, 2, and 3 (EC 1.3.3.6) corresponding to palmitoyl, branched-chain, and pristanoyl, respectively. In peroxisomal fatty acid beta-oxidation, these enzymes produce hydrogen peroxide. Abnormalities in this group of enzymes are linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. Crotonoyl-CoA is also a substrate of a group of enzymes called acyl-coenzyme A dehydrogenases (EC 1.3.99-, 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched-chain amino acids in the mitochondria (PMID: 7698750). Acyl-coenzyme A dehydrogenase has been shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, and medium-chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl-coenzyme A hydratase (EC 4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism as well as benzoate degradation via CoA ligation. Crotonoyl-CoA is the product of this enzyme in butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55), glutaconyl-CoA decarboxylase (EC 4.1.1.70), vinylacetyl-CoA delta-isomerase (EC 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (EC 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl-CoA is produced by glutaryl-coenzyme A dehydrogenase (EC 1.3.99.7). This enzyme is linked to glutaric aciduria type I, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases.

同义名列表

26 个代谢物同义名

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-[2-({2-[(2E)-but-2-enoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid; (2R)-4-[({[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy(hydroxy)phosphoryl}oxy(hydroxy)phosphoryl)oxy]-N-[2-({2-[(2E)-but-2-enoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid; S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-but-2-enethioate; Crotonoyl coenzyme A lithium salt; trans-But-2-enoyl-Coenzyme A; trans-2-Butenoyl-coenzyme A; trans-Crotonoyl-coenzyme A; trans-Butyr-2-enoyl-CoA; S-But-2-enoylcoenzyme A; But-2-enoyl-Coenzyme A; 2-Butenoyl-Coenzyme A; trans-But-2-enoyl-CoA; 2-Butenoyl coenzyme A; (2E)-But-2-enoyl-CoA; trans-2-Butenoyl-CoA; Crotonoyl-coenzyme A; (e)-But-2-enoyl-CoA; Crotonyl coenzyme A; Crotonyl-coenzyme A; trans-Crotonoyl-CoA; trans-Crotonyl CoA; But-2-enoyl-CoA; 2-Butenoyl-CoA; Crotonoyl-CoA; Crotonyl-CoA; Crotonoyl-CoA



数据库引用编号

34 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(1)

BioCyc(0)

PlantCyc(0)

代谢反应

107 个相关的代谢反应过程信息。

Reactome(26)

BioCyc(0)

WikiPathways(6)

Plant Reactome(0)

INOH(5)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(70)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ACSS2, CDYL, EP300, FASN, FH, HADH, HDAC1, HSD17B4, PFDN5
Peripheral membrane protein 2 CRAT, HSD17B6
Endoplasmic reticulum membrane 1 HSP90B1
Nucleus 8 ACSS2, CDYL, EP300, FH, HDAC1, HSP90B1, MECR, PFDN5
cytosol 9 ACSS2, CRAT, EP300, FASN, FH, HDAC1, HSD17B4, HSP90B1, PFDN5
mitochondrial membrane 1 IVD
nucleoplasm 4 EP300, HADH, HDAC1, IVD
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 MT-CYB
Golgi apparatus 1 FASN
mitochondrial inner membrane 4 ATP5ME, CRAT, HADH, MT-CYB
neuronal cell body 1 HDAC1
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 1 ACSS2
plasma membrane 1 FASN
Membrane 5 CDYL, FASN, HSD17B4, HSP90B1, MT-CYB
extracellular exosome 3 FASN, FH, HSP90B1
Lumenal side 1 HSD17B6
endoplasmic reticulum 3 CRAT, HSD17B6, HSP90B1
perinuclear region of cytoplasm 1 HSP90B1
mitochondrion 11 ATP5ME, CRAT, ECHS1, ETFA, ETFB, FH, GCDH, HADH, IVD, MECR, MT-CYB
protein-containing complex 2 HDAC1, HSP90B1
intracellular membrane-bounded organelle 2 HSD17B4, HSD17B6
Microsome membrane 1 HSD17B6
extracellular region 1 HSP90B1
Mitochondrion matrix 5 ETFA, ETFB, GCDH, HADH, IVD
mitochondrial matrix 9 ACSS2, ECHS1, ETFA, ETFB, FH, GCDH, HADH, IVD, MECR
transcription regulator complex 1 EP300
midbody 1 HSP90B1
Mitochondrion inner membrane 3 CRAT, HADH, MT-CYB
Matrix side 1 CRAT
heterochromatin 1 HDAC1
focal adhesion 1 HSP90B1
mitochondrial nucleoid 1 HADH
Peroxisome 2 CRAT, HSD17B4
peroxisomal matrix 2 CRAT, HSD17B4
peroxisomal membrane 1 HSD17B4
collagen-containing extracellular matrix 1 HSP90B1
nuclear speck 1 CDYL
chromatin 2 EP300, HDAC1
Chromosome 3 CDYL, EP300, FH
[Isoform 1]: Mitochondrion 2 CRAT, MECR
site of double-strand break 1 FH
Melanosome 2 FASN, HSP90B1
sperm plasma membrane 1 HSP90B1
intermediate filament cytoskeleton 1 PFDN5
endoplasmic reticulum lumen 1 HSP90B1
transcription repressor complex 1 HDAC1
histone deacetylase complex 1 HDAC1
mitochondrial fatty acid beta-oxidation multienzyme complex 1 HADH
NuRD complex 1 HDAC1
[Isoform 2]: Cytoplasm 1 MECR
respiratory chain complex III 1 MT-CYB
Sarcoplasmic reticulum lumen 1 HSP90B1
[Isoform 2]: Nucleus 1 CDYL
prefoldin complex 1 PFDN5
histone acetyltransferase complex 1 EP300
Sin3-type complex 1 HDAC1
protein-DNA complex 1 EP300
proton-transporting ATP synthase complex 1 ATP5ME
endocytic vesicle lumen 1 HSP90B1
proton-transporting ATP synthase complex, coupling factor F(o) 1 ATP5ME
endoplasmic reticulum chaperone complex 1 HSP90B1
[Isoform Mitochondrial]: Mitochondrion 1 FH
[Isoform Cytoplasmic]: Cytoplasm, cytosol 1 FH
electron transfer flavoprotein complex 2 ETFA, ETFB
[Isoform 2]: Peroxisome 1 CRAT
glycogen granule 1 FASN


文献列表

  • Zhiqiang Wen, Rodrigo Ledesma-Amaro, Minrui Lu, Mingjie Jin, Sheng Yang. Metabolic Engineering of Clostridium cellulovorans to Improve Butanol Production by Consolidated Bioprocessing. ACS synthetic biology. 2020 02; 9(2):304-315. doi: 10.1021/acssynbio.9b00331. [PMID: 31940438]
  • Junhu Wan, Hongyang Liu, Jie Chu, Hongquan Zhang. Functions and mechanisms of lysine crotonylation. Journal of cellular and molecular medicine. 2019 11; 23(11):7163-7169. doi: 10.1111/jcmm.14650. [PMID: 31475443]
  • Marie Kim, Huynh M Le, Xiulan Xie, Xueyang Feng, Yinjie J Tang, Housna Mouttaki, Michael J McInerney, Wolfgang Buckel. Two pathways for glutamate biosynthesis in the syntrophic bacterium Syntrophus aciditrophicus. Applied and environmental microbiology. 2015 Dec; 81(24):8434-44. doi: 10.1128/aem.02323-15. [PMID: 26431966]
  • Kenichiro Yamada, Kaori Aiba, Yasuyuki Kitaura, Yusuke Kondo, Noriko Nomura, Yuji Nakamura, Daisuke Fukushi, Kei Murayama, Yoshiharu Shimomura, James Pitt, Seiji Yamaguchi, Kenji Yokochi, Nobuaki Wakamatsu. Clinical, biochemical and metabolic characterisation of a mild form of human short-chain enoyl-CoA hydratase deficiency: significance of increased N-acetyl-S-(2-carboxypropyl)cysteine excretion. Journal of medical genetics. 2015 Oct; 52(10):691-8. doi: 10.1136/jmedgenet-2015-103231. [PMID: 26251176]
  • Huizheng Wang, Kai Zhang, Jie Zhu, Weiwei Song, Li Zhao, Xiuguo Zhang. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs). PloS one. 2013; 8(11):e80024. doi: 10.1371/journal.pone.0080024. [PMID: 24244597]
  • Huizheng Wang, Jie Zhu, Weiwei Song, Xiuguo Zhang. Cocrystallization and preliminary crystallographic analysis of an inactive MaoC-like hydratase mutant with the substrate crotonyl-CoA. Acta crystallographica. Section F, Structural biology and crystallization communications. 2012 Apr; 68(Pt 4):483-5. doi: 10.1107/s1744309112007671. [PMID: 22505426]
  • Huizheng Wang, Jiubiao Guo, Hai Pang, Xiuguo Zhang. Identification and characterization of a new monoamine oxidase type C-like dehydratase from Phytophthora capsici involved in polyhydroxyalkanoates biosynthesis. Biotechnology letters. 2010 Nov; 32(11):1719-23. doi: 10.1007/s10529-010-0354-1. [PMID: 20640873]
  • L M Schopfer, V Massey, S Ghisla, C Thorpe. Oxidation-reduction of general acyl-CoA dehydrogenase by the butyryl-CoA/crotonyl-CoA couple. A new investigation of the rapid reaction kinetics. Biochemistry. 1988 Aug; 27(17):6599-611. doi: 10.1021/bi00417a059. [PMID: 3219356]
  • R Kramar, K Kremser, M Hohenegger, M Mayer. Fatty acyl-CoA oxidase in rat kidney and liver after application of thyroxine. Enzyme. 1986; 35(1):27-33. doi: 10.1159/000469315. [PMID: 3732222]
  • S Ghisla, C Thorpe, V Massey. Mechanistic studies with general acyl-CoA dehydrogenase and butyryl-CoA dehydrogenase: evidence for the transfer of the beta-hydrogen to the flavin N(5)-position as a hydride. Biochemistry. 1984 Jul; 23(14):3154-61. doi: 10.1021/bi00309a008. [PMID: 6466635]