beta-Carotinal (BioDeep_00000000975)

 

Secondary id: BioDeep_00000871071, BioDeep_00001867575

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

化学式: C30H40O (416.3079)
中文名称: 反式-beta-阿朴-8-胡萝卜醛, 8-阿朴-β,ψ-胡萝卜醛
谱图信息: 最多检出来源 Homo sapiens(otcml) 11.53%

分子结构信息

SMILES: CC(C=O)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C
InChI: InChI=1S/C30H40O/c1-24(13-8-9-14-25(2)16-11-18-27(4)23-31)15-10-17-26(3)20-21-29-28(5)19-12-22-30(29,6)7/h8-11,13-18,20-21,23H,12,19,22H2,1-7H3/b9-8+,15-10+,16-11+,21-20+,24-13+,25-14+,26-17+,27-18+

描述信息

8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid.
Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available.
Constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. beta-Carotinal is found in many foods, some of which are eggs, green vegetables, sweet orange, and citrus.
beta-Carotinal is found in citrus. beta-Carotinal is a constituent of orange peel, spinach, marigolds and egg yolks. Colour additive.
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].
β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

同义名列表

54 个代谢物同义名

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-; (2E,4E,6E,8E,10E,12E,14Z,16E)-2,6,11,15-tetramethyl-17-(2,6,6-trimethylcyclohex-1-en-1-yl)heptadeca-2,4,6,8,10,12,14,16-octaenal; (2E,4E,6E,8E,10E,12E,14E,16E)-2,6,11,15-tetramethyl-17-(2,6,6-trimethylcyclohex-1-enyl)heptadeca-2,4,6,8,10,12,14,16-octaenal; (2E,4E,6E,8E,10E,12E,14E,16E)-2,6,11,15-tetramethyl-17-(2,6,6-trimethylcyclohexen-1-yl)heptadeca-2,4,6,8,10,12,14,16-octaenal; 2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (all-E)-; Apocarotenal, United States Pharmacopeia (USP) Reference Standard; 4-07-00-01782 (Beilstein Handbook Reference); trans-beta-Apo-8-carotenal, >=96.0\\% (UV); 8-Apo-beta-carotenal, all-trans-; all-trans-beta-Apo-8-carotenal; all-trans-8-apo-beta-carotenal; BETA-APO-8-CAROTENAL (TRANS); 8-APO-.BETA.,.PSI.-CAROTENAL; trans- beta -Apo-8-carotenal; Beta-apo-8-carotenal(trans); DFMMVLFMMAQXHZ-DOKBYWHISA-N; 8-apo-beta,psi-caroten-8-al; BETA-APO-8-CAROTENAL(TRANS); BETA-APO-8-CAROTENAL [FCC]; trans-beta-Apo-8-carotenal; beta-Apo-8-carotenal (C30); 8-apo-.beta.-Caroten-8-al; 8-Apo-beta,psi-carotenal; trans-?-Apo-8?-carotenal; 8Apo-beta,psi-carotenal; trans-b-apo-8-carotenal; 8-Apo-beta-caroten-8-al; 8-APO-.BETA.-CAROTENAL; .beta.-apo-8-Carotenal; CAROTENAL, BETA-APO-8-; beta -apo-8-Carotenal; APOCAROTENAL [USP-RS]; β-​Apo-​8-​carotenal; APOCAROTENAL [MART.]; 8-Apo-beta-carotenal; beta-apo-8-carotenal; |A-Apo-8-carotenal; C.I. Food Orange 6; beta-apo-Carotenal; beta-Apocarotenal; β-Apo-8-carotenal; b-apo-2-Carotinal; UNII-V22N3E2U32; -po-8-arotenal; beta-Carotinal; Food orange 6; 8-Apoaldehyde; Apocarotenal; Β-carotinal; C Orange 16; b-Carotinal; V22N3E2U32; β-?Apo-?8'-?carotenal; all-trans-8'-Apo-beta-carotenal



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

8 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ALB, CD36, CRYZ, CYP1A1, FASN, GRP, HPGDS, PPL, RDH10
Peripheral membrane protein 3 CYP1A1, GORASP1, LPL
Endoplasmic reticulum membrane 3 CYP1A1, CYP1A2, RDH10
Nucleus 1 ALB
cytosol 7 ALB, BCO1, CRYZ, FASN, GSTM5, HPGDS, PPL
phagocytic vesicle 1 CD36
centrosome 1 ALB
nucleoplasm 1 HPGDS
Cell membrane 4 ADCYAP1R1, CD36, LPL, PPL
Cytoplasmic side 1 GORASP1
Multi-pass membrane protein 3 ADCYAP1R1, ATP4A, CD36
Golgi apparatus membrane 1 GORASP1
cell surface 3 ADCYAP1R1, CD36, LPL
Golgi apparatus 4 ALB, CD36, FASN, GORASP1
Golgi membrane 1 GORASP1
mitochondrial inner membrane 1 CYP1A1
Cytoplasm, cytosol 1 BCO1
Lysosome 1 SGSH
endosome 1 ADCYAP1R1
plasma membrane 6 ADCYAP1R1, ATP4A, CD36, FASN, LPL, PPL
Membrane 6 ADCYAP1R1, ATP4A, CD36, FASN, PPL, RDH10
apical plasma membrane 2 ATP4A, CD36
caveola 2 ADCYAP1R1, CD36
extracellular exosome 6 ALB, CRYZ, FASN, PPL, RBP4, SGSH
endoplasmic reticulum 1 ALB
extracellular space 7 ALB, ATP4A, CCL2, CD36, GRP, LPL, RBP4
lysosomal lumen 1 SGSH
bicellular tight junction 1 ADCYAP1R1
mitochondrion 3 BCO2, CRYZ, CYP1A1
protein-containing complex 1 ALB
intracellular membrane-bounded organelle 4 ADCYAP1R1, CYP1A1, CYP1A2, HPGDS
Microsome membrane 3 CYP1A1, CYP1A2, RDH10
Secreted 5 ALB, CCL2, GRP, LPL, RBP4
extracellular region 5 ALB, CCL2, GRP, LPL, RBP4
Single-pass membrane protein 1 RDH10
mitochondrial matrix 1 BCO2
Extracellular side 1 LPL
anchoring junction 1 ALB
external side of plasma membrane 1 CD36
Secreted, extracellular space, extracellular matrix 2 GRP, LPL
chylomicron 1 LPL
very-low-density lipoprotein particle 1 LPL
Apical cell membrane 2 ATP4A, CD36
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 CD36
Cytoplasm, cytoskeleton 1 PPL
cis-Golgi network 1 GORASP1
extracellular matrix 1 GRP
collagen trimer 1 CD36
receptor complex 2 ADCYAP1R1, CD36
Cell projection, neuron projection 1 GRP
neuron projection 1 GRP
ciliary basal body 1 ALB
cell periphery 1 CD36
cytoskeleton 1 PPL
centriole 1 ALB
brush border membrane 1 CD36
spindle pole 1 ALB
blood microparticle 1 ALB
intercellular bridge 1 GSTM5
Lipid droplet 1 RDH10
Cornified envelope 1 PPL
specific granule membrane 1 CD36
Melanosome 1 FASN
secretory granule lumen 1 GRP
endoplasmic reticulum lumen 1 ALB
platelet alpha granule lumen 1 ALB
endocytic vesicle membrane 1 CD36
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
neuronal dense core vesicle 1 GRP
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Cell junction, desmosome 1 PPL
desmosome 1 PPL
platelet alpha granule membrane 1 CD36
Cytoplasmic vesicle, secretory vesicle lumen 1 GRP
catalytic complex 1 LPL
potassium:proton exchanging ATPase complex 1 ATP4A
glycogen granule 1 FASN
ciliary transition fiber 1 ALB


文献列表

  • Olivia Costantina Demurtas, Rita de Brito Francisco, Enrico Martinoia, Giovanni Giuliano. Transportomics for the Characterization of Plant Apocarotenoid Transmembrane Transporters. Methods in molecular biology (Clifton, N.J.). 2020; 2083(?):89-99. doi: 10.1007/978-1-4939-9952-1_7. [PMID: 31745915]
  • José L Rambla, Antonio Granell. Determination of Plant Volatile Apocarotenoids. Methods in molecular biology (Clifton, N.J.). 2020; 2083(?):165-175. doi: 10.1007/978-1-4939-9952-1_12. [PMID: 31745920]
  • Juan M García, María J Pozo, Juan A López-Ráez. Histochemical and Molecular Quantification of Arbuscular Mycorrhiza Symbiosis. Methods in molecular biology (Clifton, N.J.). 2020; 2083(?):293-299. doi: 10.1007/978-1-4939-9952-1_22. [PMID: 31745930]
  • Boluwatiwi O Durojaye, Kenneth M Riedl, Robert W Curley, Earl H Harrison. Uptake and metabolism of β-apo-8'-carotenal, β-apo-10'-carotenal, and β-apo-13-carotenone in Caco-2 cells. Journal of lipid research. 2019 06; 60(6):1121-1135. doi: 10.1194/jlr.m093161. [PMID: 30846527]
  • Rachel E Kopec, Catherine Caris-Veyrat, Marion Nowicki, Beatrice Gleize, Michel Carail, Patrick Borel. Production of asymmetric oxidative metabolites of [13C]-β-carotene during digestion in the gastrointestinal lumen of healthy men. The American journal of clinical nutrition. 2018 10; 108(4):803-813. doi: 10.1093/ajcn/nqy183. [PMID: 30256893]
  • Mukesh Jain, Prabhakar Lal Srivastava, Mohit Verma, Rajesh Ghangal, Rohini Garg. De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Scientific reports. 2016 Mar; 6(?):22456. doi: 10.1038/srep22456. [PMID: 26936416]
  • Kira Lätari, Florian Wüst, Michaela Hübner, Patrick Schaub, Kim Gabriele Beisel, Shizue Matsubara, Peter Beyer, Ralf Welsch. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves. Plant physiology. 2015 Aug; 168(4):1550-62. doi: 10.1104/pp.15.00243. [PMID: 26134165]
  • Danika Trautmann, Peter Beyer, Salim Al-Babili. The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals. The FEBS journal. 2013 Aug; 280(15):3685-96. doi: 10.1111/febs.12361. [PMID: 23734995]
  • Earl H Harrison, Carlo dela Sena, Abdulkerim Eroglu, Matthew K Fleshman. The formation, occurrence, and function of β-apocarotenoids: β-carotene metabolites that may modulate nuclear receptor signaling. The American journal of clinical nutrition. 2012 Nov; 96(5):1189S-92S. doi: 10.3945/ajcn.112.034843. [PMID: 23053561]
  • Rebekah S Marsh, Yan Yan, Vanessa M Reed, Damian Hruszkewycz, Robert W Curley, Earl H Harrison. {beta}-Apocarotenoids do not significantly activate retinoic acid receptors {alpha} or {beta}. Experimental biology and medicine (Maywood, N.J.). 2010 Mar; 235(3):342-8. doi: 10.1258/ebm.2009.009202. [PMID: 20404052]
  • Frederick Khachik, An-Ni Chang. Total synthesis of (3R,3'R,6'R)-lutein and its stereoisomers. The Journal of organic chemistry. 2009 May; 74(10):3875-85. doi: 10.1021/jo900432r. [PMID: 19391613]
  • Fong-Chin Huang, Péter Molnár, Wilfried Schwab. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. Journal of experimental botany. 2009; 60(11):3011-22. doi: 10.1093/jxb/erp137. [PMID: 19436048]
  • Shu-Lan Yeh, Shu-Hsuan Wu. Effects of quercetin on beta-apo-8'-carotenal-induced DNA damage and cytochrome P1A2 expression in A549 cells. Chemico-biological interactions. 2006 Nov; 163(3):199-206. doi: 10.1016/j.cbi.2006.08.002. [PMID: 16970932]
  • A B Barua, J A Olson. beta-carotene is converted primarily to retinoids in rats in vivo. The Journal of nutrition. 2000 Aug; 130(8):1996-2001. doi: 10.1093/jn/130.8.1996. [PMID: 10917914]
  • X D Wang, G W Tang, J G Fox, N I Krinsky, R M Russell. Enzymatic conversion of beta-carotene into beta-apo-carotenals and retinoids by human, monkey, ferret, and rat tissues. Archives of biochemistry and biophysics. 1991 Feb; 285(1):8-16. doi: 10.1016/0003-9861(91)90322-a. [PMID: 1899329]
  • H T Gordon, J C Bauernfeind. Carotenoids as food colorants. Critical reviews in food science and nutrition. 1982; 18(1):59-97. doi: 10.1080/10408398209527357. [PMID: 6817968]