Sterculic acid (BioDeep_00000000694)
Secondary id: BioDeep_00000864938, BioDeep_00001867541
human metabolite PANOMIX_OTCML-2023 blood metabolite natural product
代谢物信息卡片
化学式: C19H34O2 (294.2559)
中文名称: 苹婆酸
谱图信息:
最多检出来源 Viridiplantae(blood) 17.83%
分子结构信息
SMILES: C(CCCCCCC(=O)O)C1CC=1CCCCCCCC
InChI: InChI=1S/C19H34O2/c1-2-3-4-5-7-10-13-17-16-18(17)14-11-8-6-9-12-15-19(20)21/h2-16H2,1H3,(H,20,21)
描述信息
Sterculic acid, also known as 2-octyl-1-cyclopropene-1-octanoic acid or 8-(2-octyl-cycloprop-1-enyl)-octansaeure, is a member of the class of compounds known as medium-chain fatty acids. Medium-chain fatty acids are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Thus, sterculic acid is considered to be a fatty acid lipid molecule. Sterculic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Sterculic acid can be found in peanut and roselle, which makes sterculic acid a potential biomarker for the consumption of these food products.
Sterculic acid is a long-chain, monounsaturated fatty acid composed of 9-octadecenoic acid having a 9,10-cyclopropenyl group. It is a cyclopropenyl fatty acid, a long-chain fatty acid and a monounsaturated fatty acid. It is functionally related to an octadec-9-enoic acid.
Sterculic acid is a natural product found in Hibiscus syriacus, Amaranthus cruentus, and other organisms with data available.
同义名列表
30 个代谢物同义名
omega-(2-n-octylcycloprop-1-enyl)octanoic acid; 8-(2-octylcycloprop-1-en-1-yl)octanoic acid; 8-(2-Octyl-1-cyclopropen-1-yl)octanoic acid; Omega-(2-N-octylcycloprop-1-enyl)octanoate; 8-(2-octyl-1-cyclopropenyl)octanoic acid; 8-(2-Octyl-cycloprop-1-enyl)-octansaeure; 1-Cyclopropene-1-octanoic acid, 2-octyl-; 8-(2-octylcyclopropen-1-yl)octanoic acid; 1-Cyclopropene-1-octanoicacid, 2-octyl-; 1-Cyclopropene-1-octanoic acid 2-octyl-; 2-octyl-1-cyclopropene-1-octanoic acid; 9,10-methylene-9-octadecenoic acid; 2-Octyl-1-cyclopropene-1-octanoate; 9,10-Methylene-9-octadecenoate; STERCULIC ACID [HSDB]; Stearculinic acid; Sterculia-Saeure; Sterculinic acid; Sterculinsaeure; UNII-MXV06G5ROK; ster-culic acid; Stearculic acid; 9,10-Mt 9c-18:1; Sterculic acid; Sterculinate; MXV06G5ROK; Sterculate; FA(19:2); FA 19:2; Sterculic acid
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:9261
- KEGG: C08366
- PubChem: 12921
- HMDB: HMDB0258495
- Metlin: METLIN34857
- ChEMBL: CHEMBL3677268
- Wikipedia: Sterculic acid
- Wikipedia: Sterculic_acid
- LipidMAPS: LMFA01140018
- MeSH: sterculic acid
- ChemIDplus: 0000738874
- KNApSAcK: C00001239
- foodb: FDB004049
- chemspider: 12386
- CAS: 55088-60-3
- CAS: 738-87-4
- medchemexpress: HY-127143
- PMhub: MS000019859
- PubChem: 10562
- 3DMET: B02174
- NIKKAJI: J12.302A
- RefMet: Sterculic acid
- KNApSAcK: 9261
- LOTUS: LTS0262239
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
104 个相关的物种来源信息
- 183218 - Abelmoschus: LTS0262239
- 455045 - Abelmoschus esculentus: 10.1002/LIPI.19860881106
- 455045 - Abelmoschus esculentus: LTS0262239
- 3630 - Abutilon: LTS0262239
- 1812452 - Abutilon ramosum: 10.1002/LIPI.19860880305
- 1812452 - Abutilon ramosum: LTS0262239
- 3563 - Amaranthaceae: LTS0262239
- 3564 - Amaranthus: LTS0262239
- 117272 - Amaranthus cruentus: 10.1002/JSFA.2740580123
- 117272 - Amaranthus cruentus: LTS0262239
- 122292 - Amaranthus paniculatus: 10.1002/JSFA.2740580123
- 122292 - Amaranthus paniculatus: LTS0262239
- 7458 - Apidae: LTS0262239
- 7459 - Apis: LTS0262239
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0262239
- 139739 - Argyreia: LTS0262239
- 6656 - Arthropoda: LTS0262239
- 43152 - Azima: LTS0262239
- 43153 - Azima tetracantha: 10.1007/BF02657547
- 43153 - Azima tetracantha: LTS0262239
- 21571 - Boraginaceae: LTS0262239
- 160066 - Brunfelsia: LTS0262239
- 225614 - Brunfelsia americana: 10.1007/BF02660163
- 225614 - Brunfelsia americana: LTS0262239
- 53852 - Cassia fistula: 10.1007/BF02544518
- 1231245 - Cassia renigera: 10.1007/BF02544518
- 4118 - Convolvulaceae: LTS0262239
- 79331 - Cordia: LTS0262239
- 222085 - Cordia sinensis: 10.1002/JSFA.2740580219
- 222085 - Cordia sinensis: LTS0262239
- 1561080 - Cordiaceae: LTS0262239
- 3828 - Crotalaria: LTS0262239
- 890035 - Crotalaria pallida var. obovata: 10.1016/S0926-6690(01)00087-5
- 165774 - Crotalaria retusa: 10.1002/JSFA.2740470213
- 165774 - Crotalaria retusa: LTS0262239
- 72432 - Delonix: LTS0262239
- 72433 - Delonix regia: 10.1002/LIPI.2700971106
- 72433 - Delonix regia: LTS0262239
- 1561073 - Ehretiaceae: LTS0262239
- 1610804 - Equilabium molle: 10.1002/JCTB.280450207
- 82424 - Eriolaena: LTS0262239
- 2762111 - Eriolaena hookeriana: 10.1016/0009-3084(79)90051-3
- 2762111 - Eriolaena hookeriana: LTS0262239
- 2759 - Eukaryota: LTS0262239
- 3803 - Fabaceae: LTS0262239
- 190242 - Firmiana: LTS0262239
- 3379 - Gnetaceae: LTS0262239
- 3372 - Gnetopsida: LTS0262239
- 3380 - Gnetum: LTS0262239
- 225595 - Gnetum diminutum: 10.1007/BF02663950
- 1651117 - Gnetum edule: 10.1007/BF02663950
- 1651117 - Gnetum edule: LTS0262239
- 3633 - Gossypium: LTS0262239
- 3635 - Gossypium hirsutum: 10.1007/BF02659664
- 3635 - Gossypium hirsutum: LTS0262239
- 47605 - Hibiscus: LTS0262239
- 106335 - Hibiscus syriacus: 10.1007/BF00565786
- 106335 - Hibiscus syriacus: LTS0262239
- 9606 - Homo sapiens: -
- 50557 - Insecta: LTS0262239
- 1281414 - Ipomoea cuneata: 10.1002/JSFA.2740580219
- 16714 - Juglandaceae: LTS0262239
- 16718 - Juglans: LTS0262239
- 51240 - Juglans regia: 10.5507/BP.2008.006
- 51240 - Juglans regia: LTS0262239
- 4136 - Lamiaceae: LTS0262239
- 3398 - Magnoliopsida: LTS0262239
- 96479 - Malva: LTS0262239
- 145754 - Malva sylvestris: 10.1007/BF00629959
- 145754 - Malva sylvestris: LTS0262239
- 3629 - Malvaceae: LTS0262239
- 33208 - Metazoa: LTS0262239
- 3931 - Myrtaceae: LTS0262239
- 3683 - Passifloraceae: LTS0262239
- 58875 - Pithecellobium: LTS0262239
- 404691 - Pithecellobium dulce: 10.1007/BF02636096
- 404691 - Pithecellobium dulce: LTS0262239
- 41227 - Plectranthus: LTS0262239
- 1610804 - Plectranthus mollis: 10.1002/JCTB.280450207
- 4324 - Salvadoraceae: LTS0262239
- 4070 - Solanaceae: LTS0262239
- 66667 - Sterculia: LTS0262239
- 195802 - Sterculia foetida:
- 195802 - Sterculia foetida: 10.1002/JCTB.5000600705
- 195802 - Sterculia foetida: 10.1007/BF02663950
- 195802 - Sterculia foetida: LTS0262239
- 300533 - Sterculia parviflora: 10.1002/JCTB.5000600705
- 300533 - Sterculia parviflora: LTS0262239
- 66668 - Sterculia tragacantha: 10.1007/BF02542627
- 66668 - Sterculia tragacantha: LTS0262239
- 35493 - Streptophyta: LTS0262239
- 178174 - Syzygium: LTS0262239
- 260142 - Syzygium cumini: 10.1002/JSFA.2740430111
- 260142 - Syzygium cumini: LTS0262239
- 58023 - Tracheophyta: LTS0262239
- 203763 - Trichodesma: LTS0262239
- 764744 - Trichodesma zeylanicum: 10.1016/S0031-9422(00)89578-3
- 764744 - Trichodesma zeylanicum: LTS0262239
- 45183 - Turnera: LTS0262239
- 45184 - Turnera ulmifolia: 10.1016/0031-9422(91)80030-5
- 45184 - Turnera ulmifolia: LTS0262239
- 45182 - Turneraceae: LTS0262239
- 33090 - Viridiplantae: LTS0262239
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ana Pariente, Álvaro Pérez-Sala, Rodrigo Ochoa, Miriam Bobadilla, Ángela Villanueva-Martínez, Rafael Peláez, Ignacio M Larráyoz. Identification of 7-Ketocholesterol-Modulated Pathways and Sterculic Acid Protective Effect in Retinal Pigmented Epithelium Cells by Using Genome-Wide Transcriptomic Analysis.
International journal of molecular sciences.
2023 Apr; 24(8):. doi:
10.3390/ijms24087459
. [PMID: 37108627] - Kristine Bertheussen, Merel van de Plassche, Thomas Bakkum, Berend Gagestein, Iakovia Ttofi, Alexi J C Sarris, Herman S Overkleeft, Mario van der Stelt, Sander I van Kasteren. Live-Cell Imaging of Sterculic Acid-a Naturally Occurring 1,2-Cyclopropene Fatty Acid-by Bioorthogonal Reaction with Turn-On Tetrazine-Fluorophore Conjugates.
Angewandte Chemie (International ed. in English).
2022 09; 61(38):e202207640. doi:
10.1002/anie.202207640
. [PMID: 35838324] - Andrea Palyzová, Tomáš Řezanka. Enantiomeric separation of triacylglycerols containing fatty acids with a ring (cyclofatty acids).
Journal of chromatography. A.
2020 Jul; 1622(?):461103. doi:
10.1016/j.chroma.2020.461103
. [PMID: 32317104] - Ana Pariente, Álvaro Pérez-Sala, Rodrigo Ochoa, Rafael Peláez, Ignacio M Larráyoz. Genome-Wide Transcriptomic Analysis Identifies Pathways Regulated by Sterculic Acid in Retinal Pigmented Epithelium Cells.
Cells.
2020 05; 9(5):. doi:
10.3390/cells9051187
. [PMID: 32403229] - Rafael Peláez, Ana Pariente, Álvaro Pérez-Sala, Ignacio M Larráyoz. Sterculic Acid: The Mechanisms of Action beyond Stearoyl-CoA Desaturase Inhibition and Therapeutic Opportunities in Human Diseases.
Cells.
2020 01; 9(1):. doi:
10.3390/cells9010140
. [PMID: 31936134] - Pan Hao, Intisar Q M Alaraj, Juma'a R Al Dulayymi, Mark S Baird, Jing Liu, Qun Liu. Sterculic Acid and Its Analogues Are Potent Inhibitors of Toxoplasma gondii.
The Korean journal of parasitology.
2016 Apr; 54(2):139-45. doi:
10.3347/kjp.2016.54.2.139
. [PMID: 27180571] - A K G Kadegowda, T A Burns, S L Pratt, S K Duckett. Inhibition of stearoyl-CoA desaturase 1 reduces lipogenesis in primary bovine adipocytes.
Lipids.
2013 Oct; 48(10):967-76. doi:
10.1007/s11745-013-3823-1
. [PMID: 23929455] - M S Herrera-Meza, M R Mendoza-López, O García-Barradas, M G Sanchez-Otero, E R Silva-Hernández, J O Angulo, R M Oliart-Ros. Dietary anhydrous milk fat naturally enriched with conjugated linoleic acid and vaccenic acid modify cardiovascular risk biomarkers in spontaneously hypertensive rats.
International journal of food sciences and nutrition.
2013 Aug; 64(5):575-86. doi:
10.3109/09637486.2013.763908
. [PMID: 23360131] - Anne-Catherine Schneider, Pauline Beguin, Sophie Bourez, James W Perfield, Eric Mignolet, Cathy Debier, Yves-Jacques Schneider, Yvan Larondelle. Conversion of t11t13 CLA into c9t11 CLA in Caco-2 cells and inhibition by sterculic oil.
PloS one.
2012; 7(3):e32824. doi:
10.1371/journal.pone.0032824
. [PMID: 22427892] - Massimo Bionaz, Kathiravan Periasamy, Sandra L Rodriguez-Zas, Walter L Hurley, Juan J Loor. A novel dynamic impact approach (DIA) for functional analysis of time-course omics studies: validation using the bovine mammary transcriptome.
PloS one.
2012; 7(3):e32455. doi:
10.1371/journal.pone.0032455
. [PMID: 22438877] - Xiao-Hong Yu, Richa Rawat, John Shanklin. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis.
BMC plant biology.
2011 May; 11(?):97. doi:
10.1186/1471-2229-11-97
. [PMID: 21612656] - Shanmugam M Jeyakumar, Pratti Lopamudra, Suryaprakash Padmini, Nagalla Balakrishna, Nappan V Giridharan, Ayyalasomayajula Vajreswari. Fatty acid desaturation index correlates with body mass and adiposity indices of obesity in Wistar NIN obese mutant rat strains WNIN/Ob and WNIN/GR-Ob.
Nutrition & metabolism.
2009 Jun; 6(?):27. doi:
10.1186/1743-7075-6-27
. [PMID: 19519902] - Patricia Soulard, Meg McLaughlin, Jessica Stevens, Brendan Connolly, Rocco Coli, Leyu Wang, Jennifer Moore, Ming-Shang T Kuo, William A LaMarr, Can C Ozbal, B Ganesh Bhat. Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry.
Analytica chimica acta.
2008 Oct; 627(1):105-11. doi:
10.1016/j.aca.2008.04.017
. [PMID: 18790133] - Massimo Bionaz, Juan J Loor. Gene networks driving bovine milk fat synthesis during the lactation cycle.
BMC genomics.
2008 Jul; 9(?):366. doi:
10.1186/1471-2164-9-366
. [PMID: 18671863] - J Cao, J P Blond, J Bézard. Inhibition of fatty acid delta 6- and delta 5-desaturation by cyclopropene fatty acids in rat liver microsomes.
Biochimica et biophysica acta.
1993 Dec; 1210(1):27-34. doi:
10.1016/0005-2760(93)90045-b
. [PMID: 7903050] - D E Khoo, B Fermor, J Miller, C B Wood, K Apostolov, W Barker, R C Williamson, N A Habib. Manipulation of body fat composition with sterculic acid can inhibit mammary carcinomas in vivo.
British journal of cancer.
1991 Jan; 63(1):97-101. doi:
10.1038/bjc.1991.20
. [PMID: 1989672] - O Slayden, F Stormshak. In vivo and in vitro effects of a cyclopropenoid fatty acid on ovine corpus luteum function.
Endocrinology.
1990 Dec; 127(6):3166-71. doi:
10.1210/endo-127-6-3166
. [PMID: 2249645] - R A Zoeller, R Wood. Effects of cyclopropene fatty acids on the lipid composition of the Morris hepatoma 7288C.
Lipids.
1984 Jul; 19(7):529-38. doi:
10.1007/bf02534486
. [PMID: 6431218] - E Marciniak, J P Gockerman. Heparin-induced decrease in circulating antithrombin-III.
Lancet (London, England).
1977 Sep; 2(8038):581-4. doi:
10.1016/s0140-6736(77)91429-5
. [PMID: 71399] - T A Eisele, J K Yoss, J E Nixon, N E PAwlowski, L M Libbey, R O Sinnhuber. Rat urinary metabolites of [9,10-methylene-14C] sterculic acid.
Biochimica et biophysica acta.
1977 Jul; 488(1):76-87. doi:
10.1016/0005-2760(77)90124-2
. [PMID: 889861]