Pyochelin (BioDeep_00000004335)

   

natural product


代谢物信息卡片


2-(2-o-hydroxyphenyl-2-thiazolin-4-yl)-3-methylthiazolidine-4-carboxylic acid

化学式: C14H16N2O3S2 (324.0602)
中文名称:
谱图信息: 最多检出来源 Escherichia coli(natural_products) 83.33%

分子结构信息

SMILES: CN1C(C(=O)O)CSC1C1CSC(c2ccccc2O)=N1
InChI: InChI=1S/C14H16N2O3S2/c1-16-10(14(18)19)7-21-13(16)9-6-20-12(15-9)8-4-2-3-5-11(8)17/h2-5,9-10,13,17H,6-7H2,1H3,(H,18,19)/t9-,10+,13?/m1/s1

描述信息

A member of the class of thiazolidines that is (4R)-3-methyl-1,3-thiazolidine-4-carboxylic acid which is substituted at position 2 by a (4R)-2-(2-hydroxyphenyl)-4,5-dihydro-1,3-thiazol-4-yl group. A siderophore that is produced by Pseudomonas aeruginosa (via condensation of salicylic acid and two molecules of cysteine) as a mixture of two easily interconvertible diastereoisomers, pyochelin I (major) and pyochelin II (minor). The enantiomeric compounds, enant-pyochelin, are produced by Pseudomonas fluorescens.
D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents

同义名列表

3 个代谢物同义名

Pyochelin; 2-(2-o-hydroxyphenyl-2-thiazolin-4-yl)-3-methylthiazolidine-4-carboxylic acid; Pyochelin



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

10 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ARMC1, CAT, ELANE, GLTP, GPER1, PABPN1, PPP1R8, PTF1A, XDH
Endosome membrane 1 TF
Endoplasmic reticulum membrane 1 GPER1
Mitochondrion membrane 1 GPER1
Nucleus 5 GPER1, PABPN1, PLCZ1, PPP1R8, PTF1A
cytosol 8 ARMC1, CAT, ELANE, FNTB, GLTP, GPER1, PLCZ1, XDH
dendrite 1 GPER1
mitochondrial membrane 1 GPER1
phagocytic vesicle 1 ELANE
trans-Golgi network 1 GPER1
nucleoplasm 4 GPER1, PABPN1, PLCZ1, PPP1R8
Cell membrane 1 PCP2
Cell projection, axon 1 GPER1
Multi-pass membrane protein 1 GPER1
Golgi apparatus membrane 1 GPER1
cell junction 1 PCP2
cell surface 2 ELANE, TF
dendritic shaft 1 GPER1
Golgi apparatus 1 GPER1
Golgi membrane 1 GPER1
neuronal cell body 1 PCP2
presynaptic membrane 1 GPER1
plasma membrane 3 GPER1, PCP2, TF
presynaptic active zone 1 GPER1
Membrane 3 ARSJ, CAT, GPER1
apical plasma membrane 1 TF
axon 1 GPER1
extracellular exosome 4 CAT, ELANE, SOD2, TF
endoplasmic reticulum 1 GPER1
extracellular space 3 ELANE, TF, XDH
perinuclear region of cytoplasm 3 GPER1, PLCZ1, TF
mitochondrion 3 ARMC1, CAT, SOD2
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 2 CAT, GPER1
postsynaptic density 1 GPER1
pronucleus 1 PLCZ1
Single-pass type I membrane protein 1 PCP2
Secreted 2 ARSJ, TF
extracellular region 4 ARSJ, CAT, ELANE, TF
Mitochondrion outer membrane 1 ARMC1
mitochondrial outer membrane 1 ARMC1
basal part of cell 1 TF
hippocampal mossy fiber to CA3 synapse 1 GPER1
Mitochondrion matrix 1 SOD2
mitochondrial matrix 2 CAT, SOD2
transcription regulator complex 1 PTF1A
actin cytoskeleton 1 ARSJ
cytoplasmic vesicle 1 TF
nucleolus 2 GPER1, PLCZ1
Early endosome 2 GPER1, TF
cell-cell junction 1 PCP2
clathrin-coated pit 1 TF
recycling endosome 2 GPER1, TF
vesicle 1 TF
Cytoplasm, perinuclear region 1 PLCZ1
focal adhesion 1 CAT
mitochondrial nucleoid 1 SOD2
Peroxisome 2 CAT, XDH
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 ELANE
secretory granule 1 ELANE
nuclear speck 2 PABPN1, PPP1R8
Late endosome 1 TF
chromatin 1 PTF1A
microtubule associated complex 1 FNTB
blood microparticle 1 TF
spliceosomal complex 1 PPP1R8
nuclear envelope 1 GPER1
Cytoplasmic vesicle membrane 1 GPER1
Cell projection, dendrite 1 GPER1
Nucleus speckle 1 PABPN1
basal plasma membrane 1 TF
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, TF
HFE-transferrin receptor complex 1 TF
endoplasmic reticulum lumen 2 ARSJ, TF
transcription repressor complex 1 ELANE
axon terminus 1 GPER1
specific granule lumen 1 ELANE
endocytic vesicle 1 TF
azurophil granule lumen 1 ELANE
clathrin-coated endocytic vesicle membrane 1 TF
ribonucleoprotein complex 1 PABPN1
keratin filament 1 GPER1
Cytoplasmic vesicle, phagosome 1 ELANE
nuclear inclusion body 1 PABPN1
dendritic spine head 1 GPER1
Cell projection, dendritic spine membrane 1 GPER1
dendritic spine membrane 1 GPER1
vesicle coat 1 TF
catalase complex 1 CAT
sperm head 1 PLCZ1
protein farnesyltransferase complex 1 FNTB
dense body 1 TF


文献列表

  • Jian Wang, Yaping Wang, Haibo Lou, Wei Wang. AlgU controls environmental stress adaptation, biofilm formation, motility, pyochelin synthesis and antagonism potential in Pseudomonas protegens SN15-2. Microbiological research. 2023 Apr; 272(?):127396. doi: 10.1016/j.micres.2023.127396. [PMID: 37141849]
  • Sofija Andrić, Augustin Rigolet, Anthony Argüelles Arias, Sébastien Steels, Grégory Hoff, Guillaume Balleux, Loïc Ongena, Monica Höfte, Thibault Meyer, Marc Ongena. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. The ISME journal. 2023 Feb; 17(2):263-275. doi: 10.1038/s41396-022-01337-1. [PMID: 36357782]
  • Xiaoxuan Wang, Muchen Zhang, Belinda Loh, Sebastian Leptihn, Temoor Ahmed, Bin Li. A novel NRPS cluster, acquired by horizontal gene transfer from algae, regulates siderophore iron metabolism in Burkholderia seminalis R456. International journal of biological macromolecules. 2021 Jul; 182(?):838-848. doi: 10.1016/j.ijbiomac.2021.04.051. [PMID: 33862079]
  • Santosh Sathe, Rolf Kümmerli. Antagonistic interactions subdue inter-species green-beard cooperation in bacteria. Journal of evolutionary biology. 2020 09; 33(9):1245-1255. doi: 10.1111/jeb.13666. [PMID: 32946129]
  • G Michavila, C Adler, P R De Gregorio, M J Lami, M C Caram Di Santo, A M Zenoff, R E de Cristobal, P A Vincent. Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant biology (Stuttgart, Germany). 2017 Jul; 19(4):608-617. doi: 10.1111/plb.12556. [PMID: 28194866]
  • Francisca Diana da Silva Araújo, Welington Luiz Araújo, Marcos Nogueira Eberlin. Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging. Journal of the American Society for Mass Spectrometry. 2017 05; 28(5):901-907. doi: 10.1007/s13361-017-1610-6. [PMID: 28194740]
  • Olivier Cunrath, Valérie A Geoffroy, Isabelle J Schalk. Metallome of Pseudomonas aeruginosa: a role for siderophores. Environmental microbiology. 2016 10; 18(10):3258-3267. doi: 10.1111/1462-2920.12971. [PMID: 26147433]
  • Anugraha Mathew, Christian Jenul, Aurelien L Carlier, Leo Eberl. The role of siderophores in metal homeostasis of members of the genus Burkholderia. Environmental microbiology reports. 2016 Feb; 8(1):103-9. doi: 10.1111/1758-2229.12357. [PMID: 26621188]
  • A Ross-Gillespie, Z Dumas, R Kümmerli. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa. Journal of evolutionary biology. 2015 Jan; 28(1):29-39. doi: 10.1111/jeb.12559. [PMID: 25421271]
  • Kusum Harjai, Ravi Kumar Gupta, Himanshi Sehgal. Attenuation of quorum sensing controlled virulence of Pseudomonas aeruginosa by cranberry. The Indian journal of medical research. 2014 Mar; 139(3):446-53. doi: . [PMID: 24820840]
  • Ryan F Seipke, Lijiang Song, Joanna Bicz, Paris Laskaris, Alice M Yaxley, Gregory L Challis, Rosemary Loria. The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology (Reading, England). 2011 Sep; 157(Pt 9):2681-2693. doi: 10.1099/mic.0.047977-0. [PMID: 21757492]
  • Sierra L Hartney, Sylvie Mazurier, Teresa A Kidarsa, Maria Carolina Quecine, Philippe Lemanceau, Joyce E Loper. TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine. 2011 Apr; 24(2):193-213. doi: 10.1007/s10534-010-9385-2. [PMID: 21080032]
  • Armelle Braud, Mélissa Hannauer, Gaëtan L A Mislin, Isabelle J Schalk. The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. Journal of bacteriology. 2009 Jun; 191(11):3517-25. doi: 10.1128/jb.00010-09. [PMID: 19329644]
  • Ratul Saikia, Saju Varghese, Bhim Pratap Singh, Dilip K Arora. Influence of mineral amendment on disease suppressive activity of Pseudomonas fluorescens to Fusarium wilt of chickpea. Microbiological research. 2009; 164(4):365-73. doi: 10.1016/j.micres.2007.05.001. [PMID: 17604612]
  • Kris Audenaert, Theresa Pattery, Pierre Cornelis, Monica Höfte. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Molecular plant-microbe interactions : MPMI. 2002 Nov; 15(11):1147-56. doi: 10.1094/mpmi.2002.15.11.1147. [PMID: 12423020]
  • Hiroshi Terano, Kyosuke Nomoto, Shigehiro Takase. Siderophore production and induction of iron-regulated proteins by a microorganism from rhizosphere of barley. Bioscience, biotechnology, and biochemistry. 2002 Nov; 66(11):2471-3. doi: 10.1271/bbb.66.2471. [PMID: 12506990]
  • F Mauch, B Mauch-Mani, C Gaille, B Kull, D Haas, C Reimmann. Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. The Plant journal : for cell and molecular biology. 2001 Jan; 25(1):67-77. doi: 10.1046/j.1365-313x.2001.00940.x. [PMID: 11169183]
  • B K Duffy, G Défago. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Applied and environmental microbiology. 1999 Jun; 65(6):2429-38. doi: 10.1128/aem.65.6.2429-2438.1999. [PMID: 10347023]
  • P Darling, M Chan, A D Cox, P A Sokol. Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infection and immunity. 1998 Feb; 66(2):874-7. doi: 10.1128/iai.66.2.874-877.1998. [PMID: 9453660]
  • C E Chambers, D D McIntyre, M Mouck, P A Sokol. Physical and structural characterization of yersiniophore, a siderophore produced by clinical isolates of Yersinia enterocolitica. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine. 1996 Apr; 9(2):157-67. doi: 10.1007/bf00144621. [PMID: 8744899]
  • B E Britigan, T L Roeder, G T Rasmussen, D M Shasby, M L McCormick, C D Cox. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. The Journal of clinical investigation. 1992 Dec; 90(6):2187-96. doi: 10.1172/jci116104. [PMID: 1469082]
  • C D Cox. Role of pyocyanin in the acquisition of iron from transferrin. Infection and immunity. 1986 Apr; 52(1):263-70. doi: 10.1128/iai.52.1.263-270.1986. [PMID: 2937736]
  • R Ankenbauer, S Sriyosachati, C D Cox. Effects of siderophores on the growth of Pseudomonas aeruginosa in human serum and transferrin. Infection and immunity. 1985 Jul; 49(1):132-40. doi: 10.1128/iai.49.1.132-140.1985. [PMID: 3159677]
  • C D Cox. Iron transport and serum resistance in Pseudomonas aeruginosa. Antibiotics and chemotherapy. 1985; 36(?):1-12. doi: 10.1159/000410466. [PMID: 3159335]