Rhodoxanthin (BioDeep_00000004118)

   

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


DTXSID10275904

化学式: C40H50O2 (562.3811)
中文名称:
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 70.76%

分子结构信息

SMILES: C/C(=C\C=C\C(=C\C=C/1\C(=CC(=O)CC1(C)C)C)\C)/C=C/C=C/C(=C/C=C/C(=C/C=C\1/C(=CC(=O)CC1(C)C)C)/C)/C
InChI: InChI=1S/C40H50O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-26H,27-28H2,1-10H3/b15-11+,16-12+,19-13+,20-14+,29-17+,30-18+,31-21+,32-22+,37-23-,38-24-

描述信息

D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

同义名列表

3 个代谢物同义名

Rhodoxanthin; DTXSID10275904; Rhodoxanthin



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

303 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 ANXA5, CAT, NFE2L2, SOD1
Peripheral membrane protein 1 ANXA5
Endoplasmic reticulum membrane 1 HMOX1
Nucleus 3 HMOX1, NFE2L2, SOD1
cytosol 5 ANXA5, CAT, HMOX1, NFE2L2, SOD1
centrosome 1 NFE2L2
nucleoplasm 3 HMOX1, NFE2L2, SOD1
RNA polymerase II transcription regulator complex 1 NFE2L2
Cytoplasmic side 1 HMOX1
Golgi apparatus 1 NFE2L2
lysosomal membrane 1 EGF
neuronal cell body 1 SOD1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 NFE2L2
plasma membrane 2 EGF, NFE2L2
Membrane 4 ANXA5, CAT, EGF, HMOX1
extracellular exosome 5 ANXA5, CAT, EGF, SOD1, SOD2
endoplasmic reticulum 1 HMOX1
extracellular space 3 EGF, HMOX1, SOD1
perinuclear region of cytoplasm 1 HMOX1
mitochondrion 3 CAT, SOD1, SOD2
protein-containing complex 2 CAT, SOD1
intracellular membrane-bounded organelle 1 CAT
extracellular region 4 ANXA5, CAT, EGF, SOD1
mitochondrial outer membrane 1 HMOX1
Mitochondrion matrix 1 SOD2
mitochondrial matrix 3 CAT, SOD1, SOD2
external side of plasma membrane 1 ANXA5
cytoplasmic vesicle 1 SOD1
axon cytoplasm 1 SOD1
focal adhesion 2 ANXA5, CAT
mitochondrial nucleoid 1 SOD2
Peroxisome 2 CAT, SOD1
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
mitochondrial intermembrane space 1 SOD1
collagen-containing extracellular matrix 1 ANXA5
dendrite cytoplasm 1 SOD1
Zymogen granule membrane 1 ANXA5
chromatin 1 NFE2L2
mediator complex 1 NFE2L2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
platelet alpha granule lumen 1 EGF
Single-pass type IV membrane protein 1 HMOX1
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 EGF
protein-DNA complex 1 NFE2L2
catalase complex 1 CAT
endothelial microparticle 1 ANXA5


文献列表

  • Roland Schex, Werner Bonrath, Christian Schäfer, Ralf Schweiggert. The impact of (E/Z)-isomerization and aggregation on the color of rhodoxanthin formulations for food and beverages. Food chemistry. 2020 Dec; 332(?):127370. doi: 10.1016/j.foodchem.2020.127370. [PMID: 32645673]
  • Roland Schex, Franz Schweiggert, Bettina Wüstenberg, Werner Bonrath, Christian Schäfer, Ralf Schweiggert. Kinetic and Thermodynamic Study of the Thermally Induced (E/Z)-Isomerization of the retro-Carotenoid Rhodoxanthin. Journal of agricultural and food chemistry. 2020 May; 68(18):5259-5269. doi: 10.1021/acs.jafc.0c00933. [PMID: 32314916]
  • Y Subhash, L Tushar, Ch Sasikala, Ch V Ramana. Mongoliicoccus alkaliphilus sp. nov. and Litoribacter alkaliphilus sp. nov., isolated from salt pans. International journal of systematic and evolutionary microbiology. 2013 Sep; 63(Pt 9):3457-3462. doi: 10.1099/ijs.0.049924-0. [PMID: 23543498]
  • Mark N Merzlyak, Olga B Chivkunova, Alexei E Solovchenko, K Razi Naqvi. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. Journal of experimental botany. 2008; 59(14):3903-11. doi: 10.1093/jxb/ern230. [PMID: 18796701]
  • Mark Merzlyak, Alexei Solovchenko, Sergei Pogosyan. Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. 2005 Apr; 4(4):333-40. doi: 10.1039/b417802e. [PMID: 15803203]
  • Qingmin Han, Shinichiro Katahata, Yoshitaka Kakubari, Yuzuru Mukai. Seasonal changes in the xanthophyll cycle and antioxidants in sun-exposed and shaded parts of the crown of Cryptomeria japonica in relation to rhodoxanthin accumulation during cold acclimation. Tree physiology. 2004 Jun; 24(6):609-16. doi: 10.1093/treephys/24.6.609. [PMID: 15059761]