3-Mercaptopyruvic acid (BioDeep_00000004526)
Secondary id: BioDeep_00000405437
human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019
代谢物信息卡片
化学式: C3H4O3S (119.9881)
中文名称: 巯基丙酮酸钠二水合物
谱图信息:
最多检出来源 Homo sapiens(blood) 34.2%
分子结构信息
SMILES: C(C(=O)C(=O)O)S
InChI: InChI=1S/C3H4O3S/c4-2(1-7)3(5)6/h7H,1H2,(H,5,6)
描述信息
3-Mercaptopyruvic acid, also known as 3-mercapto-2-oxopropanoate or beta-thiopyruvate, belongs to the class of organic compounds known as alpha-keto acids and derivatives. These are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. 3-Mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3-mercaptopyruvic acid participates in a number of enzymatic reactions. In particular, 3-mercaptopyruvic acid and cyanide can be converted into pyruvic acid and thiocyanate; which is mediated by the enzyme 3-mercaptopyruvate sulfurtransferase. In addition, 3-mercaptopyruvic acid can be biosynthesized from 3-mercaptolactic acid; which is mediated by the enzyme L-lactate dehydrogenase. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. In humans, 3-mercaptopyruvic acid is involved in cystinosis, ocular nonnephropathic. Outside of the human body, 3-mercaptopyruvic acid has been detected, but not quantified in several different foods, such as lima beans, spinachs, shallots, mexican groundcherries, and white lupines. This could make 3-mercaptopyruvic acid a potential biomarker for the consumption of these foods.
3-mercaptopyruvic acid, also known as beta-mercaptopyruvate or beta-thiopyruvic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-mercaptopyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-mercaptopyruvic acid can be found in a number of food items such as garland chrysanthemum, rubus (blackberry, raspberry), tarragon, and arrowhead, which makes 3-mercaptopyruvic acid a potential biomarker for the consumption of these food products. 3-mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-mercaptopyruvic acid is involved in a couple of metabolic pathways, which include cysteine metabolism and cystinosis, ocular nonnephropathic. 3-mercaptopyruvic acid is also involved in beta-mercaptolactate-cysteine disulfiduria, which is a metabolic disorder. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. Instead, prodrugs, such as sulfanegen, are being evaluated to compensate for the short half-life of 3-mercaptopyruvic acid .
同义名列表
19 个代谢物同义名
beta-3-Mercapto-2-oxo-propanoic acid; 3-Mercaptopyruvate monosodium salt; beta-3-Mercapto-2-oxo-propanoate; 2-oxo-3-sulfanylpropanoic acid; 3-Mercapto-2-oxopropanoic acid; 3-Mercapto-2-oxopropanoate; beta-Mercaptopyruvic acid; 3-Mercapto-pyruvic acid; 3-mercaptopyruvic acid; β-mercaptopyruvic acid; beta-Thiopyruvic acid; beta-Mercaptopyruvate; Mercaptopyruvic acid; 3-Mercapto-pyruvate; 3-Mercaptopyruvate; beta-Thiopyruvate; Mercaptopyruvate; Thiopyruvate; Mercaptopyruvate
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:16208
- KEGG: C00957
- PubChem: 98
- HMDB: HMDB0001368
- Metlin: METLIN4200
- Wikipedia: 3-Mercaptopyruvic_acid
- MetaCyc: 3-MERCAPTO-PYRUVATE
- KNApSAcK: C00007464
- foodb: FDB030434
- chemspider: 96
- CAS: 2464-23-5
- PMhub: MS000017036
- PubChem: 4208
- 3DMET: B00208
- NIKKAJI: J72.997C
- RefMet: 3-Mercaptopyruvic acid
- RefMet: Mercaptopyruvic acid
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-524
- KNApSAcK: 16208
分类词条
相关代谢途径
Reactome(4)
BioCyc(0)
PlantCyc(0)
代谢反应
388 个相关的代谢反应过程信息。
Reactome(68)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
3MPYR + MPST ⟶ PYR + Q8I5Y1
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
MTAD + Pi ⟶ Ade + MTRIBP
- Degradation of cysteine and homocysteine:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Degradation of cysteine and homocysteine:
3MPYR + MPST ⟶ PYR + Q8I5Y1
BioCyc(0)
WikiPathways(0)
Plant Reactome(304)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
INOH(4)
- Methionine and Cysteine metabolism ( Methionine and Cysteine metabolism ):
H2O + L-Cystathionine ⟶ 2-Oxo-butanoic acid + L-Cysteine + NH3
- 2-Oxo-glutaric acid + L-Cysteine = L-Glutamic acid + 3-Mercapto-pyruvic acid ( Glycine and Serine metabolism ):
3-Mercapto-pyruvic acid + L-Glutamic acid ⟶ 2-Oxo-glutaric acid + L-Cysteine
- 2-Oxo-glutaric acid + L-Cysteine = L-Glutamic acid + 3-Mercapto-pyruvic acid ( Methionine and Cysteine metabolism ):
2-Oxo-glutaric acid + L-Cysteine ⟶ 3-Mercapto-pyruvic acid + L-Glutamic acid
- NAD+ + 3-Mercapto-lactic acid = NADH + 3-Mercapto-pyruvic acid ( Methionine and Cysteine metabolism ):
3-Mercapto-pyruvic acid + NADH ⟶ 3-Mercapto-lactic acid + NAD+
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(12)
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Hydrogen Sulfide Biosynthesis I:
L-Cysteine + Oxoglutaric acid ⟶ 3-Mercaptopyruvic acid + L-Glutamic acid
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Hydrogen Sulfide Biosynthesis I:
Adenosine triphosphate + L-Cysteine + Water ⟶ Adenosine diphosphate + Hydrogen Ion + L-Cysteine + Phosphate
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Maher N Ibrahim, Abeer A Khalifa, Dalia A Hemead, Amira Ebrahim Alsemeh, Marwa A Habib. 1,25-Dihydroxycholecalciferol down-regulates 3-mercaptopyruvate sulfur transferase and caspase-3 in rat model of non-alcoholic fatty liver disease.
Journal of molecular histology.
2023 Apr; 54(2):119-134. doi:
10.1007/s10735-023-10118-9
. [PMID: 36930413] - Patrycja Bronowicka-Adamska, Anna Bentke, Małgorzata Lasota, Maria Wróbel. Effect of S-Allyl -L-Cysteine on MCF-7 Cell Line 3-Mercaptopyruvate Sulfurtransferase/Sulfane Sulfur System, Viability and Apoptosis.
International journal of molecular sciences.
2020 Feb; 21(3):. doi:
10.3390/ijms21031090
. [PMID: 32041330] - Michael Gröger, Martin Wepler, Ulrich Wachter, Tamara Merz, Oscar McCook, Sandra Kress, Britta Lukaschewski, Sebastian Hafner, Markus Huber-Lang, Enrico Calzia, Michael Georgieff, Noriyuki Nagahara, Csaba Szabó, Peter Radermacher, Clair Hartmann. The Effects of Genetic 3-Mercaptopyruvate Sulfurtransferase Deficiency in Murine Traumatic-Hemorrhagic Shock.
Shock (Augusta, Ga.).
2019 04; 51(4):472-478. doi:
10.1097/shk.0000000000001165
. [PMID: 29668565] - Norihiro Shibuya. [Production of H2S, H2Sn, and persulfide species (CysSSH and GSSH) by 3-mercaptopyruvate sulfurtransferase].
Nihon yakurigaku zasshi. Folia pharmacologica Japonica.
2018; 152(5):216-222. doi:
10.1254/fpj.152.216
. [PMID: 30393252] - Saskia Höfler, Christin Lorenz, Tjorven Busch, Mascha Brinkkötter, Takayuki Tohge, Alisdair R Fernie, Hans-Peter Braun, Tatjana M Hildebrandt. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.
Physiologia plantarum.
2016 Jul; 157(3):352-66. doi:
10.1111/ppl.12454
. [PMID: 27105581] - Yan Zhang, Jun Yang, Tao Wang, Shao-Gang Wang, Ji-Hong Liu, Chun-Ping Yin, Zhang-Qun Ye. Decreased Endogenous Hydrogen Sulfide Generation in Penile Tissues of Diabetic Rats with Erectile Dysfunction.
The journal of sexual medicine.
2016 Mar; 13(3):350-60. doi:
10.1016/j.jsxm.2016.01.002
. [PMID: 26853047] - Michael W Stutelberg, Joseph K Dzisam, Alexandre R Monteil, Ilona Petrikovics, Gerry R Boss, Steven E Patterson, Gary A Rockwood, Brian A Logue. Simultaneous determination of 3-mercaptopyruvate and cobinamide in plasma by liquid chromatography-tandem mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2016 Jan; 1008(?):181-188. doi:
10.1016/j.jchromb.2015.11.027
. [PMID: 26655110] - Ciro Coletta, Katalin Módis, Bartosz Szczesny, Attila Brunyánszki, Gábor Oláh, Ester C S Rios, Kazunori Yanagi, Akbar Ahmad, Andreas Papapetropoulos, Csaba Szabo. Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S Pathway: Functional Impairment by Hyperglycemia and Restoration by DL-α-Lipoic Acid.
Molecular medicine (Cambridge, Mass.).
2015 Feb; 21(?):1-14. doi:
10.2119/molmed.2015.00035
. [PMID: 25715337] - Michael W Stutelberg, Chakravarthy V Vinnakota, Brendan L Mitchell, Alexandre R Monteil, Steven E Patterson, Brian A Logue. Determination of 3-mercaptopyruvate in rabbit plasma by high performance liquid chromatography tandem mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2014 Feb; 949-950(?):94-8. doi:
10.1016/j.jchromb.2014.01.006
. [PMID: 24480329] - Inga Kwiecień, Małgorzata Iciek, Lidia Włodek. Acceleration of anaerobic cysteine transformations to sulfane sulfur consequent to γ-glutamyl transpeptidase inhibition.
TheScientificWorldJournal.
2012; 2012(?):253724. doi:
10.1100/2012/253724
. [PMID: 22629124] - Yong-Sheng Ren, Sheng-Ying Wu, Xing-Jun Wang, Fang Yu, Jing Zhao, Chao-Shu Tang, Jing-Ping Ouyang, Bin Geng. Multiple hemodynamic effects of endogenous hydrogen sulfide on central nervous system in rats.
Chinese medical journal.
2011 Nov; 124(21):3468-75. doi:
. [PMID: 22340160]
- Bridgette F Moody, John W Calvert. Emergent role of gasotransmitters in ischemia-reperfusion injury.
Medical gas research.
2011 Apr; 1(1):3. doi:
10.1186/2045-9912-1-3
. [PMID: 22146243] - Arjun Sengupta, Angika Basant, Soumita Ghosh, Shobhona Sharma, Haripalsingh M Sonawat. Liver Metabolic Alterations and Changes in Host Intercompartmental Metabolic Correlation during Progression of Malaria.
Journal of parasitology research.
2011; 2011(?):901854. doi:
10.1155/2011/901854
. [PMID: 21772982] - Jing Zhao, Li-ping Fang, Ge-yang Xu, Chao-shu Tang, Bin Geng. [Assay of endogenous hydrogen sulfide from erythrocytes].
Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences.
2007 Oct; 39(5):449-52. doi:
. [PMID: 17940557]
- George Tsakraklides, Melinda Martin, Radhika Chalam, Mitchell C Tarczynski, Ahlert Schmidt, Thomas Leustek. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5'-adenylylsulfate reductase from Pseudomonas aeruginosa.
The Plant journal : for cell and molecular biology.
2002 Dec; 32(6):879-89. doi:
10.1046/j.1365-313x.2002.01477.x
. [PMID: 12492831] - N Nagahara, T Ito, H Kitamura, T Nishino. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis.
Histochemistry and cell biology.
1998 Sep; 110(3):243-50. doi:
10.1007/s004180050286
. [PMID: 9749958] - D A Wing, S I Baskin. Modifiers of mercaptopyruvate sulfurtransferase catalyzed conversion of cyanide to thiocyanate in vitro.
Journal of biochemical toxicology.
1992; 7(2):65-72. doi:
10.1002/jbt.2570070203
. [PMID: 1404244] - H M Mousa, R H Davis. Alternative sulphur donors for detoxification of cyanide in the chicken.
Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.
1991; 99(3):309-15. doi:
10.1016/0742-8413(91)90247-q
. [PMID: 1685401] - J Mårtensson, L Nilsson, B Sörbo. The decarboxylation of 3-mercaptopyruvate to 2-mercaptoacetate.
FEBS letters.
1984 Oct; 176(2):334-6. doi:
10.1016/0014-5793(84)81191-6
. [PMID: 6489522] - S Kiguchi. Metabolism of 3-mercaptopyruvate in rat tissues.
Acta medica Okayama.
1983 Apr; 37(2):85-91. doi:
10.18926/amo/32415
. [PMID: 6869067] - U Hannestad, J Mårtensson, R Sjödahl, B Sörbo. 3-mercaptolactate cysteine disulfiduria: biochemical studies on affected and unaffected members of a family.
Biochemical medicine.
1981 Aug; 26(1):106-14. doi:
10.1016/0006-2944(81)90035-1
. [PMID: 6945862] - R Jarabak. 3-Mercaptopyruvate sulfurtransferase.
Methods in enzymology.
1981; 77(?):291-7. doi:
10.1016/s0076-6879(81)77040-x
. [PMID: 6948992] - . .
.
. doi:
. [PMID: 12437129]
- . .
.
. doi:
. [PMID: 17408957]
- . .
.
. doi:
. [PMID: 10601861]