Gene Association: SLC25A42

UniProt Search: SLC25A42 (PROTEIN_CODING)
Function Description: solute carrier family 25 member 42

found 6 associated metabolites with current gene based on the text mining result from the pubmed database.

dADP

[({[(2R,3S,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O9P2 (411.0345)


Deoxyadenosine diphosphate has been identified in the mononuclear cells of a patient affected with in inherited adenosine deaminase deficiency (OMIM 102700) (PMID 6980023), and in in mononuclear cells of hemodialyzed patients. (PMID 11461945) [HMDB]. dADP is found in many foods, some of which are medlar, oil palm, greenthread tea, and green vegetables. Deoxyadenosine diphosphate has been identified in the mononuclear cells of a patient affected with in inherited adenosine deaminase deficiency (OMIM 102700) (PMID 6980023), and in in mononuclear cells of hemodialyzed patients. (PMID 11461945). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Dephospho-CoA

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy][(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphinic acid

C21H35N7O13P2S (687.1489)


Dephospho-CoA, also known as 3-dephospho-CoA, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribonucleosides with a diphosphate group linked to the ribose moiety. Thus, dephospho-CoA is considered to be a fatty ester lipid molecule. Dephospho-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, dephospho-CoA has been detected, but not quantified in, several different foods, such as wild leeks, summer savouries, arctic blackberries, biscuits, and persimmons. This could make dephospho-CoA a potential biomarker for the consumption of these foods. Dephospho-CoA is an intermediate in pantothenate and CoA biosynthesis. It is a substrate for bifunctional coenzyme A synthase which contains the dephospho-CoA kinase (EC 2.7.1.24). This enzyme catalyzes the final step in CoA biosynthesis: the phosphorylation of the 3-hydroxyl group of ribose using ATP as a phosphate donor. The reaction is ATP + 3-dephospho-CoA = ADP + CoA. Dephospho-CoA is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 1, Ectonucleotide pyrophosphatase/phosphodiesterase 3 and Ectonucleotide pyrophosphatase/phosphodiesterase 2. [HMDB]. Dephospho-CoA is found in many foods, some of which are cardamom, epazote, lemon balm, and mammee apple. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Adenosine 3',5'-diphosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}phosphonic acid

C10H15N5O10P2 (427.0294)


Adenosine-3-5-diphosphate, also known as 3-phosphoadenylate or pap, is a member of the class of compounds known as purine ribonucleoside 3,5-bisphosphates. Purine ribonucleoside 3,5-bisphosphates are purine ribobucleotides with one phosphate group attached to 3 and 5 hydroxyl groups of the ribose moiety. Adenosine-3-5-diphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine-3-5-diphosphate can be found in a number of food items such as beech nut, canola, chickpea, and red algae, which makes adenosine-3-5-diphosphate a potential biomarker for the consumption of these food products. Adenosine-3-5-diphosphate can be found primarily in cellular cytoplasm, as well as in human brain and liver tissues. Adenosine-3-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine-3-5-diphosphate is involved in several metabolic pathways, some of which include acetaminophen metabolism pathway, tamoxifen action pathway, androgen and estrogen metabolism, and metachromatic leukodystrophy (MLD). Adenosine-3-5-diphosphate is also involved in several metabolic disorders, some of which include gaucher disease, krabbe disease, fabry disease, and 17-beta hydroxysteroid dehydrogenase III deficiency. Adenosine 3, 5-diphosphate or PAP is a nucleotide that is closely related to ADP. It has two phosphate groups attached to the 5 and 3 positions of the pentose sugar ribose (instead of pyrophosphoric acid at the 5 position, as found in ADP), and the nucleobase adenine. PAP is converted to PAPS by Sulfotransferase and then back to PAP after the sulfotransferase reaction. Sulfotransferase (STs) catalyze the transfer reaction of the sulfate group from the ubiquitous donor 3-phosphoadenosine 5-phosphosulfate (PAPS) to an acceptor group of numerous substrates. This reaction, often referred to as sulfuryl transfer, sulfation, or sulfonation, is widely observed from bacteria to humans and plays a key role in various biological processes such as cell communication, growth and development, and defense. PAP also appears to a role in bipolar depression. Phosphatases converting 3-phosphoadenosine 5-phosphate (PAP) into adenosine 5-phosphate are of fundamental importance in living cells as the accumulation of PAP is toxic to several cellular systems. These enzymes are lithium-sensitive and we have characterized a human PAP phosphatase as a potential target of lithium therapy.

   

Dephospho-CoA

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy][3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphinic acid

C21H35N7O13P2S (687.1489)


   

2-Deoxyadenosine-5-diphosphate

2-Deoxyadenosine-5-diphosphate

C10H15N5O9P2 (411.0345)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-3-5-diphosphate

Adenosine-3-5-diphosphate

C10H15N5O10P2 (427.0294)