Gene Association: DXO

UniProt Search: DXO (PROTEIN_CODING)
Function Description: decapping exoribonuclease

found 13 associated metabolites with current gene based on the text mining result from the pubmed database.

Dephospho-CoA

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy][(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphinic acid

C21H35N7O13P2S (687.1489)


Dephospho-CoA, also known as 3-dephospho-CoA, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribonucleosides with a diphosphate group linked to the ribose moiety. Thus, dephospho-CoA is considered to be a fatty ester lipid molecule. Dephospho-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, dephospho-CoA has been detected, but not quantified in, several different foods, such as wild leeks, summer savouries, arctic blackberries, biscuits, and persimmons. This could make dephospho-CoA a potential biomarker for the consumption of these foods. Dephospho-CoA is an intermediate in pantothenate and CoA biosynthesis. It is a substrate for bifunctional coenzyme A synthase which contains the dephospho-CoA kinase (EC 2.7.1.24). This enzyme catalyzes the final step in CoA biosynthesis: the phosphorylation of the 3-hydroxyl group of ribose using ATP as a phosphate donor. The reaction is ATP + 3-dephospho-CoA = ADP + CoA. Dephospho-CoA is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 1, Ectonucleotide pyrophosphatase/phosphodiesterase 3 and Ectonucleotide pyrophosphatase/phosphodiesterase 2. [HMDB]. Dephospho-CoA is found in many foods, some of which are cardamom, epazote, lemon balm, and mammee apple. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

UDP-α-D-N-Acetylglucosamine disodium

(2R,3R,4R,5S,6R)-3-(Acetylamino)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl [(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl dihydrogen diphosphoric acid (non-preferred name)

C17H27N3O17P2 (607.0816)


Uridine diphosphate-N-acetylglucosamine (uridine 5-diphosphate-GlcNAc, or UDP-Glc-NAc) is an acetylated aminosugar nucleotide. UDP-GlcNAc is the donor substrate for modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (O-GlcNAc). Nutrient sensing in mammals is done through the hexosamine biosynthetic pathway (HSP), which produces uridine 5-diphospho-N-acetylglucosamine (UDP-Glc-NAc) as its end product. Mammals respond to nutrient excess by activating O-GlcNAcylation (addition of O-linked N-acetylglucosamine). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Due to the chemical makeup of UDP-GlcNAc, it is well positioned to serve as a glucose sensor in that it is a high-energy compound that requires and/or responds to glucose, amino acid, fatty acid and nucleotide metabolism for synthesis. Elevated levels of O-GlcNAc have an effect on insulin-stimulated glucose uptake. (PMID: 12678487). Uridine 5-diphosphate-GlcNAc (UDP-Glc-NAc )respond to nutrient excess to activate O-GlcNAcylation (addition of O-linked N-acetylglucosamine) in the hexosamine signaling pathway (HSP). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Acquisition and generation of the data is financially supported in part by CREST/JST.

   

7-Methylguanosine

7-Methylguanosine

[C11H16N5O5]+ (298.1151)


CONFIDENCE standard compound; INTERNAL_ID 316

   

Adenosine 3',5'-diphosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}phosphonic acid

C10H15N5O10P2 (427.0294)


Adenosine-3-5-diphosphate, also known as 3-phosphoadenylate or pap, is a member of the class of compounds known as purine ribonucleoside 3,5-bisphosphates. Purine ribonucleoside 3,5-bisphosphates are purine ribobucleotides with one phosphate group attached to 3 and 5 hydroxyl groups of the ribose moiety. Adenosine-3-5-diphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine-3-5-diphosphate can be found in a number of food items such as beech nut, canola, chickpea, and red algae, which makes adenosine-3-5-diphosphate a potential biomarker for the consumption of these food products. Adenosine-3-5-diphosphate can be found primarily in cellular cytoplasm, as well as in human brain and liver tissues. Adenosine-3-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine-3-5-diphosphate is involved in several metabolic pathways, some of which include acetaminophen metabolism pathway, tamoxifen action pathway, androgen and estrogen metabolism, and metachromatic leukodystrophy (MLD). Adenosine-3-5-diphosphate is also involved in several metabolic disorders, some of which include gaucher disease, krabbe disease, fabry disease, and 17-beta hydroxysteroid dehydrogenase III deficiency. Adenosine 3, 5-diphosphate or PAP is a nucleotide that is closely related to ADP. It has two phosphate groups attached to the 5 and 3 positions of the pentose sugar ribose (instead of pyrophosphoric acid at the 5 position, as found in ADP), and the nucleobase adenine. PAP is converted to PAPS by Sulfotransferase and then back to PAP after the sulfotransferase reaction. Sulfotransferase (STs) catalyze the transfer reaction of the sulfate group from the ubiquitous donor 3-phosphoadenosine 5-phosphosulfate (PAPS) to an acceptor group of numerous substrates. This reaction, often referred to as sulfuryl transfer, sulfation, or sulfonation, is widely observed from bacteria to humans and plays a key role in various biological processes such as cell communication, growth and development, and defense. PAP also appears to a role in bipolar depression. Phosphatases converting 3-phosphoadenosine 5-phosphate (PAP) into adenosine 5-phosphate are of fundamental importance in living cells as the accumulation of PAP is toxic to several cellular systems. These enzymes are lithium-sensitive and we have characterized a human PAP phosphatase as a potential target of lithium therapy.

   

Pantetheine

2,4-dihydroxy-3,3-dimethyl-N-{2-[(2-sulfanylethyl)carbamoyl]ethyl}butanamide

C11H22N2O4S (278.13)


Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. An intermediate in the pathway of coenzyme A formation in mammalian liver and some microorganisms. Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

epsilon-Caprolactone

epsilon-Captolactamium hydrogen sulfate

C6H10O2 (114.0681)


ε-Caprolactone, also known simply as caprolactone, is a compound belonging to the family of compounds known as lactones. Lactones are cyclic esters of hydroxyl carboxylic acids, wherein the functional group has become part of a ring structure with carbon atoms. Caprolactone consists of a seven membered ring derived from the cyclization of caproic acid. As a monomer it used in the production of highly specialized plastics and polymers. Caprolactone is produced by the Baeyer-Villiger oxidation of cyclohexanone with peracetic acid, and was used previously (until economically inviable) as a precursor in the production of caprolactam. Several other caprolactone isomers are known. These isomers include α-, β-, γ-, and δ-caprolactones. All are chiral. (R)-γ-caprolactone is a component of floral scents and of the aromas of some fruits and vegetables (Journal of Agricultural and Food Chemistry. 37: 413–418), while δ-caprolactone is found in heated milk fat (Journal of Dairy Science. 48 (5): 615–616).

   

7-Methylguanosine

2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-methyl-6-oxo-6,7-dihydro-3H-9lambda5-purin-9-ylium

C11H16N5O5+ (298.1151)


7-methylguanosine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. 7-Methylguanosine is a substrate for purine-nucleoside phosphorylase and Eukaryotic translation initiation factor 4E. (PMID: 3506820, 17044778, 17264127, 16799933) [HMDB] 7-methylguanosine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. 7-Methylguanosine is a substrate for purine-nucleoside phosphorylase and Eukaryotic translation initiation factor 4E. (PMID:3506820, 17044778, 17264127, 16799933).

   

7-Methylguanosine

7-Methylguanosine

C11H16N5O5+ (298.1151)


A positively charged methylguanosine in which a single methyl substituent is located at position 7.

   

Dephospho-CoA

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy][3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphinic acid

C21H35N7O13P2S (687.1489)


   

Placcel M

5-17-09-00034 (Beilstein Handbook Reference)

C6H10O2 (114.0681)


   

Caprolactone

6-Hexanolactone

C6H10O2 (114.0681)


   

Pantetheine

(R)-Pantetheine

C11H22N2O4S (278.13)


An amide obtained by formal condensation of the carboxy group of pantothenic acid and the amino group of cysteamine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-3-5-diphosphate

Adenosine-3-5-diphosphate

C10H15N5O10P2 (427.0294)