NCBI Taxonomy: 721791

Dryadoideae (ncbi_taxid: 721791)

found 84 associated metabolites at subfamily taxonomy rank level.

Ancestor: Rosaceae

Child Taxonomies: Dryas, Purshia, Cercocarpus, Chamaebatia

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215226)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Protocatechuic acid

3,4-dihydroxybenzoic acid

C7H6O4 (154.0266076)


Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Pectolinarigenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.0790344)


Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

4-Hydroxybenzoic acid

4-hydroxybenzoic acid

C7H6O3 (138.03169259999999)


4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in A√ßa√≠ oil, obtained from the fruit of the a√ßa√≠ palm (Euterpe oleracea), at relatively high concetrations (892¬±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843). Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid DVN38-Z and 2,4-Hexadienoic acid GMZ10-P. The taste is more detectable than for those preservatives. Effectiveness increases with chain length of the alcohol, but for some microorganisms this reduces cell permeability and thus counteracts the increased efficiency. 4-Hydroxybenzoic acid is found in many foods, some of which are chicory, corn, rye, and black huckleberry. 4-hydroxybenzoic acid is a monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. It has a role as a plant metabolite and an algal metabolite. It is a conjugate acid of a 4-hydroxybenzoate. 4-Hydroxybenzoic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). See also: Vaccinium myrtillus Leaf (part of); Galium aparine whole (part of); Menyanthes trifoliata leaf (part of) ... View More ... A monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. 4-Hydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-96-7 (retrieved 2024-07-01) (CAS RN: 99-96-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

dammarenediol

(3S,5R,8R,9R,10R,13R,14R,17S)-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H52O2 (444.3967092)


Dammarenediol-II is a tetracyclic triterpenoid that is dammarane which has a double bond between positions 24 and 25, and is substituted by hydroxy groups at the 3beta- and 20- positions. It has a role as a metabolite. It is a tetracyclic triterpenoid, a secondary alcohol and a tertiary alcohol. It derives from a hydride of a dammarane. Dammarenediol II is a natural product found in Olea capensis, Aglaia abbreviata, and other organisms with data available. A tetracyclic triterpenoid that is dammarane which has a double bond between positions 24 and 25, and is substituted by hydroxy groups at the 3beta- and 20- positions.

   

Ellagic acid

6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0^{4,16}.0^{11,15}]hexadeca-1(14),4(16),5,7,11(15),12-hexaene-3,10-dione

C14H6O8 (302.0062676)


Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

Cucurbitacin F

2,3,16,20,25-Pentahydroxy-9-methyl-19-norlanosta-5,23-diene-11,22-dione (2beta,3alpha,9beta,10alpha,16alpha,23E)-

C30H46O7 (518.3243365999999)


   

Dhurrin

(2S)-2-(4-hydroxyphenyl)-2-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}acetonitrile

C14H17NO7 (311.1004972)


Dhurrin is a cyanogenic glycoside occurring in plants. Its biosynthesis has been elucidated. Dhurrin is hydrolyzed in the stomach of an insect into a carbohydrate and aglycone. The aglycone is unstable and releases hydrogen cyanide. (Wikipedia) In biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor, the UDP-glucosyltransferase UGT85B1 catalyzes the conversion of p-hydroxymandelonitrile into dhurrin. (PMID: 16169969) In Sorghum, the cyanogenic glucoside dhurrin is derived from l-tyrosine in a pathway involving the two cytochromes P450 (CYPs) CYP79A1 and CYP71E1, a glucosyltransferase (UGT85B1), and the redox partner NADPH-dependent cytochrome P450 reductase (CPR). (PMID: 21620426) Synthesis of the tyrosine derived cyanogenic glucoside dhurrin in Sorghum bicolor is catalyzed by two multifunctional, membrane bound cytochromes P450, CYP79A1 and CYP71E1, and a soluble UDPG-glucosyltransferase, UGT85B1. In the presence of CYP79A1 and CYP71E1, the localization of UGT85B1 shifted towards the surface of the ER membrane in the periphery of biosynthetic active cells, demonstrating in planta dhurrin metabolon formation. (PMID: 17706731)

   

Corosolic acid

(1S,2R,4aS,6aR,6aS,6bR,8aR,10R,11R,12aR,14bS)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O4 (472.3552408)


Colosolic acid is a natural product found in Rhododendron brachycarpum, Psidium, and other organisms with data available.

   

Avicularin

3-[(2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C20H18O11 (434.0849078)


Constituent of Vaccinium myrtillus (bilberry) and Juglans regia (walnut). Avicularin is found in many foods, some of which are cocoa powder, common walnut, guava, and nuts. Avicularin is found in allspice. Avicularin is a constituent of Vaccinium myrtillus (bilberry) and Juglans regia (walnut) Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3].

   

Pomolic acid

1,10-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


Constituent of apple peel. Pomolic acid is found in many foods, some of which are rosemary, lemon balm, pomes, and spearmint. Pomolic acid is found in apple. Pomolic acid is a constituent of apple peel Randialic acid A (Pomolic acid) is a pentacyclic triterpene isolated from?Euscaphis japonica?(Tunb.). Randialic acid A (Pomolic acid) inhibits tumor cells growth and induces cell apoptosis. Randialic acid A (Pomolic acid) has a potential for the treatment of prostate cancer (PC)[2]. Randialic acid A (Pomolic acid) is a pentacyclic triterpene isolated from?Euscaphis japonica?(Tunb.). Randialic acid A (Pomolic acid) inhibits tumor cells growth and induces cell apoptosis. Randialic acid A (Pomolic acid) has a potential for the treatment of prostate cancer (PC)[2].

   

Corosolic acid

10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


Corosolic acid, also known as corosolate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Corosolic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Corosolic acid can be found in guava, loquat, and olive, which makes corosolic acid a potential biomarker for the consumption of these food products. Corosolic acid is a pentacyclic triterpene acid found in Lagerstroemia speciosa. It is similar in structure to ursolic acid, differing only in the fact that it has a 2-alpha-hydroxy attachment . Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.

   

Ursolic acid (2-alpha-hydroxy-)

(1S,2R,4aS,6aS,6bR,8aR,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


   

Avicularin

3-(((2S,3R,4R,5S)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C20H18O11 (434.0849078)


Avicularin is a quercetin O-glycoside in which an alpha-L-arabinofuranosyl residue is attached at position 3 of quercetin via a glycosidic linkage. It is isolated particularly from Juglans regia and Foeniculum vulgare. It has a role as a hepatoprotective agent and a plant metabolite. It is a monosaccharide derivative, an alpha-L-arabinofuranoside, a tetrahydroxyflavone and a quercetin O-glycoside. Avicularin is a natural product found in Saxifraga tricuspidata, Rhododendron mucronulatum, and other organisms with data available. A quercetin O-glycoside in which an alpha-L-arabinofuranosyl residue is attached at position 3 of quercetin via a glycosidic linkage. It is isolated particularly from Juglans regia and Foeniculum vulgare. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3].

   

Corosolic_acid

(1S,2R,4aS,6aS,6bR,8aR,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


Corosolic acid is a triterpenoid. It has a role as a metabolite. Corosolic acid is a natural product found in Ternstroemia gymnanthera, Cunila lythrifolia, and other organisms with data available. See also: Lagerstroemia speciosa leaf (part of). A natural product found particularly in Rhododendron species and Eriobotrya japonica. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.

   

Corosolic acid

3-Epicorosolic acid

C30H48O4 (472.3552408)


Annotation level-1 Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.36032579999994)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Eichlerianic acid

3-[(3S,3aR,5aR,6S,7S,9aR,9bR)-3-[(2S,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-6,9a,9b-trimethyl-7-prop-1-en-2-yl-1,2,3,3a,4,5,5a,7,8,9-decahydrocyclopenta[a]naphthalen-6-yl]propanoic acid

C30H50O4 (474.37089000000003)


Eichlerianic acid is a diterpene glycoside. It has a role as a metabolite. Eichlerianic acid is a natural product found in Aglaia foveolata, Aglaia rubiginosa, and other organisms with data available. A natural product found in Aglaia foveolata.

   

Pectolinarigenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.0790344)


Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. A dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. Pectolinarigenin, also known as 5,7-dihydroxy-4,6-dimethoxyflavone or 4-methylcapillarisin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, pectolinarigenin is considered to be a flavonoid lipid molecule. Pectolinarigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pectolinarigenin can be found in sunflower and tarragon, which makes pectolinarigenin a potential biomarker for the consumption of these food products. Pectolinarigenin is a Cirsium isolate with anti-inflammatory activity and belongs to the flavones . Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   
   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.09547200000003)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Ellagic Acid

Ellagic Acid

C14H6O8 (302.0062676)


Origin: Plant, Ellagic acids, Benzopyranoids, Pyrans Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

4-hydroxybenzoate

4-Hydroxybenzoic acid

C7H6O3 (138.03169259999999)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

Catechol

(+)-Catechin Hydrate

C15H14O6 (290.0790344)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

p-Hydroxybenzoic acid

p-Hydroxybenzoic acid

C7H6O3 (138.03169259999999)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

3,4-Dihydroxybenzoic acid

3,4-Dihydroxybenzoic acid

C7H6O4 (154.0266076)


   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Pomolic acid

(1R,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-1,10-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


Randialic acid A (Pomolic acid) is a pentacyclic triterpene isolated from?Euscaphis japonica?(Tunb.). Randialic acid A (Pomolic acid) inhibits tumor cells growth and induces cell apoptosis. Randialic acid A (Pomolic acid) has a potential for the treatment of prostate cancer (PC)[2]. Randialic acid A (Pomolic acid) is a pentacyclic triterpene isolated from?Euscaphis japonica?(Tunb.). Randialic acid A (Pomolic acid) inhibits tumor cells growth and induces cell apoptosis. Randialic acid A (Pomolic acid) has a potential for the treatment of prostate cancer (PC)[2].

   

Ent-Catechin

(2S,3R)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


(-)-Catechin is an isomer of Catechin having a trans 2S,3R configuration at the chiral center. Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. (-)-Catechin is an isomer of Catechin having a trans 2S,3R configuration at the chiral center. Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. (-)-Catechin is an isomer of Catechin having a trans 2S,3R configuration at the chiral center. Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. (-)-Catechin is an isomer of Catechin having a trans 2S,3R configuration at the chiral center. Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Hydroxycinnamic acid

Hydroxycinnamic acid

C9H8O3 (164.0473418)


The cis-stereoisomer of 3-coumaric acid.

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215226)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   
   

(11r,12r)-12-[(15s,19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

(11r,12r)-12-[(15s,19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0868788)


   

1-(4-methoxyphenyl)-2-[2-(4-methoxyphenyl)ethenyl]propane-1,3-diol

1-(4-methoxyphenyl)-2-[2-(4-methoxyphenyl)ethenyl]propane-1,3-diol

C19H22O4 (314.1518012)


   

2-[(1z)-4-hydroxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

2-[(1z)-4-hydroxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

C14H19NO7 (313.1161464)


   

10-[19-(12-{2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl}-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2(7),3,5,16,18-hexaen-6-yl)-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1,3,5(18),6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

10-[19-(12-{2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl}-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2(7),3,5,16,18-hexaen-6-yl)-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1,3,5(18),6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C82H54O51 (1854.1631934)


   

(11r,12r)-12-[(14r,15s,19r)-19-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

(11r,12r)-12-[(14r,15s,19r)-19-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C56H40O31 (1208.1553490000001)


   

2-[(1e,4s,6s)-4-hydroxy-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

2-[(1e,4s,6s)-4-hydroxy-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

C14H19NO7 (313.1161464)


   

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-3,10-dione

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-3,10-dione

C30H44O8 (532.3036024)


   

2-[(1z,4s,6s)-4-hydroxy-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

2-[(1z,4s,6s)-4-hydroxy-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

C14H19NO7 (313.1161464)


   

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C30H46O7 (518.3243365999999)


   

12-{2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl}-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

12-{2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl}-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0868788)


   

(1r,2s,3as,3br,7s,8s,9ar,9bs,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-3,10-dione

(1r,2s,3as,3br,7s,8s,9ar,9bs,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-3,10-dione

C30H44O8 (532.3036024)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.09547200000003)


   

(11s,12r)-12-[(14r,15r,19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

(11s,12r)-12-[(14r,15r,19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0868788)


   

(2r,3s,4r)-2-(3,4-dihydroxyphenyl)-4-[(2s,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3s,4r)-2-(3,4-dihydroxyphenyl)-4-[(2s,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


   

(10r,11s)-10-[(14r,15r,19r)-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-19-[(2r,3s,4s)-2,3,4,5-tetrahydroxypentanoyl]-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,16,17,18-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.3.1.0²,⁷]nonadeca-1(18),2(7),3,5,15(19),16-hexaen-11-yl 3,4,5-trihydroxybenzoate

(10r,11s)-10-[(14r,15r,19r)-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-19-[(2r,3s,4s)-2,3,4,5-tetrahydroxypentanoyl]-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,16,17,18-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.3.1.0²,⁷]nonadeca-1(18),2(7),3,5,15(19),16-hexaen-11-yl 3,4,5-trihydroxybenzoate

C46H36O30 (1068.1291356)


   

(1r,2r,3as,3bs,7s,8s,9ar,9br,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

(1r,2r,3as,3bs,7s,8s,9ar,9br,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C30H48O7 (520.3399858)


   

2-[(1z,4s,6r)-4-hydroxy-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

2-[(1z,4s,6r)-4-hydroxy-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

C14H19NO7 (313.1161464)


   

(3e,6s)-6-[(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-3-ene-2,6-diol

(3e,6s)-6-[(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-3-ene-2,6-diol

C30H52O3 (460.3916242)


   

(11r,12s)-12-[(14r,15s,19r)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 2-[(14r,15s,19r)-14-[(10s,11s)-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(19),2(7),3,5,15,17-hexaen-10-yl]-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-19-yl]-3,4,5-trihydroxybenzoate

(11r,12s)-12-[(14r,15s,19r)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 2-[(14r,15s,19r)-14-[(10s,11s)-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(19),2(7),3,5,15,17-hexaen-10-yl]-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-19-yl]-3,4,5-trihydroxybenzoate

C82H54O51 (1854.1631934)


   

(1r,2r,3as,3bs,8r,9ar,9br,11ar)-1-[(2s,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

(1r,2r,3as,3bs,8r,9ar,9br,11ar)-1-[(2s,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

C30H44O7 (516.3086874)


   

(11r,12s)-12-[(14r,15s,19r)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

(11r,12s)-12-[(14r,15s,19r)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0868788)


   

2-[(1z,4r,5s,6s)-4,5-dihydroxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

2-[(1z,4r,5s,6s)-4,5-dihydroxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

C14H19NO8 (329.1110614)


   

(11r,12r)-12-[(14r,15s,19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

(11r,12r)-12-[(14r,15s,19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0868788)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

2β-hydroxypomolic acid

2β-hydroxypomolic acid

C30H48O5 (488.3501558)


   

12-{2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl}-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 2-{14-[3,4,5,17,18,19-hexahydroxy-8,14-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(19),2(7),3,5,15,17-hexaen-10-yl]-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-19-yl}-3,4,5-trihydroxybenzoate

12-{2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl}-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 2-{14-[3,4,5,17,18,19-hexahydroxy-8,14-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(19),2(7),3,5,15,17-hexaen-10-yl]-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-19-yl}-3,4,5-trihydroxybenzoate

C82H54O51 (1854.1631934)


   

(11r,12r)-12-[(15s,19s)-19-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

(11r,12r)-12-[(15s,19s)-19-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-2,3,4,7,8,9-hexahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C56H40O31 (1208.1553490000001)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C20H20O11 (436.100557)


   

1-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-3,10-dione

1-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-3,10-dione

C30H46O8 (534.3192516)


   

12-[2,3,4,7,8,9-hexahydroxy-12,17-dioxo-19-(2,3,4,5-tetrahydroxyoxan-2-yl)-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

12-[2,3,4,7,8,9-hexahydroxy-12,17-dioxo-19-(2,3,4,5-tetrahydroxyoxan-2-yl)-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C46H36O30 (1068.1291356)


   

(1r,2s,3as,3br,7s,8s,9ar,9bs,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-3,10-dione

(1r,2s,3as,3br,7s,8s,9ar,9bs,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-3,10-dione

C30H46O8 (534.3192516)


   

2-[(1z,4s,6r)-4-hydroxy-6-{[(2r,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

2-[(1z,4s,6r)-4-hydroxy-6-{[(2r,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-2-en-1-ylidene]acetonitrile

C14H19NO7 (313.1161464)


   

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

C30H44O7 (516.3086874)


   

(11r,12r)-12-[(15s,19r)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

(11r,12r)-12-[(15s,19r)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0868788)


   

3-{[(2s,3r,4s,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

3-{[(2s,3r,4s,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C20H18O11 (434.0849078)


   

(2s,3as,3br,7s,8s,9ar,9bs,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-3,10-dione

(2s,3as,3br,7s,8s,9ar,9bs,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,7,8-trihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-3,10-dione

C30H44O8 (532.3036024)