{[(E)-(2-phenyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxy}sulfonic acid (BioDeep_00001103891)
natural product
代谢物信息卡片
化学式: C14H19NO9S2 (409.0501)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C1=CC=C(C=C1)CC(=NOS(=O)(=O)O)SC2C(C(C(C(O2)CO)O)O)O
InChI: InChI=1S/C14H19NO9S2/c16-7-9-11(17)12(18)13(19)14(23-9)25-10(15-24-26(20,21)22)6-8-4-2-1-3-5-8/h1-5,9,11-14,16-19H,6-7H2,(H,20,21,22)/b15-10+
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
36 个相关的物种来源信息
- 126269 - Alliaria: LTS0205219
- 126270 - Alliaria petiolata: 10.1016/0305-1978(87)90106-2
- 126270 - Alliaria petiolata: LTS0205219
- 3705 - Brassica: LTS0205219
- 3708 - Brassica napus: 10.1016/S0021-9673(01)82214-7
- 3708 - Brassica napus: LTS0205219
- 3700 - Brassicaceae: LTS0205219
- 2759 - Eukaryota: LTS0205219
- 19205 - Lepidium: LTS0205219
- 153329 - Lepidium aucheri: 10.1016/0305-1978(87)90106-2
- 153329 - Lepidium aucheri: LTS0205219
- 153348 - Lepidium meyenii: 10.1016/S0305-1978(02)00058-3
- 153348 - Lepidium meyenii: LTS0205219
- 153365 - Lepidium ruderale: 10.1016/0305-1978(87)90106-2
- 153365 - Lepidium ruderale: LTS0205219
- 33125 - Lepidium sativum: 10.1016/0305-1978(87)90106-2
- 33125 - Lepidium sativum: 10.1016/S0367-326X(02)00061-8
- 33125 - Lepidium sativum: 10.1021/JF00029A028
- 33125 - Lepidium sativum: LTS0205219
- 3398 - Magnoliopsida: LTS0205219
- 234453 - Malcolmia: LTS0205219
- 1980597 - Malcolmia grandiflora: 10.1016/0305-1978(87)90106-2
- 1980597 - Malcolmia grandiflora: LTS0205219
- 203623 - Pringlea: LTS0205219
- 203624 - Pringlea antiscorbutica: 10.1021/NP049822Q
- 203624 - Pringlea antiscorbutica: LTS0205219
- 3725 - Raphanus: LTS0205219
- 3726 - Raphanus sativus: 10.1002/(SICI)1099-1573(199811)12:7<502::AID-PTR336>3.0.CO;2-I
- 3726 - Raphanus sativus: LTS0205219
- 35493 - Streptophyta: LTS0205219
- 58023 - Tracheophyta: LTS0205219
- 4018 - Tropaeolaceae: LTS0205219
- 4019 - Tropaeolum: LTS0205219
- 4020 - Tropaeolum majus: 10.1104/PP.111.3.831
- 4020 - Tropaeolum majus: LTS0205219
- 33090 - Viridiplantae: LTS0205219
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Jenny Spöttel, Johannes Brockelt, Sven Falke, Sascha Rohn. Characterization of Conjugates between α-Lactalbumin and Benzyl Isothiocyanate-Effects on Molecular Structure and Proteolytic Stability.
Molecules (Basel, Switzerland).
2021 Oct; 26(20):. doi:
10.3390/molecules26206247
. [PMID: 34684828] - Sabine Montaut, Benjamin S Guido, Claude Grison, Patrick Rollin. Identification of Glucosinolates in Seeds of Three Brassicaceae Species Known to Hyperaccumulate Heavy Metals.
Chemistry & biodiversity.
2017 Mar; 14(3):. doi:
10.1002/cbdv.201600311
. [PMID: 27981800] - Stefanie Platz, Carla Kühn, Sonja Schiess, Monika Schreiner, Margrit Kemper, Olga Pivovarova, Andreas F H Pfeiffer, Sascha Rohn. Bioavailability and metabolism of benzyl glucosinolate in humans consuming Indian cress (Tropaeolum majus L.).
Molecular nutrition & food research.
2016 Mar; 60(3):652-60. doi:
10.1002/mnfr.201500633
. [PMID: 26610401] - Stefanie Platz, Carla Kühn, Sonja Schiess, Monika Schreiner, Inga Mewis, Margrit Kemper, Andreas Pfeiffer, Sascha Rohn. Determination of benzyl isothiocyanate metabolites in human plasma and urine by LC-ESI-MS/MS after ingestion of nasturtium (Tropaeolum majus L.).
Analytical and bioanalytical chemistry.
2013 Sep; 405(23):7427-36. doi:
10.1007/s00216-013-7176-7
. [PMID: 23852079] - Gina R De Nicola, Maximilienne Nyegue, Sabine Montaut, Renato Iori, Chantal Menut, Arnaud Tatibouët, Patrick Rollin, Chantal Ndoyé, Paul-Henri Amvam Zollo. Profile and quantification of glucosinolates in Pentadiplandra brazzeana Baillon.
Phytochemistry.
2012 Jan; 73(1):51-6. doi:
10.1016/j.phytochem.2011.09.006
. [PMID: 21993210] - David J Williams, Christa Critchley, Sharon Pun, Mridusmita Chaliha, Timothy J O'Hare. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.
Phytochemistry.
2009 Jul; 70(11-12):1401-9. doi:
10.1016/j.phytochem.2009.07.035
. [PMID: 19747700] - Marzena Wielanek, Aleksandra Królicka, Katarzyna Bergier, Ewa Gajewska, Maria Skłodowska. Transformation of Nasturtium officinale, Barbarea verna and Arabis caucasica for hairy roots and glucosinolate-myrosinase system production.
Biotechnology letters.
2009 Jun; 31(6):917-21. doi:
10.1007/s10529-009-9953-0
. [PMID: 19229477] - Maik Kleinwächter, Ewald Schnug, Dirk Selmar. The glucosinolate-myrosinase system in nasturtium (Tropaeolum majus L.): variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization.
Journal of agricultural and food chemistry.
2008 Dec; 56(23):11165-70. doi:
10.1021/jf802053n
. [PMID: 18986152] - D-L Cheng, K Hashimoto, Y Uda. In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2004 Mar; 42(3):351-7. doi:
10.1016/j.fct.2003.09.008
. [PMID: 14871576] - B Combourieu, L Elfoul, A M Delort, S Rabot. Identification of new derivatives of sinigrin and glucotropaeolin produced by the human digestive microflora using 1H NMR spectroscopy analysis of in vitro incubations.
Drug metabolism and disposition: the biological fate of chemicals.
2001 Nov; 29(11):1440-5. doi:
. [PMID: 11602519]