Exact Mass: 827.4218
Exact Mass Matches: 827.4218
Found 89 metabolites which its exact mass value is equals to given mass value 827.4218
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Josamycin
Josamycin is only found in individuals that have used or taken this drug. It is a macrolide antibiotic from Streptomyces narbonensis. The drug has antimicrobial activity against a wide spectrum of pathogens. [PubChem]The mechanism of action of macrolides such as Josamycin is via inhibition of bacterial protein biosynthesis by binding reversibly to the subunit 50S of the bacterial ribosome, thereby inhibiting translocation of peptidyl tRNA. This action is mainly bacteriostatic, but can also be bactericidal in high concentrations. Macrolides tend to accumulate within leukocytes, and are therefore actually transported into the site of infection. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D01235 Josamycin (EN-141) is a macrolide antibiotic exhibiting antimicrobial activity against a wide spectrum of pathogens, such as bacteria. The dissociation constant Kd from ribosome for Josamycin is 5.5 nM.
Gb3Cer
Gb3Cer, also known as GB3 Globotriaosylceramide or CD77 Antigen, is classified as a member of the Glycosyl-N-acylsphingosines. Glycosyl-N-acylsphingosines are compounds containing a sphingosine linked to a simple glucosyl moiety. Gb3Cer is considered to be practically insoluble (in water) and acidic
Rokitamycin
PS(16:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
PS(16:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(16:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:1(9Z))
PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:1(9Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(18:3(6Z,9Z,12Z)/5-iso PGF2VI)
PS(18:3(6Z,9Z,12Z)/5-iso PGF2VI) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:3(6Z,9Z,12Z)/5-iso PGF2VI), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(5-iso PGF2VI/18:3(6Z,9Z,12Z))
PS(5-iso PGF2VI/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(5-iso PGF2VI/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(18:3(9Z,12Z,15Z)/5-iso PGF2VI)
PS(18:3(9Z,12Z,15Z)/5-iso PGF2VI) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:3(9Z,12Z,15Z)/5-iso PGF2VI), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(5-iso PGF2VI/18:3(9Z,12Z,15Z))
PS(5-iso PGF2VI/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(5-iso PGF2VI/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
cyclo-[Phe1-cis-Pro2-Ile3-Ile4-cis-Pro5-Tyr6-cis-Pro7]|phakellistatin 2
cyclo(L-Pro-L-Tyr-L-Pro-L-Ile-L-Phe-L-Pro-L-Ile)|phakellistatin 18
cyclo(L-tyrosinyl-L-prolyl-L-leucyl-L-prolyl-L-phenylalanyl-L-isoleucyl-L-prolyl)|cyclo-(cis-Pro1-Tyr2-cis-Pro3-Lys4-cis-Pro5-Phe6-Ile7)|stylissamide D|stylysin 1
Josamycin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides A macrolide antibiotic produced by certain strains of Streptomyces narbonensis var. josamyceticus. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D01235 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.133 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.131 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.130 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.135 Josamycin (EN-141) is a macrolide antibiotic exhibiting antimicrobial activity against a wide spectrum of pathogens, such as bacteria. The dissociation constant Kd from ribosome for Josamycin is 5.5 nM.
Rokitamycin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic
[(2S,3S,4R,6S)-6-[(2R,3S,4R,5R,6S)-6-[[(4R,5S,6S,7R,9R,10R,11E,13Z,16R)-4-acetyloxy-10-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy]-4-(dimethylamino)-5-hydroxy-2-methyloxan-3-yl]oxy-3-hydroxy-2,4-dimethyloxan-4-yl] 3-methylbutanoate
methyl (4R,5S,6S,7R,9R,10R,11E,13Z,16R)-6-[(3R,4R,5S,6R)-4-(dimethylamino)-3-hydroxy-5-[(4R,5S,6S)-4-hydroxy-4,6-dimethyl-5-(3-methylbutanoyloxy)oxan-2-yl]oxy-6-methyloxan-2-yl]oxy-10-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-diene-4-carboxylate
Josacine
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Josamycin (EN-141) is a macrolide antibiotic exhibiting antimicrobial activity against a wide spectrum of pathogens, such as bacteria. The dissociation constant Kd from ribosome for Josamycin is 5.5 nM.
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyheptadec-4-en-2-yl]propanamide
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadec-4-en-2-yl]acetamide
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]hexanamide
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytridec-4-en-2-yl]heptanamide
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]dodecanamide
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyundec-4-en-2-yl]nonanamide
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]decanamide
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]octanamide
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynon-4-en-2-yl]undecanamide
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxypentadec-4-en-2-yl]pentanamide
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadec-4-en-2-yl]butanamide
(2s,3s,4r)-6-{[(2r,3s,4r,5r)-4-(dimethylamino)-5-hydroxy-6-{[(10z,12e)-14-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-4-(propanoyloxy)-1-oxacyclohexadeca-10,12-dien-6-yl]oxy}-2-methyloxan-3-yl]oxy}-4-hydroxy-2,4-dimethyloxan-3-yl butanoate
(3s,6s,12s,21r,24s,27s)-3-benzyl-21,24-bis[(2s)-butan-2-yl]-5,14,23,26-tetrahydroxy-12-[(4-hydroxyphenyl)methyl]-1,4,10,13,19,22,25-heptaazatetracyclo[25.3.0.0⁶,¹⁰.0¹⁵,¹⁹]triaconta-4,13,22,25-tetraene-2,11,20-trione
2,7,9,10,13-pentakis(acetyloxy)-4-[(acetyloxy)methyl]-8,12,15,15-tetramethylbicyclo[9.3.1]pentadeca-3,8,11-trien-5-yl 3-(dimethylamino)-2-hydroxy-3-phenylpropanoate
21-benzyl-5,14,23,26-tetrahydroxy-3-[(4-hydroxyphenyl)methyl]-12-(2-methylpropyl)-24-(sec-butyl)-1,4,10,13,19,22,25-heptaazatetracyclo[25.3.0.0⁶,¹⁰.0¹⁵,¹⁹]triaconta-4,13,22,25-tetraene-2,11,20-trione
(2's,3'r)-5-(n,n-dimethyl-3'-phenylisoseryl)-taxachitriene a
{"Ingredient_id": "HBIN006681","Ingredient_name": "(2's,3'r)-5-(n,n-dimethyl-3'-phenylisoseryl)-taxachitriene a","Alias": "NA","Ingredient_formula": "C43H57NO15","Ingredient_Smile": "CC1=C2C(C(=C(C(CC(C(=CC(C(C2(C)C)CC1OC(=O)C)OC(=O)C)COC(=O)C)OC(=O)C(C(C3=CC=CC=C3)N(C)C)O)OC(=O)C)C)OC(=O)C)OC(=O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "6394","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}