NCBI Taxonomy: 1227621

Artemisia douglasiana (ncbi_taxid: 1227621)

found 333 associated metabolites at species taxonomy rank level.

Ancestor: Artemisia

Child Taxonomies: none taxonomy data.

Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0422568)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Camphor

Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (.+/-.)-

C10H16O (152.12010859999998)


Camphor appears as a colorless or white colored crystalline powder with a strong mothball-like odor. About the same density as water. Emits flammable vapors above 150 °F. Used to make moth proofings, pharmaceuticals, and flavorings. Camphor is a cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. It has a role as a plant metabolite. It is a bornane monoterpenoid and a cyclic monoterpene ketone. Camphor is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. A cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.986 Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Costunolide

Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.14632200000003)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. Constituent of costus root (Saussurea lappa). Costunolide is found in tarragon, sweet bay, and herbs and spices. Costunolide is found in herbs and spices. Costunolide is a constituent of costus root (Saussurea lappa) D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents INTERNAL_ID 2266; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2266 D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

(-)-3-Isothujone

Bicyclo(3.1.0)hexan-3-one, 4-methyl-1-(1-methylethyl)-, (1-alpha,4-alpha,5-alpha)-(+-)-

C10H16O (152.12010859999998)


(-)-3-Isothujone is found in alcoholic beverages. Ingredient of absinthe. Presence in food and beverages regulated by legislation.Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia (-)-alpha-thujone is the (1S,4R,5R)-stereoisomer of alpha-thujone. It is an enantiomer of a (+)-alpha-thujone. alpha-Thujone is a natural product found in Xylopia sericea, Rhododendron mucronulatum, and other organisms with data available. See also: Artemisia absinthium whole (part of). A thujane monoterpenoid that is thujane substituted by an oxo group at position 3. Ingredient of absinthe. Presence in food and beverages regulated by legislation α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Epi-alpha-amyrin

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ... Carissol is found in beverages. Carissol is a constituent of Carissa carandas (karanda). Constituent of Carissa carandas (karanda). Carissol is found in beverages and fruits.

   

p-Menth-1-en-4-ol

Terpinen 4-ol, primary pharmaceutical reference standard

C10H18O (154.1357578)


p-Menth-1-en-4-ol, also known as terpinen-4-ol, 1-para-menthen-4-ol or p-Menth-1-en-4-ol or 4-carvomenthenol, is an isomer of terpineol. It belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. ±-Terpinene-4-ol is a hydrophobic, largely neutral molecule that is essentially insoluble in water. It has a peppery, spicy, musty, citrus odor and a cooling woody or spicy taste. ±-Terpinene-4-ol is widely used as a flavoring agent and as a masking agent in cosmetics. ±-Terpinene-4-ol is a natural product that can be found in a number of plants, such as allspice, anise, apple, basil, cardamom, cinnamon and Melaleuca alternifolia (also called tea tree) and is the main bioactive component of tea tree oil (PMID 22083482 ). ±-Terpinene-4-ol is also one of the monoterpenes found in cannabis plants (PMID:6991645 ). Terpinen-4-ol is a potent bactericidal agent that also possess antifungal properties. In particular, it has shown in vitro activity against Staphylococcus aureus and C. albicans (PMID:27275783 ). It has also been shown that combining this natural substance and conventional drugs may help treat resistant yeast and bacterial infections. Several studies have suggested that terpinen-4-ol induces antitumor effects by selectively causing necrotic cell death and cell-cycle arrest in melanoma cell lines, or by triggering caspase-dependent apoptosis in human melanoma cells (PMID:27275783 ). 4-terpineol is a terpineol that is 1-menthene carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, an antibacterial agent, an antioxidant, an anti-inflammatory agent, an antiparasitic agent, an antineoplastic agent, an apoptosis inducer and a volatile oil component. It is a terpineol and a tertiary alcohol. Terpinen-4-ol is under investigation in clinical trial NCT01647217 (Demodex Blepharitis Treatment Study). 4-Carvomenthenol is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. Terpinen-4-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Lavender Oil (part of); Juniper Berry Oil (part of); Peumus boldus leaf (part of). Flavouring ingredient. p-Menth-1-en-4-ol is found in many foods, some of which are star anise, spearmint, sweet basil, and black elderberry. A terpineol that is 1-menthene carrying a hydroxy substituent at position 4. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].

   

(+)-Camphor

(+)-Camphor;(+)-bornan-2-one;(+)-camphor;(1R)-(+)-camphor;(R)-(+)-camphor;(R)-camphor

C10H16O (152.12010859999998)


Camphor, also known as (+)-camphor or (+)-bornan-2-one, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, camphor is primarily located in the membrane (predicted from logP). Camphor is a waxy, flammable, white or transparent solid with a strong aroma. It is a terpenoid with the chemical formula C10H16O. It is found in many plants, such as in the wood of the camphor laurel (Cinnamomum camphora), a large evergreen tree found in Asia (particularly in Sumatra and Borneo islands, Indonesia) and also of the unrelated Kapur tree, a tall timber tree from the same region. It also occurs in some other related trees in the laurel family, notably Ocotea usambarensis and in the oil in rosemary leaves (Rosmarinus officinalis). The mint family contains 10 to 20\\\\\\\\% camphor, while camphorweed (Heterotheca) only contains some 5\\\\\\\\%. Camphor can also be synthetically produced from oil of turpentine. It is used for its scent, as an ingredient in cooking (mainly in India), as an embalming fluid, for medicinal purposes, and in religious ceremonies. A major source of camphor in Asia is camphor basil (the parent of African blue basil) (Wikipedia). (R)-camphor is the (R)- enantiomer of camphor. It is an enantiomer of a (S)-camphor. Camphor is a bicyclic monoterpene ketone found widely in plants, especially Cinnamomum camphora. It is used topically as a skin antipruritic and as an anti-infective agent. When ingested, camphor has a rapid onset of toxic effects, and camphorated oil is the product most often responsible for its toxicity. The FDA ruled that camphorated oil could not be marketed in the United States and that no product could contain a concentration higher than 11\\\\\\\\%. It appears in the list of drug products withdrawn or removed from the market for safety or effectiveness. However, camphor can be found in several nonprescription medications at lower concentrations. D-Camphor is a natural product found in Chromolaena odorata, Curcuma amada, and other organisms with data available. See also: Coriander Oil (part of). C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C - Cardiovascular system > C01 - Cardiac therapy The (R)- enantiomer of camphor. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Scutellarein

6-hydroxyapigenin

C15H10O6 (286.047736)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Camphene

3,3-Dimethyl-2-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1251936)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .

   

gamma-Humulene

(1E,6Z)-1,8,8-trimethyl-5-methylidenecycloundeca-1,6-diene (1E,6Z)-humula-1(11),4(13),5-triene

C15H24 (204.18779039999998)


   

Hexanal

N-Caproic aldehyde

C6H12O (100.0888102)


Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.18779039999998)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Axillarin

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0688644)


   

Myrtenal

6,6-Dimethyl-bicyclo[3,1,1]hept-2-ene-2-carboxaldehyde

C10H14O (150.1044594)


Occurs in orange, lemon, spearmint, pepper, thyme, juniper, calamus, ginger, myrtle, lemon balm, calabash, nutmeg, parsley seed and other plant oils. Myrtenal is found in many foods, some of which are peppermint, fruits, wild celery, and sweet bay. Myrtenal is found in cardamom. Myrtenal occurs in orange, lemon, spearmint, pepper, thyme, juniper, calamus, ginger, myrtle, lemon balm, calabash, nutmeg, parsley seed and other plant oils.

   

Germacrene D

(1E,6E,8S)-1-methyl-8-(1-methylethyl)-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.

   

(+)-3-Thujone

[1S-(1alpha,4beta,5alpha)]-4-Methyl-1-(1-methylethyl)bicyclo[3.1.0]hexan-3-one

C10H16O (152.12010859999998)


Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (+)-3-Thujone is found in many foods, some of which are peppermint, common sage, winter savory, and ginger. (+)-3-Thujone is found in common sage. Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia

   

Corymboside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one

C26H28O14 (564.1478988)


Corymboside is found in cereals and cereal products. Corymboside is isolated from Triticum aestivum (wheat) (as acyl derivatives) Isolated from Triticum aestivum (wheat) (as acyl derivs.). Corymboside is found in wheat and cereals and cereal products.

   

(-)-Borneol

1,7,7-Trimethyl-(1R,2S,4R)-rel-bicyclo[2.2.1]heptan-2-ol

C10H18O (154.1357578)


(-)-Borneol is found in common thyme and in turmeric. (-)-Borneol is a constituent of Blumea balsamifera (sambong). Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents Constituent of Blumea balsamifera (sambong). (-)-Borneol is found in many foods, some of which are tea, coriander, common thyme, and cornmint. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

(S)-p-Menth-1-en-4-ol

(1S)-4-methyl-1-(propan-2-yl)cyclohex-3-en-1-ol

C10H18O (154.1357578)


(S)-p-Menth-1-en-4-ol occurs in many essential oils, e.g. lavende Occurs in many essential oils, e.g. lavender Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].

   

Vulgarone A

2,6,6,9-tetramethyltricyclo[5.4.0.0²,¹⁰]undec-8-en-11-one

C15H22O (218.1670562)


Vulgarone A is found in herbs and spices. Vulgarone A is a constituent of Chrysanthemum vulgare (tansy). Constituent of Chrysanthemum vulgare (tansy). Vulgarone A is found in herbs and spices.

   

Vulgarone B

2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

C15H22O (218.1670562)


Vulgarone B is found in herbs and spices. Vulgarone B is a constituent of essential oil of Chrysanthemum vulgare (tansy). Constituent of essential oil of Chrysanthemum vulgare (tansy). Vulgarone B is found in herbs and spices.

   

D-Camphor

1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one

C10H16O (152.12010859999998)


(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Artemisia ketone

3,3,6-trimethylhepta-1,5-dien-4-one

C10H16O (152.12010859999998)


Artemisia ketone is a member of the class of compounds known as enones. Enones are compounds containing the enone functional group, with the structure RC(=O)CR. Artemisia ketone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Artemisia ketone is a berry, green, and herbal tasting compound found in sunflower and tarragon, which makes artemisia ketone a potential biomarker for the consumption of these food products.

   

3,3,6-trimethyl-1,5-heptadien-4-ol

3,3,6-trimethyl-1,5-heptadien-4-ol

C10H18O (154.1357578)


Flavouring compound [Flavornet]

   

Scutellarein

(2S)-2,3-dihydro-5,6,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.047736)


Scutellarein is flavone substituted with hydroxy groups at C-4, -5, -6 and -7. It has a role as a metabolite. It is functionally related to an apigenin. It is a conjugate acid of a scutellarein(1-). Scutellarein is a natural product found in Scoparia dulcis, Artemisia douglasiana, and other organisms with data available. Flavone substituted with hydroxy groups at C-4, -5, -6 and -7. Scutellarein, also known as 6-hydroxyapigenin or 4,5,6,7-tetrahydroxyflavanone, is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, scutellarein is considered to be a flavonoid lipid molecule. Scutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Scutellarein can be synthesized from apigenin. Scutellarein is also a parent compound for other transformation products, including but not limited to, scutellarin, 4,6-dihydroxy-5,7-dimethoxyflavone, and 6-hydroxy-4,5,7-trimethoxyflavone. Scutellarein is a bitter tasting compound found in mexican oregano and sweet orange, which makes scutellarein a potential biomarker for the consumption of these food products. Scutellarein is a flavone that can be found in Scutellaria lateriflora and other members of the genus Scutellaria, as well as the fern Asplenium belangeri . Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Arglanin

[3aS-(3aalpha,5abeta,9alpha,9aalpha,9bbeta)]-3a,5,5a,9,9a,9b-Hexahydro-9-hydroxy-5a,9-dimethyl-3-methylenenaphtho[1,2-b]furan-2,6(3H,4H)-dione

C15H18O4 (262.1205028)


   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

corymboside

6-alpha-L-Arabinopyranosyl-8-beta-D-galactopyranosyl-5,7-dihydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C26H28O14 (564.1478988)


   

Axillarin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-

C17H14O8 (346.0688644)


A dimethoxyflavone that is the 3,6-dimethyl ether derivative of quercetagetin. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one, also known as 3,4,5,7-tetrahydroxy-3,6-dimethoxyflavone or 3,6-dimethoxyquercetagetin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one can be found in german camomile, which makes 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one a potential biomarker for the consumption of this food product.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Thujone

Bicyclo[3.1.0]hexan-3-one,4-methyl-1-(1-methylethyl)-

C10H16O (152.12010859999998)


α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

3,3,6-Trimethylhepta-1,5-dien-4-ol

3,3,6-Trimethylhepta-1,5-dien-4-ol

C10H18O (154.1357578)


   

Germacrene D

1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-, [s-(E,E)]-

C15H24 (204.18779039999998)


(-)-germacrene D is a germacrene D. It is an enantiomer of a (+)-germacrene D. (-)-Germacrene D is a natural product found in Teucrium montanum, Stachys obliqua, and other organisms with data available. See also: Clary Sage Oil (part of).

   

2,10-dihydroxy-2,6,10-trimethyldodeca-3,6,11-trien-5-one

2,10-dihydroxy-2,6,10-trimethyldodeca-3,6,11-trien-5-one

C15H24O3 (252.1725354)


   

Costunolide

NCGC00381718-02_C15H20O2_Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.14632200000003)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics A germacranolide with anthelminthic, antiparasitic and antiviral activities. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

myrtenal

BICYCLO(3.1.1)HEPT-2-ENE-2-CARBOXALDEHYDE, 6,6-DIMETHYL-, (1R,5S)-REL-

C10H14O (150.1044594)


(-)-Myrtenal is a natural product found in Cyperus articulatus, Forsythia viridissima, and other organisms with data available. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2].

   

Scopoletin

Scopoletin

C10H8O4 (192.0422568)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Caproaldehyde

Caproic aldehyde

C6H12O (100.0888102)


A saturated fatty aldehyde that is hexane in which one of the terminal methyl group has been mono-oxygenated to form the corresponding aldehyde. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.18779039999998)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

beta-thujone

(+)-3-thujone;(+)-isothujone;(1S,4S,5R)-(+)-3-thujanone;(1S,4S,5R)-1-isopropyl-4-methylbicyclo[3.1.0]hexan-3-one;[1S-(1alpha,4beta,5alpha)]-4-methyl-1-(1-methylethyl)bicyclo[3.1.0]hexan-3-one

C10H16O (152.12010859999998)


   

borneol

1,7,7-Trimethyl-(1R,2S,4R)-rel-bicyclo[2.2.1]heptan-2-ol

C10H18O (154.1357578)


Flavouring agent. (±)-Borneol is found in many foods, some of which are pot marjoram, pepper (spice), saffron, and german camomile. Constituent of Curcuma aromatica and other plants. (+)-Borneol is found in nutmeg, herbs and spices, and ginger. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

FAL 6:0

Caproic aldehyde

C6H12O (100.0888102)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Scopoletol

2H-1-Benzopyran-2-one, 7-hydroxy-6-methoxy- (9CI)

C10H8O4 (192.0422568)


Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

viminalol

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ...

   

LS-2339

4-01-00-03296 (Beilstein Handbook Reference)

C6H12O (100.0888102)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Flavonoid

4H-1-Benzopyran-4-one, 5,6,7-trihydroxy-2-(4-hydroxyphenyl)-

C15H10O6 (286.047736)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

(+)-Camphene

(+)-Camphene

C10H16 (136.1251936)


A monoterpene with a bicyclic skeleton that is bicyclo[2.2.1]heptane substituted by geminal methyl groups at position 2 and a methylidene group at position 3. It is a widespread natural product found in many essential oils.

   

(1s,2s,5s,6r,7s,10r,12r,14s)-5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 2-methylpropanoate

(1s,2s,5s,6r,7s,10r,12r,14s)-5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 2-methylpropanoate

C19H26O5 (334.1780146)


   

2-hydroperoxy-10-hydroxy-2,6,10-trimethyldodeca-3,6,11-trien-5-one

2-hydroperoxy-10-hydroxy-2,6,10-trimethyldodeca-3,6,11-trien-5-one

C15H24O4 (268.1674504)


   

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl (2e)-2-methylbut-2-enoate

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl (2e)-2-methylbut-2-enoate

C20H26O5 (346.17801460000004)


   

(3as,11ar)-6,10-dimethyl-3-methylidene-3ah,4h,5h,8h,11h,11ah-cyclodeca[b]furan-2-one

(3as,11ar)-6,10-dimethyl-3-methylidene-3ah,4h,5h,8h,11h,11ah-cyclodeca[b]furan-2-one

C15H20O2 (232.14632200000003)


   

4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxan]-5'-yl acetate

4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxan]-5'-yl acetate

C16H16O5 (288.0997686)


   

6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

C20H28O5 (348.1936638)


   

(1s,2s,3s,7r,8s)-3-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

(1s,2s,3s,7r,8s)-3-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

C15H22O2 (234.1619712)


   

11-(hydroxymethyl)-2,6,6-trimethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

11-(hydroxymethyl)-2,6,6-trimethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

C15H22O2 (234.1619712)


   

(2r)-5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl (2r)-2-methylbutanoate

(2r)-5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl (2r)-2-methylbutanoate

C15H26O2 (238.1932696)


   

(3s,3ar,4s,6r,6ar,9ar,9br)-6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 3-methylbutanoate

(3s,3ar,4s,6r,6ar,9ar,9br)-6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 3-methylbutanoate

C20H30O5 (350.209313)


   

(1r,2s,6r,7s,10s,12r,14s)-10-hydroxy-14-methyl-5,9-dimethylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl acetate

(1r,2s,6r,7s,10s,12r,14s)-10-hydroxy-14-methyl-5,9-dimethylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl acetate

C17H20O6 (320.125982)


   

(3s,9as,9bs)-3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3s,9as,9bs)-3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O3 (246.1255878)


   

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 2-methylpropanoate

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 2-methylpropanoate

C19H26O5 (334.1780146)


   

(3s,3as,6r,6ar,9ar,9bs)-6-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-2-one

(3s,3as,6r,6ar,9ar,9bs)-6-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-2-one

C15H22O3 (250.1568862)


   

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl propanoate

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl propanoate

C18H24O5 (320.1623654)


   

(1r,5z)-7,7-dimethyl-4,11-dimethylidenecycloundec-5-ene-1-peroxol

(1r,5z)-7,7-dimethyl-4,11-dimethylidenecycloundec-5-ene-1-peroxol

C15H24O2 (236.1776204)


   

(1r,2s,4z,5s)-4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxane]

(1r,2s,4z,5s)-4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxane]

C14H14O3 (230.0942894)


   

(3as,5ar,6s,9as,9bs)-6-hydroxy-5a,9-dimethyl-3-methylidene-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

(3as,5ar,6s,9as,9bs)-6-hydroxy-5a,9-dimethyl-3-methylidene-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H20O3 (248.14123700000002)


   

(1r,2s,7r,8s)-11-(hydroxymethyl)-2,6,6-trimethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

(1r,2s,7r,8s)-11-(hydroxymethyl)-2,6,6-trimethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

C15H22O2 (234.1619712)


   

(3as,5ar,9s,9as,9bs)-9-hydroxy-5a,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-naphtho[1,2-b]furan-2,6-dione

(3as,5ar,9s,9as,9bs)-9-hydroxy-5a,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-naphtho[1,2-b]furan-2,6-dione

C15H18O4 (262.1205028)


   

6,10-dimethyl-3-methylidene-3ah,4h,5h,8h,11h,11ah-cyclodeca[b]furan-2-one

6,10-dimethyl-3-methylidene-3ah,4h,5h,8h,11h,11ah-cyclodeca[b]furan-2-one

C15H20O2 (232.14632200000003)


   

(3as,9as,9bs)-6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3as,9as,9bs)-6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H16O3 (244.1099386)


   

2-hydroxy-2,11-dimethyl-6-methylidene-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl propanoate

2-hydroxy-2,11-dimethyl-6-methylidene-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl propanoate

C18H22O7 (350.1365462)


   

(1r,2r,7s,10r)-7-hydroxy-2,6,6,9-tetramethyl-11-oxatricyclo[5.5.0.0²,¹⁰]dodec-8-en-12-one

(1r,2r,7s,10r)-7-hydroxy-2,6,6,9-tetramethyl-11-oxatricyclo[5.5.0.0²,¹⁰]dodec-8-en-12-one

C15H22O3 (250.1568862)


   

(1s,2s,3r,7r,8s)-3-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

(1s,2s,3r,7r,8s)-3-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

C15H22O2 (234.1619712)


   

(1s,2s,5s,7r,8s)-5-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

(1s,2s,5s,7r,8s)-5-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

C15H22O2 (234.1619712)


   

(1s,2s,4z,5r,5's)-4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxan]-5'-yl 3-methylbutanoate

(1s,2s,4z,5r,5's)-4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxan]-5'-yl 3-methylbutanoate

C19H22O5 (330.1467162)


   

6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H16O3 (244.1099386)


   

9-hydroxy-5a,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-naphtho[1,2-b]furan-2,6-dione

9-hydroxy-5a,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-naphtho[1,2-b]furan-2,6-dione

C15H18O4 (262.1205028)


   

2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 2-methylpropanoate

2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 2-methylpropanoate

C19H26O7 (366.16784459999997)


   

(1r,3s,6s,10s,11s)-3,12-dimethyl-7-methylidene-2,9-dioxatetracyclo[9.3.0.0¹,³.0⁶,¹⁰]tetradec-12-ene-8,14-dione

(1r,3s,6s,10s,11s)-3,12-dimethyl-7-methylidene-2,9-dioxatetracyclo[9.3.0.0¹,³.0⁶,¹⁰]tetradec-12-ene-8,14-dione

C15H16O4 (260.1048536)


   

(2s)-2-[(2r,5s)-5-ethenyl-5-methyloxolan-2-yl]-2,6,6-trimethylpyran-3-one

(2s)-2-[(2r,5s)-5-ethenyl-5-methyloxolan-2-yl]-2,6,6-trimethylpyran-3-one

C15H22O3 (250.1568862)


   

(3e,6e,10s)-2,10-dihydroxy-2,6,10-trimethyldodeca-3,6,11-trien-5-one

(3e,6e,10s)-2,10-dihydroxy-2,6,10-trimethyldodeca-3,6,11-trien-5-one

C15H24O3 (252.1725354)


   

(3s,3ar,4s,9as,9br)-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl acetate

(3s,3ar,4s,9as,9br)-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl acetate

C17H22O4 (290.1518012)


   

(1s,2s,4z,5r,5's)-4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxan]-5'-yl acetate

(1s,2s,4z,5r,5's)-4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxan]-5'-yl acetate

C16H16O5 (288.0997686)


   

(1s,2s,5s,6r,7s,10r,12r,14s)-5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl (2e)-2-methylbut-2-enoate

(1s,2s,5s,6r,7s,10r,12r,14s)-5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl (2e)-2-methylbut-2-enoate

C20H26O5 (346.17801460000004)


   

2-[(2r,4ar,8ar)-8a-hydroperoxy-4a-methyl-8-methylidene-hexahydro-1h-naphthalen-2-yl]propan-2-ol

2-[(2r,4ar,8ar)-8a-hydroperoxy-4a-methyl-8-methylidene-hexahydro-1h-naphthalen-2-yl]propan-2-ol

C15H26O3 (254.1881846)


   

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl propanoate

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl propanoate

C18H24O5 (320.1623654)


   

(3e,6e,10s)-2-hydroperoxy-10-hydroxy-2,6,10-trimethyldodeca-3,6,11-trien-5-one

(3e,6e,10s)-2-hydroperoxy-10-hydroxy-2,6,10-trimethyldodeca-3,6,11-trien-5-one

C15H24O4 (268.1674504)


   

(1s,2s,5r,7r,8s)-5-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

(1s,2s,5r,7r,8s)-5-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

C15H22O2 (234.1619712)


   

(1s,2r,4s,5r,6s,9s,10s,11r)-2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl (2e)-2-methylbut-2-enoate

(1s,2r,4s,5r,6s,9s,10s,11r)-2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl (2e)-2-methylbut-2-enoate

C20H26O7 (378.1678446)


   

5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 3-methylbutanoate

5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 3-methylbutanoate

C20H28O5 (348.1936638)


   

(3s,3ar,4s,6r,6ar,9ar,9br)-6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2r)-2-methylbutanoate

(3s,3ar,4s,6r,6ar,9ar,9br)-6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2r)-2-methylbutanoate

C20H30O5 (350.209313)


   

3-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

3-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

C15H22O2 (234.1619712)


   

5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 2-methylpropanoate

5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 2-methylpropanoate

C19H26O5 (334.1780146)


   

5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl 2-methylbutanoate

5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl 2-methylbutanoate

C15H26O2 (238.1932696)


   

6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 3-methylbutanoate

6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 3-methylbutanoate

C20H30O5 (350.209313)


   

2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 3-methylbutanoate

2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 3-methylbutanoate

C20H28O7 (380.1834938)


   

(1s,2s,5s,6r,7s,10r,12r,14s)-5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 3-methylbutanoate

(1s,2s,5s,6r,7s,10r,12r,14s)-5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 3-methylbutanoate

C20H28O5 (348.1936638)


   

(3as,9s,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

(3as,9s,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

C17H22O4 (290.1518012)


   

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl acetate

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl acetate

C17H22O5 (306.1467162)


   

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 2-methylpropanoate

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 2-methylpropanoate

C19H26O5 (334.1780146)


   

5-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

5-hydroxy-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

C15H22O2 (234.1619712)


   

(1s,2s,6s,12r,14s)-9,14-dimethyl-5-methylidene-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-4-one

(1s,2s,6s,12r,14s)-9,14-dimethyl-5-methylidene-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-4-one

C15H18O3 (246.1255878)


   

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 3-methylbutanoate

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 3-methylbutanoate

C20H28O5 (348.1936638)


   

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 2-methylbut-2-enoate

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 2-methylbut-2-enoate

C20H26O5 (346.17801460000004)


   

dec-2-en-4,6,8-triynal

dec-2-en-4,6,8-triynal

C10H6O (142.0418626)


   

3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl acetate

3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl acetate

C17H22O4 (290.1518012)


   

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl (2r)-2-methylbutanoate

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl (2r)-2-methylbutanoate

C20H28O5 (348.1936638)


   

2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 2-methylbutanoate

2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 2-methylbutanoate

C20H28O7 (380.1834938)


   

2-(8a-hydroperoxy-4a-methyl-8-methylidene-hexahydro-1h-naphthalen-2-yl)propan-2-ol

2-(8a-hydroperoxy-4a-methyl-8-methylidene-hexahydro-1h-naphthalen-2-yl)propan-2-ol

C15H26O3 (254.1881846)


   

(1s,2r,4s,5r,9s,10s,11r)-2-hydroxy-2,11-dimethyl-6-methylidene-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl propanoate

(1s,2r,4s,5r,9s,10s,11r)-2-hydroxy-2,11-dimethyl-6-methylidene-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl propanoate

C18H22O7 (350.1365462)


   

(1s,2r,4s,5r,6s,9s,10s,11r)-2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl (2r)-2-methylbutanoate

(1s,2r,4s,5r,6s,9s,10s,11r)-2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl (2r)-2-methylbutanoate

C20H28O7 (380.1834938)


   

7,7-dimethyl-4,11-dimethylidenecycloundec-5-ene-1-peroxol

7,7-dimethyl-4,11-dimethylidenecycloundec-5-ene-1-peroxol

C15H24O2 (236.1776204)


   

(1s,2r,4s,5r,6s,9s,10s,11r)-2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 2-methylpropanoate

(1s,2r,4s,5r,6s,9s,10s,11r)-2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 2-methylpropanoate

C19H26O7 (366.16784459999997)


   

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 3-methylbutanoate

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 3-methylbutanoate

C20H28O5 (348.1936638)


   

(1s,2s,7r,8s)-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

(1s,2s,7r,8s)-2,6,6,11-tetramethyltricyclo[5.4.0.0²,⁸]undec-10-en-9-one

C15H22O (218.1670562)


   

10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-5-one

10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-5-one

C15H24O2 (236.1776204)


   

4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxan]-5'-yl 3-methylbutanoate

4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxan]-5'-yl 3-methylbutanoate

C19H22O5 (330.1467162)


   

2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl propanoate

2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl propanoate

C18H24O7 (352.1521954)


   

5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 2-methylbutanoate

5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 2-methylbutanoate

C20H28O5 (348.1936638)


   

(3s,3ar,4s,6r,6ar,9ar,9br)-6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3s,3ar,4s,6r,6ar,9ar,9br)-6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

C20H28O5 (348.1936638)


   

4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxane]

4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxane]

C14H14O3 (230.0942894)


   

(3s,3ar,4s,6r,6ar,9ar,9br)-6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

(3s,3ar,4s,6r,6ar,9ar,9br)-6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

C19H28O5 (336.1936638)


   

2-(5-ethenyl-5-methyloxolan-2-yl)-2,6,6-trimethylpyran-3-one

2-(5-ethenyl-5-methyloxolan-2-yl)-2,6,6-trimethylpyran-3-one

C15H22O3 (250.1568862)


   

7-hydroxy-2,6,6,9-tetramethyl-11-oxatricyclo[5.5.0.0²,¹⁰]dodec-8-en-12-one

7-hydroxy-2,6,6,9-tetramethyl-11-oxatricyclo[5.5.0.0²,¹⁰]dodec-8-en-12-one

C15H22O3 (250.1568862)


   

(1s,6s,12r,14s)-9,14-dimethyl-5-methylidene-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-4-one

(1s,6s,12r,14s)-9,14-dimethyl-5-methylidene-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-4-one

C15H18O3 (246.1255878)


   

6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbutanoate

6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbutanoate

C20H30O5 (350.209313)


   

(3e)-2,5,5-trimethylhepta-3,6-dien-2-ol

(3e)-2,5,5-trimethylhepta-3,6-dien-2-ol

C10H18O (154.1357578)


   

8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


   

6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

6-hydroxy-3,6,9-trimethyl-2-oxo-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

C19H28O5 (336.1936638)


   

6-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-2-one

6-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-2-one

C15H22O3 (250.1568862)


   

(1s,2r,4s,5r,6s,9s,10s,11r)-2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl propanoate

(1s,2r,4s,5r,6s,9s,10s,11r)-2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl propanoate

C18H24O7 (352.1521954)


   

(1r,2s,7s,10s)-2,6,6,9-tetramethyltricyclo[5.4.0.0²,¹⁰]undec-8-en-11-one

(1r,2s,7s,10s)-2,6,6,9-tetramethyltricyclo[5.4.0.0²,¹⁰]undec-8-en-11-one

C15H22O (218.1670562)


   

(1s,2r,4s,5r,6s,9s,10s,11r)-2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 3-methylbutanoate

(1s,2r,4s,5r,6s,9s,10s,11r)-2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 3-methylbutanoate

C20H28O7 (380.1834938)


   

(2e)-dec-2-en-4,6,8-triynal

(2e)-dec-2-en-4,6,8-triynal

C10H6O (142.0418626)


   

(6e,10s)-10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-5-one

(6e,10s)-10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-5-one

C15H24O2 (236.1776204)


   

(1s,2s,5s,6r,7s,10r,12r,14s)-5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl (2r)-2-methylbutanoate

(1s,2s,5s,6r,7s,10r,12r,14s)-5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl (2r)-2-methylbutanoate

C20H28O5 (348.1936638)


   

2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 2-methylbut-2-enoate

2-hydroxy-2,6,11-trimethyl-7-oxo-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-4-yl 2-methylbut-2-enoate

C20H26O7 (378.1678446)


   

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl acetate

(1s,2s,5s,6r,7s,12r,14s)-5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl acetate

C17H22O5 (306.1467162)


   

5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 2-methylbut-2-enoate

5,14-dimethyl-9-methylidene-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-7-yl 2-methylbut-2-enoate

C20H26O5 (346.17801460000004)


   

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 2-methylbutanoate

5,9,14-trimethyl-4-oxo-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradec-9-en-7-yl 2-methylbutanoate

C20H28O5 (348.1936638)