Gene Association: TAGLN

UniProt Search: TAGLN (PROTEIN_CODING)
Function Description: transgelin

found 19 associated metabolites with current gene based on the text mining result from the pubmed database.

S-Methylcysteine

S-Methyl-L-cysteine, substrate for methionine sulfoxide reductase A

C4H9NO2S (135.0354)


S-methylcysteine is a cysteine derivative that is L-cysteine in which the hydrogen attached to the sulfur is replaced by a methyl group. It has a role as a human urinary metabolite and a plant metabolite. It is a tautomer of a S-methylcysteine zwitterion. S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

Neriifolin

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3-[(2R,3S,4R,5S,6S)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C30H46O8 (534.3193)


Neriifolin is a cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. It has a role as a cardiotonic drug, a toxin and a neuroprotective agent. It is functionally related to a digitoxigenin. Neriifolin is a natural product found in Cerbera manghas, Cerbera odollam, and other organisms with data available. A cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides [Raw Data] CB071_Neriifolin_pos_40eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_10eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_20eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_50eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_30eV_CB000031.txt Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2. Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2.

   

12-Hydroxydodecanoic acid

ω-Hydroxydodecanoic acid

C12H24O3 (216.1725)


12-hydroxydodecanoic acid is the substrate of the human glutathione-dependent formaldehyde dehydrogenase (EC1.1.1.1). The enzyme that catalyzes the conversion of alcohols to aldehydes is a zinc-containing dimeric enzyme responsible for the oxidation of long-chain alcohols and omega-hydroxy fatty acids. (OMIM). The human glutathione-dependent formaldehyde dehydrogenase is unique among the structurally studied members of the alcohol dehydrogenase family in that it follows a random bi kinetic mechanism forming a binary complex, and a ternary complex with NAD+. (PMID 12196016). 12-hydroxydodecanoic acid is the substrate of the human glutathione-dependent formaldehyde dehydrogenase (EC1.1.1.1) . The enzyme that catalyzes the conversion of alcohols to aldehydes is a zinc-containing dimeric enzyme responsible for the oxidation of long-chain alcohols and omega-hydroxy fatty acids. (OMIM) 12-Hydroxydodecanoic acid is an endogenous metabolite.

   

Dihydrobiopterin

2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-1,4,7,8-tetrahydropteridin-4-one

C9H13N5O3 (239.1018)


Dihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia. Dihydrobiopterin (BH2) is an oxidation product of tetrahydrobiopterin. Tetrahydrobiopterin is a natural occurring cofactor of the aromatic amino acid hydroxylase and is involved in the synthesis of tyrosine and the neurotransmitters dopamine and serotonin. Tetrahydrobiopterin is also essential for nitric oxide synthase catalyzed oxidation of L-arginine to L-citrulline and nitric oxide. [HMDB] 7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

Monocrotaline

5,6-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione

C16H23NO6 (325.1525)


Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive disease Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive diseas CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2249 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 131 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 121 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 151 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 141 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 111 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 161 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 171 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 101 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].

   

4,4-Methylene di-o-toluidine

4,4`-Methylen-bis(2-methyl aniline)

C15H18N2 (226.147)


CONFIDENCE standard compound; INTERNAL_ID 322; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5346; ORIGINAL_PRECURSOR_SCAN_NO 5344 CONFIDENCE standard compound; INTERNAL_ID 322; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5297; ORIGINAL_PRECURSOR_SCAN_NO 5295 CONFIDENCE standard compound; INTERNAL_ID 322; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5346; ORIGINAL_PRECURSOR_SCAN_NO 5345 CONFIDENCE standard compound; INTERNAL_ID 322; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5344; ORIGINAL_PRECURSOR_SCAN_NO 5342 CONFIDENCE standard compound; INTERNAL_ID 322; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5314; ORIGINAL_PRECURSOR_SCAN_NO 5313 CONFIDENCE standard compound; INTERNAL_ID 322; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5349; ORIGINAL_PRECURSOR_SCAN_NO 5348 CONFIDENCE standard compound; INTERNAL_ID 4142

   

1,2-Dichloroethane

Ethylene dichloride, 38CL-labeled

C2H4Cl2 (97.969)


1,2-Dichloroethane is a solvent used in food processing.The chemical compound 1,2-dichloroethane, commonly known by its old name of ethylene dichloride (EDC), is a chlorinated hydrocarbon, mainly used to produce vinyl chloride monomer (VCM, chloroethene), the major precursor for PVC production. It is a colourless liquid with a chloroform-like odour. 1,2-Dichloroethane is also used generally as an intermediate for other organic chemical compounds, and as a solvent

   

nonactin

Upjohn 170t (high melting)

C40H64O12 (736.4398)


   

Jaspamide

jasplakinolide

C36H45BrN4O6 (708.2522)


A cyclodepsipeptide isolated from Jaspis splendens and has been shown to exhibit antineoplastic activity. It is an actin polymerization and stabilization inducer. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D000970 - Antineoplastic Agents D016573 - Agrochemicals

   

mycalolide b

mycalolide b

C52H74N4O17 (1026.5049)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

S-methylcysteine

S-methylcysteine, hydrochloride, (L-Cys)-isomer

C4H9NO2S (135.0354)


Methylcysteine is one of the identified number of bioactive substances in garlic that are water soluble (PMID 16484549). It has been suggested that the use of these organosulfur agents derived from garlic could protect partially oxidized and glycated LDL or plasma against further oxidative and glycative deterioration, which might benefit patients with diabetic-related vascular diseases (PMID 15161248). It may also exert some chemopreventive effects on chemical carcinogenesis. However, it should be borne in mind that may also demonstrate promotion potential, depending on the organ examined (PMID 9591199). Methylcystein is a biomarker for the consumption of dried and cooked beans. S-n-methylcysteine, also known as (2r)-2-amino-3-(methylsulfanyl)propanoic acid or 3-(methylthio)-L-alanine, is a member of the class of compounds known as L-cysteine-s-conjugates. L-cysteine-s-conjugates are compounds containing L-cysteine where the thio-group is conjugated. S-n-methylcysteine is soluble (in water) and a moderately acidic compound (based on its pKa). S-n-methylcysteine can be found in soft-necked garlic, which makes S-n-methylcysteine a potential biomarker for the consumption of this food product. S-n-methylcysteine can be found primarily in blood and urine. S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

S-N-Methylcysteine

S-methylcysteine, hydrochloride, (L-Cys)-isomer

C4H9NO2S (135.0354)


S-n-methylcysteine, also known as (2r)-2-amino-3-(methylsulfanyl)propanoic acid or 3-(methylthio)-L-alanine, is a member of the class of compounds known as L-cysteine-s-conjugates. L-cysteine-s-conjugates are compounds containing L-cysteine where the thio-group is conjugated. S-n-methylcysteine is soluble (in water) and a moderately acidic compound (based on its pKa). S-n-methylcysteine can be found in soft-necked garlic, which makes S-n-methylcysteine a potential biomarker for the consumption of this food product. S-n-methylcysteine can be found primarily in blood and urine. S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

Monocrotaline

2H-(1,6)DIOXACYCLOUNDECINO(2,3,4-GH)PYRROLIZINE-2,6(3H)-DIONE, 4,5,8,10,12,13,13A,13B-OCTAHYDRO-4,5-DIHYDROXY-3,4,5-TRIMETHYL-, (3R-(3R*,4R*,5R*,13AR*,13BR*))-

C16H23NO6 (325.1525)


Monocrotaline is a pyrrolizidine alkaloid. Monocrotaline is a natural product found in Crotalaria novae-hollandiae, Crotalaria recta, and other organisms with data available. A pyrrolizidine alkaloid and a toxic plant constituent that poisons livestock and humans through the ingestion of contaminated grains and other foods. The alkaloid causes pulmonary artery hypertension, right ventricular hypertrophy, and pathological changes in the pulmonary vasculature. Significant attenuation of the cardiopulmonary changes are noted after oral magnesium treatment. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.154 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.142 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.145 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].

   

dihydrobiopterin

7,8-Dihydro-L-biopterin

C9H13N5O3 (239.1018)


7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

12-Hydroxydodecanoic acid

12-Hydroxydodecanoic acid

C12H24O3 (216.1725)


12-Hydroxydodecanoic acid is an endogenous metabolite.

   

S-Methyl-L-cysteine

S-Methyl-L-cysteine

C4H9NO2S (135.0354)


S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

dichloroethane

Ethane, 1,1-dichloro-

C2H4Cl2 (97.969)


   

jasplakinolide

jasplakinolide

C36H45BrN4O6 (708.2522)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D000970 - Antineoplastic Agents D016573 - Agrochemicals

   

Mycalolide-B

Mycalolide-B

C52H74N4O17 (1026.5049)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins