Gene Association: OLIG2
UniProt Search:
OLIG2 (PROTEIN_CODING)
Function Description: oligodendrocyte transcription factor 2
found 43 associated metabolites with current gene based on the text mining result from the pubmed database.
Narirutin
Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). obtained from Camellia sinensis (tea). Narirutin is found in many foods, some of which are lemon, globe artichoke, grapefruit, and grapefruit/pummelo hybrid. Narirutin is found in globe artichoke. Narirutin is obtained from Camellia sinensis (tea Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].
25d20E
Ponasterone A is a 2beta-hydroxy steroid, a 3beta-hydroxy steroid, a 14alpha-hydroxy steroid, a 20-hydroxy steroid, a 22-hydroxy steroid, a 6-oxo steroid and a phytoecdysteroid. Ponasterone A is a natural product found in Zoanthus, Lomaridium contiguum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Ponasterone A (25-Deoxyecdysterone), an ecdysteroid, has strong affinity for the ecdysone receptor. Ponasterone A is a potent regulator of gene expression in cells and transgenic animals, enabling reporter genes to be turned on and off rapidly[1][2].
Prometryn
CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8564; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8550; ORIGINAL_PRECURSOR_SCAN_NO 8549 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8580; ORIGINAL_PRECURSOR_SCAN_NO 8577 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8544; ORIGINAL_PRECURSOR_SCAN_NO 8542 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8538 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8686; ORIGINAL_PRECURSOR_SCAN_NO 8681 CONFIDENCE standard compound; INTERNAL_ID 4037 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Terbutryn
CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8639; ORIGINAL_PRECURSOR_SCAN_NO 8638 CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8575; ORIGINAL_PRECURSOR_SCAN_NO 8573 CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8603; ORIGINAL_PRECURSOR_SCAN_NO 8600 CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8657; ORIGINAL_PRECURSOR_SCAN_NO 8652 CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8686; ORIGINAL_PRECURSOR_SCAN_NO 8681 CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8611; ORIGINAL_PRECURSOR_SCAN_NO 8609 CONFIDENCE standard compound; INTERNAL_ID 2863 CONFIDENCE standard compound; INTERNAL_ID 8794 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
N-acetylaspartate (NAA)
N-Acetyl-L-Aspartic acid (NAA) or N-Acetylaspartic acid, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-aspartic acid can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyl-L-aspartic acid is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-aspartic acid. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylaspartate can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free aspartic acid can also occur. In particular, N-Acetyl-L-aspartic acid can be synthesized in neurons from the amino acid aspartate and acetyl coenzyme A (acetyl CoA). Specifically, the enzyme known as aspartate N-acetyltransferase (EC 2.3.1.17) catalyzes the transfer of the acetyl group of acetyl CoA to the amino group of aspartate. N-Acetyl-L-aspartic acid is the second most concentrated molecule in the brain after the amino acid glutamate. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include (1) acting as a neuronal osmolyte that is involved in fluid balance in the brain, (2) serving as a source of acetate for lipid and myelin synthesis in oligodendrocytes (the glial cells that myelinate neuronal axons), (3) serving as a precursor for the synthesis of the important dipeptide neurotransmitter N-acetylaspartylglutamate (NAAG), and (4) playing a potential role in energy production from the amino acid glutamate in neuronal mitochondria. High neurotransmitter (i.e. N-acetylaspartic acid) levels can lead to abnormal neural signaling, delayed or arrested intellectual development, and difficulties with general motor skills. When present in sufficiently high levels, N-acetylaspartic acid can be a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of N-acetylaspartic acid are associated with Canavan disease. Because N-acetylaspartic acid functions as an organic acid and high levels of organic acids can lead to a condition known... N-Acetylaspartic acid is a derivative of aspartic acid. It is the second most concentrated molecule in the brain after the amino acid glutamate. It is synthesized in neurons from the amino acid aspartate and acetyl coenzyme A. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include: Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID A142 N-Acetyl-L-aspartic acid is a derivative of aspartic acid.
4-tert-Butylphenol
4-tert-Butylphenol, also known as butylphen or PTBP, belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. 4-tert-Butylphenol is a leather and oakmoss tasting compound. 4-tert-Butylphenol has been detected, but not quantified, in herbs and spices. 4-Tert-butylphenol is structurally similar to the melanin precursor tyrosine, and acts as a substrate for tyrosinase. 4-tert-Butylphenol is a potentially toxic compound. Tyrosinase oxidizes 4-tert-butylphenol to a quinone (4-tert-butylcyclohexa-3,5-diene-1,2-dione) which in turn rapidly reacts with glutathione (GSH). A depletion of the GSH defence system may allow the quinone to generate reactive oxygen species that damage melanocytes and induce apoptosis, leading to leukoderma/vitiligo.
Bisphenol F
4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1]. 4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1].
Gesfid
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Pendimethalin
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3116 CONFIDENCE standard compound; INTERNAL_ID 2549 CONFIDENCE standard compound; INTERNAL_ID 4059 CONFIDENCE standard compound; INTERNAL_ID 8435 D010575 - Pesticides > D006540 - Herbicides KEIO_ID P183; [MS2] KO009157 KEIO_ID P183; [MS3] KO009158 D016573 - Agrochemicals KEIO_ID P183
Clemastine
Clemastine is only found in individuals that have used or taken this drug. It is an ethanolamine-derivative, first generation histamine H1 antagonist used in hay fever, rhinitis, allergic skin conditions, and pruritus. It causes drowsiness. [PubChem]Clemastine is a selective histamine H1 antagonist and binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents
cannabigerol
A member of the class of resorcinols that is resorcinol which is substituted by a (2E)-3,7-dimethylocta-2,6-dien-1-yl group at position 2 and by a pentyl group at position 5. It is a natural product found in Cannabis sativa and Helichrysum species.
D-2-Hydroxyglutaric acid
In humans, D-2-hydroxyglutaric acid is formed by a hydroxyacid-oxoacid transhydrogenase whereas in bacteria it is formed by a 2-hydroxyglutarate synthase. D-2-Hydroxyglutaric acid is also formed via the normal activity of hydroxyacid-oxoacid transhydrogenase during conversion of 4-hydroxybutyrate to succinate semialdehyde. The compound can be converted to alpha-ketoglutaric acid through the action of a 2-hydroxyglutarate dehydrogenase (EC 1.1.99.2). In humans, there are two such enzymes (D2HGDH and L2HGDH). Both the D and the L stereoisomers of hydroxyglutaric acid are found in body fluids. D-2-Hydroxyglutaric acid is a biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (OMIM: 600721) and the genetic disorder glutaric aciduria II. D-2-Hydroxyglutaric aciduria (caused by loss of D2HGDH or gain of function of IDH) is rare, with symptoms including cancer, macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. An elevated urine level of D-2-hydroxyglutaric acid has been reported in patients with spondyloenchondrodysplasia (OMIM: 271550). D-2-Hydroxyglutaric acid can be converted to alpha-ketoglutaric acid through the action of 2-hydroxyglutarate dehydrogenase (D2HGDH). Additionally, the enzyme D-3-phosphoglycerate dehydrogenase (PHGDH) can catalyze the NADH-dependent reduction of alpha-ketoglutarate (AKG) to D-2-hydroxyglutarate (D-2HG). Nyhan et al. (1995) described 3 female patients, 2 of them sibs, who were found to have excess accumulation of D-2-hydroxyglutaric acid in the urine. The phenotype was quite variable, even among the sibs, but included mental retardation, macrocephaly with cerebral atrophy, hypotonia, seizures, and involuntary movements. One of the patients developed severe intermittent vomiting and was given a pyloromyotomy. The electroencephalogram demonstrated hypsarrhythmia. There was an increased concentration of protein in cerebrospinal fluid, an unusual finding in inborn errors of metabolism. D-2-Hydroxyglutaric acid can also be produced via gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). IDH is part of the TCA cycle and this compound is generated in high abundance when IDH is mutated. Since D-2-hydroxyglutaric acid is sufficiently similar in structure to 2-oxoglutarate (2OG), it is able to inhibit a range of 2OG-dependent dioxygenases, including histone lysine demethylases (KDMs) and members of the ten-eleven translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. This inhibitory effect leads to alterations in the hypoxia-inducible factor (HIF)-mediated hypoxic response and alterations in gene expression through global epigenetic remodeling. The net effect is that D-2-hydroxyglutaric acid causes a cascading effect that leads genetic perturbations and malignant transformation. Depending on the circumstances, D-2-hydroxyglutaric acid can act as an oncometabolite, a neurotoxin, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumour growth and survival. A neurotoxin is compound that is toxic to neurons or nerual tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As an oncometabolite, D-2-hydroxyglutaric acid is a competitive inhibitor of multiple alpha-ketoglutarate-dependent dioxygenases, including histone demethylases and the TET family of 5mC hydroxylases. As a result, high levels of 2-hydroxyglutarate lead to genome-wide histone and DNA methylation alterations, which in turn lead to mutations that ultimately cause cancer (PMID: 29038145). As a neurotoxin, D-2-hydroxyglutaric acid mediates its neurotoxicity through activation of N-methyl-D-aspartate receptors. D-2-Hydroxyglutaric acid is structurally similar to the excitatory amino acid glutamate and stimul... Tissue accumulation of high amounts of D 2 hydroxyglutaric acid is the biochemical hallmark of the inherited neurometabolic disorder D 2 hydroxyglutaric aciduria.
Pregnanolone
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
METHYLAZOXYMETHANOL
D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens
Cyclopamine
Cyclopamine is a member of piperidines. It has a role as a glioma-associated oncogene inhibitor. Cyclopamine is a natural product found in Veratrum grandiflorum, Veratrum dahuricum, and Veratrum californicum with data available. Cyclopamine is a naturally occurring chemical that belongs to the group of steroidal jerveratrum alkaloids. It is a teratogen isolated from the corn lily (Veratrum californicum) that causes usually fatal birth defects. It can prevent the fetal brain from dividing into two lobes (holoprosencephaly) and cause the development of a single eye (cyclopia). It does so by inhibiting the hedgehog signaling pathway (Hh). Cyclopamine is useful in studying the role of Hh in normal development, and as a potential treatment for certain cancers in which Hh is overexpressed. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7995; ORIGINAL_PRECURSOR_SCAN_NO 7993 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8001 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8041; ORIGINAL_PRECURSOR_SCAN_NO 8038 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8047; ORIGINAL_PRECURSOR_SCAN_NO 8046 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8048; ORIGINAL_PRECURSOR_SCAN_NO 8045 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7958; ORIGINAL_PRECURSOR_SCAN_NO 7956 Data obtained from a cyclopamine standard purchased from Logan Natural Products, Logan, Utah USA. Cyclopamine is a Hedgehog (Hh) pathway antagonist with an IC50 of 46 nM in the Hh cell assay. Cyclopamine is also a selective Smo inhibitor. Cyclopamine is a Hedgehog (Hh) pathway antagonist with an IC50 of 46 nM in the Hh cell assay. Cyclopamine is also a selective Smo inhibitor.
Lucanthone
Lucanthone is only found in individuals that have used or taken this drug. It is one of the schistosomicides, it has been replaced largely by hycanthone and more recently praziquantel. (From Martindale The Extrapharmacopoeia, 30th ed., p46). It is currently being tested as a radiation sensitizer.Recent data suggests that lucanthone inhibits post-radiation DNA repair in tumor cells. The ability of lucanthone to inhibit AP endonuclease and topoisomerase II probably account for the specific DNA repair inhibition in irradiated cells. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent
19-Norprogesterone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
3-(3-(N-(2-Chloro-3-trifluoromethylbenzyl)(2,2-diphenylethyl)amino)propoxy)phenylacetic acid
3a-Hydroxy-5b-pregnane-20-one
3alpha-Hydroxy-5beta-pregnane-20-one is an intermediate in C21-Steroid hormone metabolism. 3alpha-Hydroxy-5beta-pregnane-20-one is converted from 5beta-Pregnane-3,20-dione via the enzyme 3-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50). It is then converted to Pregnanediol via the enzyme 3alpha(or 20beta)-hydroxysteroid dehydrogenase (EC 1.1.1.53). [HMDB] 3alpha-Hydroxy-5beta-pregnane-20-one is an intermediate in C21-Steroid hormone metabolism. 3alpha-Hydroxy-5beta-pregnane-20-one is converted from 5beta-Pregnane-3,20-dione via the enzyme 3-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50). It is then converted to Pregnanediol via the enzyme 3alpha(or 20beta)-hydroxysteroid dehydrogenase (EC 1.1.1.53). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Pregnanolone
Pregnanolone, also known as eltanolone or 3alpha-hydroxy-5beta-pregnan-20-one, belongs to the class of organic compounds known as gluco/mineralocorticoids, progestogens, and derivatives. These are steroids with a structure based on a hydroxylated prostane moiety. Pregnanolone is considered to be practically insoluble (in water) and basic. Pregnanolone is an endogenous inhibitory neurosteroid that is produced in the body from progesterone. It is closely related to allopregnanolone, which has similar properties (Wikipedia). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Narirutin
Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). A disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].
Bisphenol_F
Bisphenol F is a bisphenol that is methane in which two of the hydrogens have been replaced by 4-hydroxyphenyl groups. It has a role as an environmental food contaminant and a xenoestrogen. It is a diarylmethane and a bisphenol. 4,4-Methylenediphenol is a natural product found in Galeola faberi, Xanthium strumarium, and other organisms with data available. 4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1]. 4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1].
N-acetyl-L-aspartic acid
An N-acyl-L-aspartic acid in which the acyl group is specified as acetyl. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OTCCIMWXFLJLIA-BYPYZUCNSA-N_STSL_0218_N-Acetyl-L-aspartic acid_2000fmol_190326_S2_LC02MS02_065; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. N-Acetyl-L-aspartic acid is a derivative of aspartic acid.
mevinphos
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
mescaline
A phenethylamine alkaloid that is phenethylamine substituted at positions 3, 4 and 5 by methoxy groups. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens
Eltanolone
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Clemastine
D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents
LUCANTHONE
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent