Exact Mass: 325.1889

Exact Mass Matches: 325.1889

Found 482 metabolites which its exact mass value is equals to given mass value 325.1889, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Cycloxydim

2-[(1E)-N-Ethoxybutanimidoyl]-3-hydroxy-5-(tetrahydro-2H-thiopyra n-3-yl)-2-cyclohexen-1-one

C17H27NO3S (325.1712)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3045

   

Bisoprolol

1-[(propan-2-yl)amino]-3-(4-{[2-(propan-2-yloxy)ethoxy]methyl}phenoxy)propan-2-ol

C18H31NO4 (325.2253)


Bisoprolol is a cardioselective β1-adrenergic blocking agent used for secondary prevention of myocardial infarction (MI), heart failure, angina pectoris and mild to moderate hypertension. Bisoprolol is structurally similar to metoprolol, acebutolol and atenolol in that it has two substituents in the para position of the benzene ring. The β1-selectivity of these agents is thought to be due in part to the large substituents in the para position. At lower doses (less than 20 mg daily), bisoprolol selectively blocks cardiac β1-adrenergic receptors with little activity against β2-adrenergic receptors of the lungs and vascular smooth muscle. Receptor selectivity decreases with daily doses of 20 mg or greater. Unlike propranolol and pindolol, bisoprolol does not exhibit membrane-stabilizing or sympathomimetic activity. Bisoprolol possesses a single chiral centre and is administered as a racemic mixture. Only l-bisoprolol exhibits significant β-blocking activity. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3013 CONFIDENCE standard compound; INTERNAL_ID 8595 CONFIDENCE standard compound; INTERNAL_ID 2677

   

Monocrotaline

5,6-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione

C16H23NO6 (325.1525)


Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive disease Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive diseas CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2249 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 131 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 121 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 151 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 141 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 111 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 161 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 171 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 101 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].

   

galben

Methyl 2-[N-(2,6-dimethylphenyl)-2-phenylacetamido]propanoic acid

C20H23NO3 (325.1678)


CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9755; ORIGINAL_PRECURSOR_SCAN_NO 9753 CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9633 CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9740; ORIGINAL_PRECURSOR_SCAN_NO 9738 CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9736; ORIGINAL_PRECURSOR_SCAN_NO 9733 CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9677; ORIGINAL_PRECURSOR_SCAN_NO 9675 CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9703; ORIGINAL_PRECURSOR_SCAN_NO 9701 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3035 CONFIDENCE standard compound; INTERNAL_ID 8447 CONFIDENCE standard compound; INTERNAL_ID 32

   

10-Nitrolinoleic acid

(9E,12Z)-10-Nitrooctadeca-9,12-dienoic acid

C18H31NO4 (325.2253)


Nitrolinoleic acid is a nitrated fatty acid (or nitroalkene, a class of cell signaling mediators generated by Nitric Oxide (NO) and fatty acid-dependent redox reactions). Nitrated fatty acids such as 10- and 12-nitro-9,12-octadecadienoic acid exhibit pluripotent antiinflammatory cell signaling properties. (PMID 16537525) [HMDB] Nitrolinoleic acid is a nitrated fatty acid (or nitroalkene, a class of cell signaling mediators generated by Nitric Oxide (NO) and fatty acid-dependent redox reactions). Nitrated fatty acids such as 10- and 12-nitro-9,12-octadecadienoic acid exhibit pluripotent antiinflammatory cell signaling properties. (PMID 16537525).

   

Amdinocillin

(2S,5R,6R)-6-[(Azepan-1-ylmethylidene)amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C15H23N3O3S (325.146)


Amdinocillin is only found in individuals that have used or taken this drug. It is an amidinopenicillanic acid derivative with broad spectrum antibacterial action. It is poorly absorbed if given orally and is used in urinary infections and typhus. [PubChem]Amdinocillin is a stong and specific antagonist of Penicillin Binding Protein-2 (PBP 2). It is active against gram negative bacteria, preventing cell wall synthesis by inhibiting the activity of PBP2. PBP2 is a peptidoglycan elongation initiating enzyme. Peptidoglycan is a polymer of sugars and amino acids that is the main component of bacterial cell walls. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Ergonovine

(4R,7R)-N-[(2S)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxamide

C19H23N3O2 (325.179)


Ergonovine is only found in individuals that have used or taken this drug. It is an ergot alkaloid with uterine and vascular smooth muscle contractile properties. [PubChem]Ergonovine directly stimulates the uterine muscle to increase force and frequency of contractions. With usual doses, these contractions precede periods of relaxation; with larger doses, basal uterine tone is elevated and these relaxation periods will be decreased. Contraction of the uterine wall around bleeding vessels at the placental site produces hemostasis. Ergonovine also induces cervical contractions. The sensitivity of the uterus to the oxytocic effect is much greater toward the end of pregnancy. The oxytocic actions of ergonovine are greater than its vascular effects. Ergonovine, like other ergot alkaloids, produces arterial vasoconstriction by stimulation of alpha-adrenergic and serotonin receptors and inhibition of endothelial-derived relaxation factor release. It is a less potent vasoconstrictor than ergotamine. As a diagnostic aid (coronary vasospasm), ergonovine causes vasoconstriction of coronary arteries. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AB - Ergot alkaloids C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D012102 - Reproductive Control Agents > D010120 - Oxytocics

   

MEGA

N-(2,6-dimethylphenyl)-4-[[2-(ethylamino)acetyl]amino]benzamide

C19H23N3O2 (325.179)


   

Small bacteriocin

(7E)-3-Hydroxy-N-(2-oxooxolan-3-yl)tetradec-7-enimidate

C18H31NO4 (325.2253)


Bacteriocin. Small bacteriocin is produced by Rhizobium leguminosarum. Bacteriocin. Production by Rhizobium leguminosarum.

   

C12-LNO2

(9Z,12E)-12-nitrooctadeca-9,12-dienoic acid

C18H31NO4 (325.2253)


   

dinor-Levomethadyl acetate

1 alpha-Acetyldinormethadol, hydrochloride, (S-(r*,r*))-isomer

C21H27NO2 (325.2042)


dinor-Levomethadyl acetate is a metabolite of levomethadyl acetate. Levacetylmethadol, levomethadyl acetate, Orlaam (trade name) or levo-α-acetylmethadol (LAAM) is a synthetic opioid similar in structure to methadone. It has a long duration of action due to its active metabolites. (Wikipedia)

   

Farnesylcysteine

(2R)-2-amino-3-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]sulfanyl}propanoic acid

C18H31NO2S (325.2075)


In patients with chronic fatigue syndrome (CFS) we found increased IgM levels to S-farnesyl-L-cysteine. S-farnesyl-L-cysteine plays a key role in regulating cell growth, differentiation and apoptosis through RAS protein activity. The latter depends on their anchorage to the inner surface of the plasma membrane, which is promoted by their common carboxy-terminal S-farnesyl-cysteine. The presence of antibodies to S-farnesyl-L-cysteine suggest that RAS functions may have undergone damage by oxidative/nitrosative stress, causing disturbed functional activity in the regulation of cell growth. (PMID 17159817).

   

Norpropoxyphene

3-Methyl-4-(methylamino)-1,2-diphenylbutan-2-yl propanoic acid

C21H27NO2 (325.2042)


Norpropoxyphene is a major metabolite of the opioid analgesic drug dextropropoxyphene, and is responsible for many of the side effects associated with use of this drug, especially the unusual toxicity seen during dextropropoxyphene overdose. It has weaker analgesic effects than dextropropoxyphene itself, but is a relatively potent pro-convulsant and blocker of sodium and potassium channels, particularly in heart tissue, which produces prolonged intracardiac conduction time and can lead to heart failure following even relatively minor overdoses. The toxicity of this metabolite makes dextropropoxyphene up to 10 times more likely to cause death following overdose compared to other similar mild opioid analgesics, and has led to dextropropoxyphene being withdrawn from the market in some countries.

   

Simulenoline

2-[(2E)-4-hydroxy-4-methylpent-2-en-1-yl]-2,6-dimethyl-2H,5H,6H-pyrano[3,2-c]quinolin-5-one

C20H23NO3 (325.1678)


Simulenoline is found in fruits. Simulenoline is an alkaloid from the bark of Zanthoxylum simulans (Szechuan pepper

   

(2E,4E,8E)-Piperamide-C9:3

(2E,4E,8Z)-9-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)nona-2,4,8-trien-1-one

C20H23NO3 (325.1678)


(2E,4E,8E)-Piperamide-C9:3 is found in herbs and spices. (2E,4E,8E)-Piperamide-C9:3 is a constituent of pepper fruits (Piper nigrum, Piperaceae). Constituent of pepper fruits (Piper nigrum, Piperaceae). (2E,4E,8E)-Piperamide-C9:3 is found in herbs and spices and pepper (spice).

   

N-[[3-Hydroxy-2-(2-pentenyl)cyclopentyl]acetyl]isoleucine

2-[(1-Hydroxy-2-{3-hydroxy-2-[(2E)-pent-2-en-1-yl]cyclopentyl}ethylidene)amino]-3-methylpentanoate

C18H31NO4 (325.2253)


N-[[3-Hydroxy-2-(2-pentenyl)cyclopentyl]acetyl]isoleucine is a constituent of the pollen of Pinus mugo (dwarf mountain pine). Constituent of the pollen of Pinus mugo (dwarf mountain pine)

   

Huajiaosimuline

2,6-dimethyl-2-(4-methyl-3-oxopentyl)-2H,5H,6H-pyrano[3,2-c]quinolin-5-one

C20H23NO3 (325.1678)


Huajiaosimuline is found in fruits. Huajiaosimuline is an alkaloid from root bark of Zanthoxylum simulans (Szechuan pepper). Alkaloid from root bark of Zanthoxylum simulans (Szechuan pepper). Huajiaosimuline is found in herbs and spices and fruits.

   

N-[2-Ethoxy-2-(4-methoxyphenyl)ethyl]cinnamide

(2E)-N-[2-Ethoxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enimidate

C20H23NO3 (325.1678)


N-[2-Ethoxy-2-(4-methoxyphenyl)ethyl]cinnamide is found in fruits. N-[2-Ethoxy-2-(4-methoxyphenyl)ethyl]cinnamide is isolated from Aegle marmelos (bael). Isolated from Aegle marmelos (bael). N-[2-Ethoxy-2-(4-methoxyphenyl)ethyl]cinnamide is found in fruits.

   

Dapiprazole

3-(2-(4-(2-Methylphenyl)-1-piperazinyl)ethyl)-5,6,7,8,-tetrahydro-1,2,4-triazolo(4,3-a)pyridine hydrochloride

C19H27N5 (325.2266)


Dapiprazole is only found in individuals that have used or taken this drug. It is an alpha blocker. It is used to reverse mydriasis after eye examination. [Wikipedia]Dapiprazole acts through blocking the alpha1-adrenergic receptors in smooth muscle. It produces miosis through an effect on the dilator muscle of the iris and does not have any significant activity on ciliary muscle contraction and, therefore does not induce a significant change in the anterior chamber depth or the thickness of the lens. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants

   

Undeca-3,8-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-3,8-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-3,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-2,8-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-2,8-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-2,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-5,8-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-5,8-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-5,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-5,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-5,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-5,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-4,6-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-4,6-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-4,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-4,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-4,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-4,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-2,6-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-2,6-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-2,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-3,9-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-3,9-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-3,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-3,5-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-3,5-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-3,5-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,5-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,5-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,5-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-7,9-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-7,9-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-7,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-7,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-7,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-7,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-5,7-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-5,7-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-5,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-5,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-5,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-5,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-5,9-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-5,9-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-5,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-5,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-5,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-5,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-2,9-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-2,9-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-2,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-6,9-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-6,9-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-6,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-6,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-6,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-6,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-6,8-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-6,8-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-6,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-6,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-6,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-6,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-3,7-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-3,7-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-3,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-2,4-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-2,4-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-2,4-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,4-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,4-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,4-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-2,7-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-2,7-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-2,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-4,8-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-4,8-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-4,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-4,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-4,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-4,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-2,5-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-2,5-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-2,5-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,5-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,5-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,5-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-4,9-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-4,9-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-4,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-4,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-4,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-4,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-4,7-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-4,7-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-4,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-4,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-4,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-4,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Undeca-3,6-dienoylcarnitine

4-(trimethylazaniumyl)-3-(undeca-3,6-dienoyloxy)butanoate

C18H31NO4 (325.2253)


Undeca-3,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Nona-3,5,7-trienedioylcarnitine

3-[(8-Carboxyocta-3,5,7-trienoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C16H23NO6 (325.1525)


nona-3,5,7-trienedioylcarnitine is an acylcarnitine. More specifically, it is an nona-3,5,7-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-3,5,7-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-3,5,7-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E,4E,7E)-Nona-2,4,7-trienedioylcarnitine

3-[(8-Carboxyocta-2,4,7-trienoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C16H23NO6 (325.1525)


(2E,4E,7E)-nona-2,4,7-trienedioylcarnitine is an acylcarnitine. More specifically, it is an (2E,4E,7E)-nona-2,4,7-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E,4E,7E)-nona-2,4,7-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E,4E,7E)-nona-2,4,7-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Enpiperate

4-(3,5-Cyclopropyl)-N-methylpiperidine alpha-hydroxy-alpha-phenylbenzene acetic acid

C20H23NO3 (325.1678)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Aprofene

2,2-Diphenylpropanoic acid N,N-diethylaminoethyl ester

C21H27NO2 (325.2042)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent

   

Benzydamine N-oxide

3-[(1-benzyl-1H-indazol-3-yl)oxy]-N,N-dimethylpropanamine oxide

C19H23N3O2 (325.179)


   

1-(4-Aminophenyl)-7,8-dimethoxy-3-methyl-5H-2,3-benzodiazepin-4-one

1-(4-aminophenyl)-7,8-dimethoxy-3-methyl-4,5-dihydro-3H-2,3-benzodiazepin-4-one

C18H19N3O3 (325.1426)


   

Carbamic acid, (5-amino-1,2-dihydro-3-(4-methylphenyl)pyrido(3,4-b)pyrazin-7-yl)-, ethyl ester

Carbamic acid, (5-amino-1,2-dihydro-3-(4-methylphenyl)pyrido(3,4-b)pyrazin-7-yl)-, ethyl ester

C17H19N5O2 (325.1539)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000970 - Antineoplastic Agents D002317 - Cardiovascular Agents

   

10-Piperazinylpropylphenothiazine

10-[3-(piperazin-1-yl)propyl]-10H-phenothiazine

C19H23N3S (325.1613)


   

Ergobasin

N-(1-Hydroxypropan-2-yl)-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidate

C19H23N3O2 (325.179)


   

Isoleucyl-prolyl-proline

1-[1-(2-amino-3-methylpentanoyl)pyrrolidine-2-carbonyl]pyrrolidine-2-carboxylic acid

C16H27N3O4 (325.2001)


   

L-Proline, 1-(1-L-leucyl-L-prolyl)-

1-[1-(2-amino-4-methylpentanoyl)pyrrolidine-2-carbonyl]pyrrolidine-2-carboxylic acid

C16H27N3O4 (325.2001)


   

Ifenprodil

alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine ethanol

C21H27NO2 (325.2042)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators COVID info from DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Mrz 2266 BS

1,13-diethyl-10-[(furan-3-yl)methyl]-10-azatricyclo[7.3.1.0^{2,7}]trideca-2(7),3,5-trien-4-ol

C21H27NO2 (325.2042)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists

   

Nitrolinoleic acid

2-nitrooctadeca-9,12-dienoic acid

C18H31NO4 (325.2253)


   

Piritrexim

6-[(2,5-dimethoxyphenyl)methyl]-5-methylpyrido[2,3-d]pyrimidine-2,4-diamine

C17H19N5O2 (325.1539)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000970 - Antineoplastic Agents

   

Pixantrone

6,9-bis[(2-aminoethyl)amino]-5H,10H-benzo[g]isoquinoline-5,10-dione

C17H19N5O2 (325.1539)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DB - Anthracyclines and related substances D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors

   

S-Farnesyl cysteine

2-Amino-3-[(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)sulphanyl]propanoic acid

C18H31NO2S (325.2075)


   

18-Nitrooctadeca-9,12-dienoic acid

18-Nitrooctadeca-9,12-dienoic acid

C18H31NO4 (325.2253)


   

(3R-(3alpha,4alpha(2R*,3R*),5beta,6beta))-5-Methoxy-4-(2-methyl-3-(3-methyl-2-butenyl)oxiranyl)-1-oxaspiro(2.5)octan-6-ol carbamate

(3R-(3alpha,4alpha(2R*,3R*),5beta,6beta))-5-methoxy-4-(2-methyl-3-(3-methyl-2-butenyl)oxiranyl)-1-oxaspiro(2.5)octan-6-ol carbamic acid

C17H27NO5 (325.1889)


   

Monocrotaline

2H-(1,6)DIOXACYCLOUNDECINO(2,3,4-GH)PYRROLIZINE-2,6(3H)-DIONE, 4,5,8,10,12,13,13A,13B-OCTAHYDRO-4,5-DIHYDROXY-3,4,5-TRIMETHYL-, (3R-(3R*,4R*,5R*,13AR*,13BR*))-

C16H23NO6 (325.1525)


Monocrotaline is a pyrrolizidine alkaloid. Monocrotaline is a natural product found in Crotalaria novae-hollandiae, Crotalaria recta, and other organisms with data available. A pyrrolizidine alkaloid and a toxic plant constituent that poisons livestock and humans through the ingestion of contaminated grains and other foods. The alkaloid causes pulmonary artery hypertension, right ventricular hypertrophy, and pathological changes in the pulmonary vasculature. Significant attenuation of the cardiopulmonary changes are noted after oral magnesium treatment. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.154 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.142 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.145 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].

   

Broussonetine W

Broussonetine W

C18H31NO4 (325.2253)


   
   

Antibiotic TAN 749C

Antibiotic TAN 749C

C15H27N5O3 (325.2114)


   

Daphniyunnine C

Daphniyunnine C

C21H27NO2 (325.2042)


   

CJ 13564

(E)-(-)-2-[5-(3,3-Dimethyloxiranyl)-3-methyl-2-pentenyl]-1,3-dimethyl-4(1H)-quinolinone

C21H27NO2 (325.2042)


   

Daphlongamine E

Daphlongamine E

C21H27NO2 (325.2042)


   
   

(+)-trans-Deacetoxyerioaustralasine

(+)-trans-Deacetoxyerioaustralasine

C20H23NO3 (325.1678)


   

Daphnilongeranin B

Daphnilongeranin B

C21H27NO2 (325.2042)


   

O-Methyllirinine

N,O-Dimethylisopiline

C20H23NO3 (325.1678)


   

Awajanomycin

Awajanomycin

C17H27NO5 (325.1889)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   
   
   

Tumonoic acid E

Tumonoic acid E

C18H31NO4 (325.2253)


A natural product found particularly in Oscillatoria margaritifera and Oscillatoria margaritifera.

   
   
   
   

3-(2-((2-Methoxybenzyl)amino)ethyl)quinazoline-2,4(1H,3H)-dione

3-(2-((2-Methoxybenzyl)amino)ethyl)quinazoline-2,4(1H,3H)-dione

C18H19N3O3 (325.1426)


   

MCULE-2163539960

MCULE-2163539960

C18H19N3O3 (325.1426)


   

Maybridge3_004078

Maybridge3_004078

C16H18F3N3O (325.1402)


   
   

Maybridge3_000944

Maybridge3_000944

C20H23NO3 (325.1678)


   

ifenprodil

ifenprodil

C21H27NO2 (325.2042)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators COVID info from DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

MCULE-7391722835

MCULE-7391722835

C16H23NO6 (325.1525)


   

N-3-oxo-tetradecanoyl-L-Homoserine lactone

N-3-oxo-tetradecanoyl-L-Homoserine lactone

C18H31NO4 (325.2253)


   

dyshomoerythrine

dyshomoerythrine

C21H27NO2 (325.2042)


   

Thalmin|Thalmin; 3,5-Dimethoxy-N-methyl-11-hydroxy-hexahydro-triphenylindin

Thalmin|Thalmin; 3,5-Dimethoxy-N-methyl-11-hydroxy-hexahydro-triphenylindin

C20H23NO3 (325.1678)


   
   

(+)-O-methylisothebaine|1,2,11-Trimethoxy-6-methyl-6aalpha-aporphan|1,2,11-trimethoxy-6-methyl-6aalpha-aporphane

(+)-O-methylisothebaine|1,2,11-Trimethoxy-6-methyl-6aalpha-aporphan|1,2,11-trimethoxy-6-methyl-6aalpha-aporphane

C20H23NO3 (325.1678)


   

malbranpyrrole B

malbranpyrrole B

C20H23NO3 (325.1678)


   
   
   

N-<9,10-dihydrojasmonoyl>-(S)-isoleucine

N-<9,10-dihydrojasmonoyl>-(S)-isoleucine

C18H31NO4 (325.2253)


   

4-ethyl-11,15-dihydroxy-12-methoxy-5-methyl-13-oxa-4-aza-tricyclo[10.2.1.02,5]-pentadec-1-en-3-one|phyllostictine A

4-ethyl-11,15-dihydroxy-12-methoxy-5-methyl-13-oxa-4-aza-tricyclo[10.2.1.02,5]-pentadec-1-en-3-one|phyllostictine A

C17H27NO5 (325.1889)


   

N-Methyl-7-prenyloxyflindersine

N-Methyl-7-prenyloxyflindersine

C20H23NO3 (325.1678)


   
   

1,1-diphenyl-2,2-piperidine-2,6-diyl-bis-ethanol|2,6-Bis-(beta-hydroxy-phenaethyl)-piperidin|2,6-bis-(beta-hydroxy-phenethyl)-piperidine|Norlobelamidin|Norlobelanidin

1,1-diphenyl-2,2-piperidine-2,6-diyl-bis-ethanol|2,6-Bis-(beta-hydroxy-phenaethyl)-piperidin|2,6-bis-(beta-hydroxy-phenethyl)-piperidine|Norlobelamidin|Norlobelanidin

C21H27NO2 (325.2042)


   
   

5H-Pyrano(3,2-c)quinolin-5-one, 2,6-dihydro-2,2,6-trimethyl-7-((3-methyl-2-butenyl)oxy)-

5H-Pyrano(3,2-c)quinolin-5-one, 2,6-dihydro-2,2,6-trimethyl-7-((3-methyl-2-butenyl)oxy)-

C20H23NO3 (325.1678)


   

ileabethoxazole

ileabethoxazole

C21H27NO2 (325.2042)


   

Bufoserotonin C

Bufoserotonin C

C18H19N3O3 (325.1426)


   
   

1,2,9-trimethoxyaporphine

1,2,9-trimethoxyaporphine

C20H23NO3 (325.1678)


   

1-methyl-2-[7?-oxo-(E)-5?-undecenyl]-4(1H)-quinolone|euocarpine A

1-methyl-2-[7?-oxo-(E)-5?-undecenyl]-4(1H)-quinolone|euocarpine A

C21H27NO2 (325.2042)


   

1-methyl-2-[6?-oxo-(E)-7?-undecenyl]-4(1H)-quinolone|euocarpine B

1-methyl-2-[6?-oxo-(E)-7?-undecenyl]-4(1H)-quinolone|euocarpine B

C21H27NO2 (325.2042)


   
   

4Z-Isomer;B,2HCL-Sperabillin C

4Z-Isomer;B,2HCL-Sperabillin C

C15H27N5O3 (325.2114)


   

AKOS034192549

AKOS034192549

C20H23NO3 (325.1678)


   
   

1,2,10-trimethoxy-6-methyl-5,6,6a,7-tetrahydro-4h-dibenzo[de,g]quinoline

1,2,10-trimethoxy-6-methyl-5,6,6a,7-tetrahydro-4h-dibenzo[de,g]quinoline

C20H23NO3 (325.1678)


   

2-Hydroxyatherosperminine

2-Hydroxyatherosperminine

C20H23NO3 (325.1678)


   

N-demethyl-2-methoxyatherosperminine

N-demethyl-2-methoxyatherosperminine

C20H23NO3 (325.1678)


   
   
   
   
   
   
   

Necrosis Inhibitor, IM-54

Necrosis Inhibitor, IM-54

C19H23N3O2 (325.179)


   
   
   
   
   
   
   
   

BISOPROLOL

BISOPROLOL

C18H31NO4 (325.2253)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE Reference Standard (Level 1)

   

Norpropoxyphene

1,2-Diphenyl-4-(methylamino)-3-methyl-2-butanol propionate

C21H27NO2 (325.2042)


   

Ergonovine

Ergometrine

C19H23N3O2 (325.179)


A monocarboxylic acid amide that is lysergamide in which one of the hydrogens attached to the amide nitrogen is substituted by a 1-hydroxypropan-2-yl group (S-configuration). An ergot alkaloid that has a particularly powerful action on the uterus, its maleate (and formerly tartrate) salt is used in the active management of the third stage of labour, and to prevent or treat postpartum of postabortal haemorrhage caused by uterine atony: by maintaining uterine contraction and tone, blood vessels in the uterine wall are compressed and blood flow reduced. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AB - Ergot alkaloids C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D012102 - Reproductive Control Agents > D010120 - Oxytocics CONFIDENCE Claviceps purpurea sclerotia relative retention time with respect to 9-anthracene Carboxylic Acid is 0.382 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.380 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.373 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.375

   

Dyclonine hydrochloride

Dyclonine hydrochloride

C18H28ClNO2 (325.1808)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Dyclonine (Dyclocaine) hydrochloride is an orally effective ALDH covalent inhibitor (crosses blood-brain barrier), with an IC50 of 35 μM for ALDH2 and 76 μM for ALDH3A1. Dyclonine hydrochloride has sensitizing activities for targeted cancer cells and antibacterial. Dyclonine hydrochloride is also a local anesthetic that blocks the transmission of various nerve impulses or stimuli and inhibits the sensation of touch and pain[1][2][3].

   

Mecillinam

Amdinocillin

C15H23N3O3S (325.146)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

MLS002639247-01!

MLS002639247-01!

C16H23NO6 (325.1525)


   

MLS002153902-01!Monocrotaline315-22-0

MLS002153902-01!Monocrotaline315-22-0

C16H23NO6 (325.1525)


   

Denatonium

Denatonium

[C21H29N2O]+ (325.228)


D002491 - Central Nervous System Agents > D000075162 - Abuse-Deterrent Formulations D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D010592 - Pharmaceutic Aids > D000075528 - Aversive Agents CONFIDENCE standard compound; INTERNAL_ID 2876 INTERNAL_ID 2876; CONFIDENCE standard compound CONFIDENCE Reference Standard (Level 1)

   

C16H23NO6_2H-[1,6]Dioxacycloundecino[2,3,4-gh]pyrrolizine-2,6(3H)-dione, 4,5,8,10,12,13,13a,13b-octahydro-3,4-dihydroxy-3,4,5-trimethyl

NCGC00347407-02_C16H23NO6_2H-[1,6]Dioxacycloundecino[2,3,4-gh]pyrrolizine-2,6(3H)-dione, 4,5,8,10,12,13,13a,13b-octahydro-3,4-dihydroxy-3,4,5-trimethyl-

C16H23NO6 (325.1525)


   

C19H23N3O2_(3S,6S)-3-Methyl-6-{[2-(2-methyl-3-buten-2-yl)-1H-indol-3-yl]methyl}-2,5-piperazinedione

NCGC00386110-01_C19H23N3O2_(3S,6S)-3-Methyl-6-{[2-(2-methyl-3-buten-2-yl)-1H-indol-3-yl]methyl}-2,5-piperazinedione

C19H23N3O2 (325.179)


   

4,5-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione

4,5-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione

C16H23NO6 (325.1525)


   
   

Ergonovine maleate

Ergonovine maleate

C19H23N3O2 (325.179)


   

Ergometrinine

Ergometrinine

C19H23N3O2 (325.179)


CONFIDENCE Claviceps purpurea sclerotia

   

3-oxo-C14 homoserine lactone

3-oxo-C14 homoserine lactone

C18H31NO4 (325.2253)


INTERNAL_ID 212; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 212

   

(+)-Benalaxyl

Pesticide4_Benalaxyl_C20H23NO3_Methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)alaninate

C20H23NO3 (325.1678)


CONFIDENCE standard compound; INTERNAL_ID 2622

   

10-Nitrolinoleic acid

10-Nitrolinoleic acid

C18H31NO4 (325.2253)


   

N-(3-Oxotetradecanoyl)-L-homoserine lactone

N-(3-Oxotetradecanoyl)-L-homoserine lactone

C18H31NO4 (325.2253)


   

ERGONOVINE MALEATE_major

ERGONOVINE MALEATE_major

C19H23N3O2 (325.179)


   

4,5-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹?]hexadec-10-ene-3,7-dione

4,5-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹?]hexadec-10-ene-3,7-dione

C16H23NO6 (325.1525)


   
   
   
   
   
   
   
   
   
   
   
   
   
   

N-Desmethylperazine

N-Desmethylperazine

C19H23N3S (325.1613)


   

IM-54

1-methyl-3-(1-methyl-1H-indol-3-yl)-4-(pentylamino)-1H-pyrrole-2,5-dione

C19H23N3O2 (325.179)


   

N-3-oxo-myristoyl-L-Homoserine lactone

3-oxo-N-[(3S)-tetrahydro-2-oxo-3-furanyl]-tetradecanamide

C18H31NO4 (325.2253)


   

10-nitro,9Z,12Z-octadecadienoic acid

10-nitro,9Z,12Z-octadecadienoic acid

C18H31NO4 (325.2253)


   

Dapiprazole

1-(2-methylphenyl)-4-(2-{5H,6H,7H,8H-[1,2,4]triazolo[4,3-a]pyridin-3-yl}ethyl)piperazine

C19H27N5 (325.2266)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants

   

Simulenoline

2-[(2E)-4-hydroxy-4-methylpent-2-en-1-yl]-2,6-dimethyl-2H,5H,6H-pyrano[3,2-c]quinolin-5-one

C20H23NO3 (325.1678)


   

Small bacteriocin

(7E)-3-hydroxy-N-(2-oxooxolan-3-yl)tetradec-7-enamide

C18H31NO4 (325.2253)


   

Piperamide-C9:3 (2E,4E,8E)

(2E,4E,8Z)-9-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)nona-2,4,8-trien-1-one

C20H23NO3 (325.1678)


   

Aegle marmelos alkaloid b

(2E)-N-[2-ethoxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enamide

C20H23NO3 (325.1678)


   

Huajiaosimuline

2,6-dimethyl-2-(4-methyl-3-oxopentyl)-2H,5H,6H-pyrano[3,2-c]quinolin-5-one

C20H23NO3 (325.1678)


   

N-(7-Isocucurbinoyl)isoleucine

2-(2-{3-hydroxy-2-[(2E)-pent-2-en-1-yl]cyclopentyl}acetamido)-3-methylpentanoic acid

C18H31NO4 (325.2253)


   

Norproxyphene

Norproxyphene

C21H27NO2 (325.2042)


   

9-NO2-CLA

9-nitro-9Z,11E-octadecadienoic acid

C18H31NO4 (325.2253)


   

12-NO2-CLA

12-nitro-9E,11Z-octadecadienoic acid

C18H31NO4 (325.2253)


   

N-[9,10-Dihydrojasmonoyl]isoleucine

[(1R,2R)-3-oxo-2-pentylcyclopentyl]ethanoyl leucine

C18H31NO4 (325.2253)


   

N-(3R-hydroxy-7Z-tetradecenoyl)-homoserine lactone

N-(3R-Hydroxy-7-cis-tetradecenoyl)homoserine lactone

C18H31NO4 (325.2253)


   

3O-C14-HSL

N-(3-oxo-tetradecanoyl)-homoserine lactone

C18H31NO4 (325.2253)


   

3,5-Difluoro-4-Morpholinophenylboronic Acid Pinacol Ester

3,5-Difluoro-4-Morpholinophenylboronic Acid Pinacol Ester

C16H22BF2NO3 (325.1661)


   

Benzeneacetic acid, a-(hydroxymethyl)-,(3-endo)-8-methyl-8-azabicyclo[3.2.1]oct-3-yl ester, hydrochloride (1:1), (aS)-

Benzeneacetic acid, a-(hydroxymethyl)-,(3-endo)-8-methyl-8-azabicyclo[3.2.1]oct-3-yl ester, hydrochloride (1:1), (aS)-

C17H24ClNO3 (325.1445)


   

tert-Butyl 4-(2-fluoro-4-nitrophenyl)piperazine-1-carboxylate

tert-Butyl 4-(2-fluoro-4-nitrophenyl)piperazine-1-carboxylate

C15H20FN3O4 (325.1438)


   

6H-Purin-6-one, 2-amino-9-[(2R)-4,4-diethoxy-2-(hydroxymethyl)butyl]-1,9-dihydro-

6H-Purin-6-one, 2-amino-9-[(2R)-4,4-diethoxy-2-(hydroxymethyl)butyl]-1,9-dihydro-

C14H23N5O4 (325.175)


   

8-(Phenylmethyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-8-azabicyclo[3.2.1]oct-2-ene

8-(Phenylmethyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-8-azabicyclo[3.2.1]oct-2-ene

C20H28BNO2 (325.2213)


   

tert-butyl 9-(2-methoxy-2-oxoethyl)-3-azaspiro[5.5]undecane-3-carboxylate

tert-butyl 9-(2-methoxy-2-oxoethyl)-3-azaspiro[5.5]undecane-3-carboxylate

C18H31NO4 (325.2253)


   

methyl 1-benzyl-4-(4-methoxyphenyl)pyrrolidine-3-carboxylate

methyl 1-benzyl-4-(4-methoxyphenyl)pyrrolidine-3-carboxylate

C20H23NO3 (325.1678)


   

3-METHYL-1-TRITYL-1H-1,2,4-TRIAZOLE

3-METHYL-1-TRITYL-1H-1,2,4-TRIAZOLE

C22H19N3 (325.1579)


   

dibutoxy(oxo)phosphanium,triethyl(methyl)azanium

dibutoxy(oxo)phosphanium,triethyl(methyl)azanium

C15H36NO4P (325.2382)


   

1,4,7,10-Tetraoxa-13-azacyclopentadecane, 13-(2-methoxyphenyl)

1,4,7,10-Tetraoxa-13-azacyclopentadecane, 13-(2-methoxyphenyl)

C17H27NO5 (325.1889)


   

Boc-3-Hydroxy-1-adamantyl-D-glycine

Boc-3-Hydroxy-1-adamantyl-D-glycine

C17H27NO5 (325.1889)


   

3-(2-ETHOXYCARBONYL-ETHYL)-5-METHYL-1H-PYRROLE-2,4-DICARBOXYLICACIDDIETHYLESTER

3-(2-ETHOXYCARBONYL-ETHYL)-5-METHYL-1H-PYRROLE-2,4-DICARBOXYLICACIDDIETHYLESTER

C16H23NO6 (325.1525)


   
   

(S)-1-((1,3,2-DIOXABOROLAN-2-YL)OXY)-3-METHYL-1,1-DIPHENYLBUTAN-2-AMINE

(S)-1-((1,3,2-DIOXABOROLAN-2-YL)OXY)-3-METHYL-1,1-DIPHENYLBUTAN-2-AMINE

C19H24BNO3 (325.1849)


   

(betaR)-beta-[[(1,1-Dimethylethoxy)carbonyl]amino]-3,5-dimethoxybenzenepropanoic acid

(betaR)-beta-[[(1,1-Dimethylethoxy)carbonyl]amino]-3,5-dimethoxybenzenepropanoic acid

C16H23NO6 (325.1525)


   

9-(6-methoxynaphthalen-2-yl)oxy-3-azaspiro[5.5]undecane

9-(6-methoxynaphthalen-2-yl)oxy-3-azaspiro[5.5]undecane

C21H27NO2 (325.2042)


   
   
   

4-CYCLOHEXYLCARBAMOYLMETHYL-PIPERAZINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

4-CYCLOHEXYLCARBAMOYLMETHYL-PIPERAZINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

C17H31N3O3 (325.2365)


   

1-(2-FLUORO-PHENYL)-5-OXO-PYRROLIDINE-3-CARBOXYLICACID

1-(2-FLUORO-PHENYL)-5-OXO-PYRROLIDINE-3-CARBOXYLICACID

C18H19N3O3 (325.1426)


   

boc-3,4-dimethoxy-l-phenylalanine

boc-3,4-dimethoxy-l-phenylalanine

C16H23NO6 (325.1525)


   

(S)-3-((TERT-BUTOXYCARBONYL)AMINO)-3-(3,4-DIMETHOXYPHENYL)PROPANOIC ACID

(S)-3-((TERT-BUTOXYCARBONYL)AMINO)-3-(3,4-DIMETHOXYPHENYL)PROPANOIC ACID

C16H23NO6 (325.1525)


   

2-[2-hydroxy-6-methyl-2-(4-methylphenyl)-3H-imidazo[1,2-a]pyridin-3-yl]-N,N-dimethylacetamide

2-[2-hydroxy-6-methyl-2-(4-methylphenyl)-3H-imidazo[1,2-a]pyridin-3-yl]-N,N-dimethylacetamide

C19H23N3O2 (325.179)


   

tert-Butyl 4-(2,4-difluorobenzoyl)piperidin-1-carboxylate

tert-Butyl 4-(2,4-difluorobenzoyl)piperidin-1-carboxylate

C17H21F2NO3 (325.1489)


   
   

1-BENZYL-3-(2,2-DIFLUORO-ETHYL)-4-OXO-PIPERIDINE-3-CARBOXYLIC ACID ETHYL ESTER

1-BENZYL-3-(2,2-DIFLUORO-ETHYL)-4-OXO-PIPERIDINE-3-CARBOXYLIC ACID ETHYL ESTER

C17H21F2NO3 (325.1489)


   

(2S)-2-{Diphenyl[(trimethylsilyl)oxy]methyl}pyrrolidine

(2S)-2-{Diphenyl[(trimethylsilyl)oxy]methyl}pyrrolidine

C20H27NOSi (325.1862)


   

N,N,N-Trimethyl-1-dodecanaminium hydrogen sulfate

N,N,N-Trimethyl-1-dodecanaminium hydrogen sulfate

C15H35NO4S (325.2287)


   

tert-Butyl 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)piperazine-1-carboxylate

tert-Butyl 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)piperazine-1-carboxylate

C14H23N5O4 (325.175)


   
   

[(1R)-1-(benzyloxycarbonylamino)-2-cyclohexyl-ethyl]phosphinic ac id

[(1R)-1-(benzyloxycarbonylamino)-2-cyclohexyl-ethyl]phosphinic ac id

C16H24NO4P (325.1443)


   

5,6-Dimethoxy-2-(4-piperidinylmethyl)-1-indanone hydrochloride

5,6-Dimethoxy-2-(4-piperidinylmethyl)-1-indanone hydrochloride

C17H24ClNO3 (325.1445)


   

3-TERT-BUTOXYCARBONYLAMINO-3-(3,4-DIMETHOXY-PHENYL)-PROPIONIC ACID

3-TERT-BUTOXYCARBONYLAMINO-3-(3,4-DIMETHOXY-PHENYL)-PROPIONIC ACID

C16H23NO6 (325.1525)


   

4-Cyano-4-pentyl-p-terphenyl

4-Cyano-4-pentyl-p-terphenyl

C24H23N (325.183)


   

etafenone

etafenone

C21H27NO2 (325.2042)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

H-Leu-Pro-Pro-OH

L-Proline, 1-(1-L-leucyl-L-prolyl)-

C16H27N3O4 (325.2001)


   
   

(R)-N-Boc-3-hydroxyadaMantylglycine

(R)-N-Boc-3-hydroxyadaMantylglycine

C17H27NO5 (325.1889)


   
   
   

((R)-2-biphenyl-4-yl-1-formylethyl)carbamic acid t-butyl ester

((R)-2-biphenyl-4-yl-1-formylethyl)carbamic acid t-butyl ester

C20H23NO3 (325.1678)


   
   

bis(pentamethylcyclopentadienyl)manganese

bis(pentamethylcyclopentadienyl)manganese

C20H30Mn (325.1728)


   

9-Amino(9-deoxy)epi-diquinidine trihydrochloride

9-Amino(9-deoxy)epi-diquinidine trihydrochloride

C20H27N3O (325.2154)


   

1-(Isopropylamino)-3-{4-[(2-propoxyethoxy)methyl]phenoxy}-2-propanol

1-(Isopropylamino)-3-{4-[(2-propoxyethoxy)methyl]phenoxy}-2-propanol

C18H31NO4 (325.2253)


   
   

Bisoprolol EP Impurity F

Bisoprolol EP Impurity F

C18H31NO4 (325.2253)


   

2-[2-[4-(2-methylpropyl)phenyl]propanoylamino]benzoic acid

2-[2-[4-(2-methylpropyl)phenyl]propanoylamino]benzoic acid

C20H23NO3 (325.1678)


   

PHENYLETHYL 2-ACETAMIDO-2-DEOXY-BETA-D-GLUCOPYRANOSIDE

PHENYLETHYL 2-ACETAMIDO-2-DEOXY-BETA-D-GLUCOPYRANOSIDE

C16H23NO6 (325.1525)


   

1-Cyclohexyl-3-(p-sulfamoylphenethyl)urea

1-Cyclohexyl-3-(p-sulfamoylphenethyl)urea

C15H23N3O3S (325.146)


   

1-Boc-4-[(4-chlorophenyl)hydroxyMethyl]piperidine

1-Boc-4-[(4-chlorophenyl)hydroxyMethyl]piperidine

C17H24ClNO3 (325.1445)


   

3-((TERT-BUTOXYCARBONYL)AMINO)-2-(3,4-DIMETHOXYPHENYL)PROPANOIC ACID

3-((TERT-BUTOXYCARBONYL)AMINO)-2-(3,4-DIMETHOXYPHENYL)PROPANOIC ACID

C16H23NO6 (325.1525)


   

N-(4-ethoxyphenyl)-2-(3-oxo-2,4-dihydro-1H-quinoxalin-2-yl)acetamide

N-(4-ethoxyphenyl)-2-(3-oxo-2,4-dihydro-1H-quinoxalin-2-yl)acetamide

C18H19N3O3 (325.1426)


   

boc-d-3,4-dimethoxyphenylalanine

boc-d-3,4-dimethoxyphenylalanine

C16H23NO6 (325.1525)


   

Capobenic acid

6-(3,4,5-Trimethoxybenzamido)hexanoic acid

C16H23NO6 (325.1525)


C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent

   

(R)-diphenylprolinol trimethyl silyl ether

(R)-diphenylprolinol trimethyl silyl ether

C20H27NOSi (325.1862)


   

tricyclopentylphosphine tetrafluorobora&

tricyclopentylphosphine tetrafluorobora&

C15H27BF4P (325.1879)


   

3-(Aminomethyl)-7,9,12-trimethyl-2H-[1,4]oxazino[2,3,4-ij]pyrido[3,2-g]quinoline-5,11(3H,12H)-dione

3-(Aminomethyl)-7,9,12-trimethyl-2H-[1,4]oxazino[2,3,4-ij]pyrido[3,2-g]quinoline-5,11(3H,12H)-dione

C18H19N3O3 (325.1426)


   

(6-Amino-4,4-diphenylheptan-3-yl) acetate

(6-Amino-4,4-diphenylheptan-3-yl) acetate

C21H27NO2 (325.2042)


   
   

SR-59230A free base

SR-59230A free base

C21H27NO2 (325.2042)


D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists

   

(3,4-Dihydro-2h-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone

(3,4-Dihydro-2h-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone

C20H23NO3 (325.1678)


JNJ16259685 is a selective antagonist of mGlu1 receptor, and inhibits the synaptic activation of mGlu1 in a concentration-dependent manner with IC50 of 19 nM.

   

Isoleucyl-prolyl-proline

Isoleucyl-prolyl-proline

C16H27N3O4 (325.2001)


   

N-[1-(4-nitrophenyl)ethylidene]-4-(2-pyridinyl)-1-piperazinamine

N-[1-(4-nitrophenyl)ethylidene]-4-(2-pyridinyl)-1-piperazinamine

C17H19N5O2 (325.1539)


   

Pro-Pro-Ile

Pro-Pro-Ile

C16H27N3O4 (325.2001)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

N-(3-Hydroxy-7-cis-tetradecenoyl)homoserine lactone

N-(3-Hydroxy-7-cis-tetradecenoyl)homoserine lactone

C18H31NO4 (325.2253)


   

1-(8-Methyl-2,5,11,14-tetraoxa-8-azabicyclo[13.4.0]nonadeca-1(15),16,18-trien-17-yl)ethanol

1-(8-Methyl-2,5,11,14-tetraoxa-8-azabicyclo[13.4.0]nonadeca-1(15),16,18-trien-17-yl)ethanol

C17H27NO5 (325.1889)


   

N-[5-(5,6,7,8-tetrahydronaphthalen-2-yl)-1,3,4-oxadiazol-2-yl]cyclohexanecarboxamide

N-[5-(5,6,7,8-tetrahydronaphthalen-2-yl)-1,3,4-oxadiazol-2-yl]cyclohexanecarboxamide

C19H23N3O2 (325.179)


   

2-imino-N,8-dimethyl-5-oxo-1-propan-2-yl-3-dipyrido[1,2-d:3,4-f]pyrimidinecarboxamide

2-imino-N,8-dimethyl-5-oxo-1-propan-2-yl-3-dipyrido[1,2-d:3,4-f]pyrimidinecarboxamide

C17H19N5O2 (325.1539)


   

Butanoic acid [2-oxo-2-(4-phenyldiazenylanilino)ethyl] ester

Butanoic acid [2-oxo-2-(4-phenyldiazenylanilino)ethyl] ester

C18H19N3O3 (325.1426)


   

N-(3-Oxotetradecanoyl)-DL-homoserine lactone

N-(3-Oxotetradecanoyl)-DL-homoserine lactone

C18H31NO4 (325.2253)


N-(3-Oxotetradecanoyl)-DL-homoserine lactone, a member of N-Acyl homoserine lactone (AHL) from gram-negative bacteria, is a quorum sensing (QS) signaling molecule[1][2].

   
   

N,N,3,5-Tetramethyl-4-(phenanthren-9-YL)aniline

N,N,3,5-Tetramethyl-4-(phenanthren-9-YL)aniline

C24H23N (325.183)


   

1-cyclobutyl-3-(3,4-dimethoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine

1-cyclobutyl-3-(3,4-dimethoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine

C17H19N5O2 (325.1539)


   

8-Benzo[1,3]dioxol-,5-ylmethyl-9-butyl-9H-

8-Benzo[1,3]dioxol-,5-ylmethyl-9-butyl-9H-

C17H19N5O2 (325.1539)


   

Pixantrone

Pixantrone

C17H19N5O2 (325.1539)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DB - Anthracyclines and related substances D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors

   

4,5-Dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.013,16]hexadec-10-ene-3,7-dione

4,5-Dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.013,16]hexadec-10-ene-3,7-dione

C16H23NO6 (325.1525)


   

N-(2,6-dimethylphenyl)-4-[[2-(ethylamino)acetyl]amino]benzamide

N-(2,6-dimethylphenyl)-4-[[2-(ethylamino)acetyl]amino]benzamide

C19H23N3O2 (325.179)


   

1-methyl-3-(1-methyl-1H-indol-3-yl)-4-(pentylamino)-1H-pyrrole-2,5-dione

1-methyl-3-(1-methyl-1H-indol-3-yl)-4-(pentylamino)-1H-pyrrole-2,5-dione

C19H23N3O2 (325.179)


   

3-oxo-N-[(3S)-2-oxotetrahydrofuran-3-yl]tetradecanamide

3-oxo-N-[(3S)-2-oxotetrahydrofuran-3-yl]tetradecanamide

C18H31NO4 (325.2253)


   

(3R-(3alpha,4alpha(2R*,3R*),5beta,6beta))-5-Methoxy-4-(2-methyl-3-(3-methyl-2-butenyl)oxiranyl)-1-oxaspiro(2.5)octan-6-ol carbamate

(3R-(3alpha,4alpha(2R*,3R*),5beta,6beta))-5-methoxy-4-(2-methyl-3-(3-methyl-2-butenyl)oxiranyl)-1-oxaspiro(2.5)octan-6-ol carbamic acid

C17H27NO5 (325.1889)


   

S-(2E,6E)-Farnesyl-L-cysteine

S-(2E,6E)-Farnesyl-L-cysteine

C18H31NO2S (325.2075)


   

Quinine(1+)

Quinine(1+)

C20H25N2O2+ (325.1916)


The monoprotonated form of quinine, the predominant species at pH7.3.

   

(S)-[(2S,4R,5R)-5-ethenyl-1-azoniabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol

(S)-[(2S,4R,5R)-5-ethenyl-1-azoniabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol

C20H25N2O2+ (325.1916)


   

5-[(3-Aminopropyl)-amino]-5-deoxyadenosine

5-[(3-Aminopropyl)-amino]-5-deoxyadenosine

C13H23N7O3+2 (325.1862)


   

2-(2,8-dihydroxytridecyl)-6-oxopyran-4-olate

2-(2,8-dihydroxytridecyl)-6-oxopyran-4-olate

C18H29O5- (325.2015)


   

9-[6(RS)-8-diamino-5,6,7,8-tetradeoxy-beta-D-ribo-octofuranosyl]-9H-purin-6-amine

9-[6(RS)-8-diamino-5,6,7,8-tetradeoxy-beta-D-ribo-octofuranosyl]-9H-purin-6-amine

C13H23N7O3+2 (325.1862)


   

10-Piperazinylpropylphenothiazine

10-Piperazinylpropylphenothiazine

C19H23N3S (325.1613)


   

(9E,12E)-2-nitrooctadeca-9,12-dienoic acid

(9E,12E)-2-nitrooctadeca-9,12-dienoic acid

C18H31NO4 (325.2253)


   

2-amino-3-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl]sulfanylpropanoic acid

2-amino-3-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl]sulfanylpropanoic acid

C18H31NO2S (325.2075)


   

Undeca-3,8-dienoylcarnitine

Undeca-3,8-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-2,8-dienoylcarnitine

Undeca-2,8-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-5,8-dienoylcarnitine

Undeca-5,8-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-4,6-dienoylcarnitine

Undeca-4,6-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-2,6-dienoylcarnitine

Undeca-2,6-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-3,9-dienoylcarnitine

Undeca-3,9-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-3,5-dienoylcarnitine

Undeca-3,5-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-7,9-dienoylcarnitine

Undeca-7,9-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-5,7-dienoylcarnitine

Undeca-5,7-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-5,9-dienoylcarnitine

Undeca-5,9-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-2,9-dienoylcarnitine

Undeca-2,9-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-6,9-dienoylcarnitine

Undeca-6,9-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-6,8-dienoylcarnitine

Undeca-6,8-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-3,7-dienoylcarnitine

Undeca-3,7-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-2,4-dienoylcarnitine

Undeca-2,4-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-2,7-dienoylcarnitine

Undeca-2,7-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-4,8-dienoylcarnitine

Undeca-4,8-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-2,5-dienoylcarnitine

Undeca-2,5-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-4,9-dienoylcarnitine

Undeca-4,9-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-4,7-dienoylcarnitine

Undeca-4,7-dienoylcarnitine

C18H31NO4 (325.2253)


   

Undeca-3,6-dienoylcarnitine

Undeca-3,6-dienoylcarnitine

C18H31NO4 (325.2253)


   

Nona-3,5,7-trienedioylcarnitine

Nona-3,5,7-trienedioylcarnitine

C16H23NO6 (325.1525)


   

18-Nitrooctadeca-9,12-dienoic acid

18-Nitrooctadeca-9,12-dienoic acid

C18H31NO4 (325.2253)


   

(2E,4E,7E)-Nona-2,4,7-trienedioylcarnitine

(2E,4E,7E)-Nona-2,4,7-trienedioylcarnitine

C16H23NO6 (325.1525)


   
   

1-[(2E,4E,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine

1-[(2E,4E,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine

C20H23NO3 (325.1678)


A natural product found in Piper boehmeriaefolium.

   

1-(4-methoxyphenyl)-N-(4-methylpyridin-2-yl)-5-oxopyrrolidine-3-carboxamide

1-(4-methoxyphenyl)-N-(4-methylpyridin-2-yl)-5-oxopyrrolidine-3-carboxamide

C18H19N3O3 (325.1426)


   

1-[(2E,4Z,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine

1-[(2E,4Z,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine

C20H23NO3 (325.1678)


A natural product found in Piper boehmeriaefolium.

   

1-[[(5-Hex-1-ynyl-2-furanyl)-oxomethyl]amino]-3-phenylurea

1-[[(5-Hex-1-ynyl-2-furanyl)-oxomethyl]amino]-3-phenylurea

C18H19N3O3 (325.1426)


   

N-(1-adamantyl)-6-(3,5-dimethyl-1-pyrazolyl)-1,2,4,5-tetrazin-3-amine

N-(1-adamantyl)-6-(3,5-dimethyl-1-pyrazolyl)-1,2,4,5-tetrazin-3-amine

C17H23N7 (325.2015)


   

1-(4-methoxyphenyl)-N,N-dipropyl-4-pyrazolo[3,4-d]pyrimidinamine

1-(4-methoxyphenyl)-N,N-dipropyl-4-pyrazolo[3,4-d]pyrimidinamine

C18H23N5O (325.1903)


   

1-[2-[3-(Dimethylamino)phenyl]-4-pyrimidinyl]-4-piperidinecarboxamide

1-[2-[3-(Dimethylamino)phenyl]-4-pyrimidinyl]-4-piperidinecarboxamide

C18H23N5O (325.1903)


   

1-[4-[3-(Dimethylamino)phenyl]-2-pyrimidinyl]-4-piperidinecarboxamide

1-[4-[3-(Dimethylamino)phenyl]-2-pyrimidinyl]-4-piperidinecarboxamide

C18H23N5O (325.1903)


   

1-[5-[3-(Dimethylamino)phenyl]-2-pyrimidinyl]-4-piperidinecarboxamide

1-[5-[3-(Dimethylamino)phenyl]-2-pyrimidinyl]-4-piperidinecarboxamide

C18H23N5O (325.1903)


   
   
   

4-Phenoxy-1-[4-(2-pyridinyl)-1-piperazinyl]-1-butanone

4-Phenoxy-1-[4-(2-pyridinyl)-1-piperazinyl]-1-butanone

C19H23N3O2 (325.179)


   

1-(4-methoxyphenyl)-N-(2-oxolanylmethyl)-4-pyrazolo[3,4-d]pyrimidinamine

1-(4-methoxyphenyl)-N-(2-oxolanylmethyl)-4-pyrazolo[3,4-d]pyrimidinamine

C17H19N5O2 (325.1539)


   

2-(6-Ethyl-4-methyl-quinazolin-2-ylamino)-6-methoxymethyl-1H-pyrimidin-4-one

2-(6-Ethyl-4-methyl-quinazolin-2-ylamino)-6-methoxymethyl-1H-pyrimidin-4-one

C17H19N5O2 (325.1539)


   

N-[(1,5-dimethyl-2-pyrrolyl)methyl]-1-(4-methylphenyl)-5-oxo-3-pyrrolidinecarboxamide

N-[(1,5-dimethyl-2-pyrrolyl)methyl]-1-(4-methylphenyl)-5-oxo-3-pyrrolidinecarboxamide

C19H23N3O2 (325.179)


   

1-Azepanyl-[4-[(phenylthio)methyl]phenyl]methanone

1-Azepanyl-[4-[(phenylthio)methyl]phenyl]methanone

C20H23NOS (325.15)


   

2-[4-(heptylthio)-2,5-dimethoxyphenyl]-N-methylethanamine

2-[4-(heptylthio)-2,5-dimethoxyphenyl]-N-methylethanamine

C18H31NO2S (325.2075)


   

1-(4-Methoxyphenyl)-3-(4-morpholinyl)-2-phenyl-1-propanone

1-(4-Methoxyphenyl)-3-(4-morpholinyl)-2-phenyl-1-propanone

C20H23NO3 (325.1678)


   

(16S)-deshydroxymethyl-stemmadenine

(16S)-deshydroxymethyl-stemmadenine

C20H25N2O2+ (325.1916)


   

(16R)-deshydroxymethyl-stemmadenine

(16R)-deshydroxymethyl-stemmadenine

C20H25N2O2+ (325.1916)


   

3alpha-hydroxy-3,5-dihydro-ML-236C carboxylate

3alpha-hydroxy-3,5-dihydro-ML-236C carboxylate

C18H29O5- (325.2015)


   

L-alpha-Acetyl-N,N-dinormethadol

L-alpha-Acetyl-N,N-dinormethadol

C21H27NO2 (325.2042)


   
   
   
   
   
   

3-[5-cyano-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-1-yl]-N,N-dimethylpropan-1-aminium

3-[5-cyano-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-1-yl]-N,N-dimethylpropan-1-aminium

C20H22FN2O+ (325.1716)


   

1-[3-(4-Butoxyphenyl)-3-oxopropyl]piperidinium chloride

1-[3-(4-Butoxyphenyl)-3-oxopropyl]piperidinium chloride

C18H28ClNO2 (325.1808)


   

N-ethyl-N-[[(2R,3S,4S)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

N-ethyl-N-[[(2R,3S,4S)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

C19H23N3O2 (325.179)


   

N-ethyl-N-[[(2S,3S,4S)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

N-ethyl-N-[[(2S,3S,4S)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

C19H23N3O2 (325.179)


   

N-ethyl-N-[[(2S,3R,4S)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

N-ethyl-N-[[(2S,3R,4S)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

C19H23N3O2 (325.179)


   

N-ethyl-N-[[(2R,3S,4R)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

N-ethyl-N-[[(2R,3S,4R)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

C19H23N3O2 (325.179)


   

N-ethyl-N-[[(2S,3R,4R)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

N-ethyl-N-[[(2S,3R,4R)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

C19H23N3O2 (325.179)


   

N-ethyl-N-[[(2R,3R,4R)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

N-ethyl-N-[[(2R,3R,4R)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide

C19H23N3O2 (325.179)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

(R)-citalopram(1+)

(R)-citalopram(1+)

C20H22FN2O+ (325.1716)


   

N(2)-[(R)-2-amino-2-(4-hydroxyphenyl)acetyl]-N-butyl-L-cysteinamide

N(2)-[(R)-2-amino-2-(4-hydroxyphenyl)acetyl]-N-butyl-L-cysteinamide

C15H23N3O3S (325.146)


   

methoxymycolate type-3 (IX)

methoxymycolate type-3 (IX)

C19H33O4- (325.2379)


   

(3R,5R,7S,8E,10E,12E)-3-amino-5,7-dihydroxyoctadeca-8,10,12-trienoic acid

(3R,5R,7S,8E,10E,12E)-3-amino-5,7-dihydroxyoctadeca-8,10,12-trienoic acid

C18H31NO4 (325.2253)


   

(2S)-1-[(E)-3-hydroxy-2,4,6-trimethyldec-4-enoyl]pyrrolidine-2-carboxylic acid

(2S)-1-[(E)-3-hydroxy-2,4,6-trimethyldec-4-enoyl]pyrrolidine-2-carboxylic acid

C18H31NO4 (325.2253)


   

(3R,13aR)-4,5-dihydroxy-3,4,5-trimethyl-4,5,8,10,12,13,13a,13b-octahydro-2H-[1,6]dioxacycloundecino[2,3,4-gh]pyrrolizine-2,6(3H)-dione

(3R,13aR)-4,5-dihydroxy-3,4,5-trimethyl-4,5,8,10,12,13,13a,13b-octahydro-2H-[1,6]dioxacycloundecino[2,3,4-gh]pyrrolizine-2,6(3H)-dione

C16H23NO6 (325.1525)


   

3-(Diethoxyphosphinyl)methyl-5-phenethyl-2-isoxazoline

3-(Diethoxyphosphinyl)methyl-5-phenethyl-2-isoxazoline

C16H24NO4P (325.1443)


   

N-[3-(Acetyloxy)-2,2-dimethylpropionyl]-N-butyl-2,3-dimethyl-4-pentenamide

N-[3-(Acetyloxy)-2,2-dimethylpropionyl]-N-butyl-2,3-dimethyl-4-pentenamide

C18H31NO4 (325.2253)


   

2-(2,3-Dihydroxybutoxy)-N-(2-(diethylamino)ethyl)-3-pyridinecarboxamide

2-(2,3-Dihydroxybutoxy)-N-(2-(diethylamino)ethyl)-3-pyridinecarboxamide

C16H27N3O4 (325.2001)


   

(1R,4R,5R,6S,16R)-5,6-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.013,16]hexadec-10-ene-3,7-dione

(1R,4R,5R,6S,16R)-5,6-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.013,16]hexadec-10-ene-3,7-dione

C16H23NO6 (325.1525)


   

S-Farnesylcysteine

S-Farnesylcysteine

C18H31NO2S (325.2075)


   

C10-LNO2

(9E,12Z)-10-Nitrooctadeca-9,12-dienoic acid

C18H31NO4 (325.2253)


   

N-(1-hydroxypropan-2-yl)-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide

N-(1-hydroxypropan-2-yl)-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide

C19H23N3O2 (325.179)


D012102 - Reproductive Control Agents > D010120 - Oxytocics

   
   

N-[[3-Hydroxy-2-(2-pentenyl)cyclopentyl]acetyl]isoleucine

N-[[3-Hydroxy-2-(2-pentenyl)cyclopentyl]acetyl]isoleucine

C18H31NO4 (325.2253)


   

Denatonium

Denatonium

C21H29N2O+ (325.228)


D002491 - Central Nervous System Agents > D000075162 - Abuse-Deterrent Formulations D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D010592 - Pharmaceutic Aids > D000075528 - Aversive Agents

   

12-Nitrolinoleic acid

(9Z,12E)-12-nitrooctadeca-9,12-dienoic acid

C18H31NO4 (325.2253)


   

(+)-Benalaxyl

(+)-Benalaxyl

C20H23NO3 (325.1678)


   

(16S)-deshydroxymethyl-stemmadenine(1+)

(16S)-deshydroxymethyl-stemmadenine(1+)

C20H25N2O2 (325.1916)


An ammonium ion resulting from the protonation of the tertiary amino group of (16S)-deshydroxymethyl-stemmadenine.

   

(16R)-deshydroxymethyl-stemmadenine(1+)

(16R)-deshydroxymethyl-stemmadenine(1+)

C20H25N2O2 (325.1916)


An ammonium ion resulting from the protonation of the tertiary amino group of (16R)-deshydroxymethyl-stemmadenine.

   

Dinor-laam

L-alpha-Acetyl-N,N-dinormethadol

C21H27NO2 (325.2042)


   

S-[(2E,6E)-farnesyl]-L-cysteine zwitterion

S-[(2E,6E)-farnesyl]-L-cysteine zwitterion

C18H31NO2S (325.2075)


An amino acid zwitterion arising from transfer of a proton from the carboxy to the amino group of S-[(2E,6E)]-farnesyl-L-cysteine; major species at pH 7.3.

   

S-[(2E,6E)-farnesyl]-L-cysteine

S-[(2E,6E)-farnesyl]-L-cysteine

C18H31NO2S (325.2075)


An S-farnesyl-L-cysteine where the C=C double bonds at the 2- and 6-positions both have (E)-configuration.

   

AcCa(11:2)

AcCa(11:2)

C18H31NO4 (325.2253)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

SPHP(14:0)

SPHP(d14:0)

C14H32NO5P (325.2018)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   

5,9,9,18-tetramethyl-4,10-dioxa-18-azapentacyclo[9.8.0.0²,⁸.0³,⁵.0¹²,¹⁷]nonadeca-1(11),12,14,16-tetraen-19-one

5,9,9,18-tetramethyl-4,10-dioxa-18-azapentacyclo[9.8.0.0²,⁸.0³,⁵.0¹²,¹⁷]nonadeca-1(11),12,14,16-tetraen-19-one

C20H23NO3 (325.1678)


   

(9s)-3,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene

(9s)-3,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene

C20H23NO3 (325.1678)


   

3-methyl-6-{[7-(3-methylbut-2-en-1-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

3-methyl-6-{[7-(3-methylbut-2-en-1-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

C19H23N3O2 (325.179)


   

(2e,4e)-n-[(2r,4r)-4-amino-5-[(2-carbamimidoylethyl)-c-hydroxycarbonimidoyl]-2-hydroxypentyl]hexa-2,4-dienimidic acid

(2e,4e)-n-[(2r,4r)-4-amino-5-[(2-carbamimidoylethyl)-c-hydroxycarbonimidoyl]-2-hydroxypentyl]hexa-2,4-dienimidic acid

C15H27N5O3 (325.2114)


   

(2e)-n-[(2s)-2-ethoxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enimidic acid

(2e)-n-[(2s)-2-ethoxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enimidic acid

C20H23NO3 (325.1678)


   

n-(1-hydroxy-3-methylpentan-2-yl)-3-[2-methyl-3-(4-oxohexan-2-yl)oxiran-2-yl]prop-2-enimidic acid

n-(1-hydroxy-3-methylpentan-2-yl)-3-[2-methyl-3-(4-oxohexan-2-yl)oxiran-2-yl]prop-2-enimidic acid

C18H31NO4 (325.2253)


   

(2s)-1-[(4e)-3-hydroxy-2,4,6-trimethyldec-4-enoyl]pyrrolidine-2-carboxylic acid

(2s)-1-[(4e)-3-hydroxy-2,4,6-trimethyldec-4-enoyl]pyrrolidine-2-carboxylic acid

C18H31NO4 (325.2253)


   

(3s,6r)-3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

(3s,6r)-3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

C19H23N3O2 (325.179)


   

(4r,7r)-n-[(2r)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

(4r,7r)-n-[(2r)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

C19H23N3O2 (325.179)


   

2-[(2e)-5-[(2r)-3,3-dimethyloxiran-2-yl]-3-methylpent-2-en-1-yl]-1,3-dimethylquinolin-4-one

2-[(2e)-5-[(2r)-3,3-dimethyloxiran-2-yl]-3-methylpent-2-en-1-yl]-1,3-dimethylquinolin-4-one

C21H27NO2 (325.2042)


   

6-hydroxy-8-methyl-7-[(2-methylpropanoyl)oxy]-8-azabicyclo[3.2.1]octan-3-yl (2e)-2-methylbut-2-enoate

6-hydroxy-8-methyl-7-[(2-methylpropanoyl)oxy]-8-azabicyclo[3.2.1]octan-3-yl (2e)-2-methylbut-2-enoate

C17H27NO5 (325.1889)


   

n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-3-[(2r,3s)-2-methyl-3-[(2s)-4-oxohexan-2-yl]oxiran-2-yl]prop-2-enimidic acid

n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-3-[(2r,3s)-2-methyl-3-[(2s)-4-oxohexan-2-yl]oxiran-2-yl]prop-2-enimidic acid

C18H31NO4 (325.2253)


   

(1s,4s,5r,6r,16s)-5,6-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione

(1s,4s,5r,6r,16s)-5,6-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione

C16H23NO6 (325.1525)


   

2-{7-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]heptyl}cyclohex-2-en-1-one

2-{7-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]heptyl}cyclohex-2-en-1-one

C18H31NO4 (325.2253)


   

9-(2h-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)nona-2,4,8-trien-1-one

9-(2h-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)nona-2,4,8-trien-1-one

C20H23NO3 (325.1678)


   

(1s,9s,13s,14r,16r,17s)-4-ethenyl-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione

(1s,9s,13s,14r,16r,17s)-4-ethenyl-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione

C21H27NO2 (325.2042)


   

(2e,7e,9e)-6-ethoxy-11-hydroxy-n-(2-hydroxy-2-methylpropyl)dodeca-2,7,9-trienimidic acid

(2e,7e,9e)-6-ethoxy-11-hydroxy-n-(2-hydroxy-2-methylpropyl)dodeca-2,7,9-trienimidic acid

C18H31NO4 (325.2253)


   

(2s,3r)-2-({1-hydroxy-2-[(1r,2s)-3-oxo-2-pentylcyclopentyl]ethylidene}amino)-3-methylpentanoic acid

(2s,3r)-2-({1-hydroxy-2-[(1r,2s)-3-oxo-2-pentylcyclopentyl]ethylidene}amino)-3-methylpentanoic acid

C18H31NO4 (325.2253)


   

5,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

5,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

C20H23NO3 (325.1678)


   

1,2,10-trimethoxyaporphine; (r)-form

NA

C20H23NO3 (325.1678)


{"Ingredient_id": "HBIN000529","Ingredient_name": "1,2,10-trimethoxyaporphine; (r)-form","Alias": "NA","Ingredient_formula": "C20H23NO3","Ingredient_Smile": "NA","Ingredient_weight": "0","OB_score": "NA","CAS_id": "82444-06-2","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "9631","PubChem_id": "NA","DrugBank_id": "NA"}

   

12- acetoxy group-9-octadecadienoic acid

NA

C18H31NO4 (325.2253)


{"Ingredient_id": "HBIN000697","Ingredient_name": "12- acetoxy group-9-octadecadienoic acid","Alias": "NA","Ingredient_formula": "C18H31NO4","Ingredient_Smile": "CCCCCC=C(CC=CCCCCCCCC(=O)O)[N+](=O)[O-]","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "34800","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(2s,3r)-2-({1-hydroxy-2-[(1r,2r)-3-oxo-2-pentylcyclopentyl]ethylidene}amino)-3-methylpentanoic acid

(2s,3r)-2-({1-hydroxy-2-[(1r,2r)-3-oxo-2-pentylcyclopentyl]ethylidene}amino)-3-methylpentanoic acid

C18H31NO4 (325.2253)


   

4-ethyl-11,15-dihydroxy-12-methoxy-5-methyl-13-oxa-4-azatricyclo[10.2.1.0²,⁵]pentadec-1-en-3-one

4-ethyl-11,15-dihydroxy-12-methoxy-5-methyl-13-oxa-4-azatricyclo[10.2.1.0²,⁵]pentadec-1-en-3-one

C17H27NO5 (325.1889)


   

(2s)-2,6-dimethyl-2-(4-methyl-3-oxopentyl)pyrano[3,2-c]quinolin-5-one

(2s)-2,6-dimethyl-2-(4-methyl-3-oxopentyl)pyrano[3,2-c]quinolin-5-one

C20H23NO3 (325.1678)


   

(4s,7r)-n-[(2s)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

(4s,7r)-n-[(2s)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

C19H23N3O2 (325.179)


   

2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13-ene-15,20-dione

2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13-ene-15,20-dione

C21H27NO2 (325.2042)


   

1,2-dihydroxy-8-(3-hydroxydec-1-en-1-yl)-4-methyl-6-oxa-3-azabicyclo[3.2.1]oct-2-en-7-one

1,2-dihydroxy-8-(3-hydroxydec-1-en-1-yl)-4-methyl-6-oxa-3-azabicyclo[3.2.1]oct-2-en-7-one

C17H27NO5 (325.1889)


   

(2e)-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-3-[(2r,3s)-2-methyl-3-[(2s)-4-oxohexan-2-yl]oxiran-2-yl]prop-2-enimidic acid

(2e)-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-3-[(2r,3s)-2-methyl-3-[(2s)-4-oxohexan-2-yl]oxiran-2-yl]prop-2-enimidic acid

C18H31NO4 (325.2253)


   

(2e,4z)-n-[(2r,4r)-4-amino-5-[(2-carbamimidoylethyl)-c-hydroxycarbonimidoyl]-2-hydroxypentyl]hexa-2,4-dienimidic acid

(2e,4z)-n-[(2r,4r)-4-amino-5-[(2-carbamimidoylethyl)-c-hydroxycarbonimidoyl]-2-hydroxypentyl]hexa-2,4-dienimidic acid

C15H27N5O3 (325.2114)


   

(2e)-3-(3-heptyloxiran-2-yl)-1-[(3r,4s,5s)-2,3,4-trihydroxy-5-methyl-4,5-dihydropyrrol-3-yl]prop-2-en-1-one

(2e)-3-(3-heptyloxiran-2-yl)-1-[(3r,4s,5s)-2,3,4-trihydroxy-5-methyl-4,5-dihydropyrrol-3-yl]prop-2-en-1-one

C17H27NO5 (325.1889)


   

3-hydroxy-n-{2-hydroxy-1-[(2r,5s,6r)-5-hydroxy-6-methyloxan-2-yl]pyrimidin-4-ylidene}-3-methylbutanamide

3-hydroxy-n-{2-hydroxy-1-[(2r,5s,6r)-5-hydroxy-6-methyloxan-2-yl]pyrimidin-4-ylidene}-3-methylbutanamide

C15H23N3O5 (325.1638)


   

(1s,19s)-8,19-dimethoxy-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,⁹.0⁴,⁷]icosa-2(9),3,7,16-tetraene

(1s,19s)-8,19-dimethoxy-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,⁹.0⁴,⁷]icosa-2(9),3,7,16-tetraene

C21H27NO2 (325.2042)


   

3-(3-heptyloxiran-2-yl)-1-(2,3,4-trihydroxy-5-methyl-4,5-dihydropyrrol-3-yl)prop-2-en-1-one

3-(3-heptyloxiran-2-yl)-1-(2,3,4-trihydroxy-5-methyl-4,5-dihydropyrrol-3-yl)prop-2-en-1-one

C17H27NO5 (325.1889)


   

1-[(4e)-3-hydroxy-2,4,6-trimethyldec-4-enoyl]pyrrolidine-2-carboxylic acid

1-[(4e)-3-hydroxy-2,4,6-trimethyldec-4-enoyl]pyrrolidine-2-carboxylic acid

C18H31NO4 (325.2253)


   

(1e,5r,11s,12s,15s)-4-ethyl-11,15-dihydroxy-12-methoxy-5-methyl-13-oxa-4-azatricyclo[10.2.1.0²,⁵]pentadec-1-en-3-one

(1e,5r,11s,12s,15s)-4-ethyl-11,15-dihydroxy-12-methoxy-5-methyl-13-oxa-4-azatricyclo[10.2.1.0²,⁵]pentadec-1-en-3-one

C17H27NO5 (325.1889)


   

(1r)-2-[(2s,6r)-6-[(2s)-2-hydroxy-2-phenylethyl]piperidin-2-yl]-1-phenylethanol

(1r)-2-[(2s,6r)-6-[(2s)-2-hydroxy-2-phenylethyl]piperidin-2-yl]-1-phenylethanol

C21H27NO2 (325.2042)


   

2,3,3,7-tetramethyl-6-[3-methyl-4-(1h-pyrrol-2-yl)buta-1,3-dien-1-yl]-2h-furo[3,2-c]pyran-4-one

2,3,3,7-tetramethyl-6-[3-methyl-4-(1h-pyrrol-2-yl)buta-1,3-dien-1-yl]-2h-furo[3,2-c]pyran-4-one

C20H23NO3 (325.1678)


   

(3s,6s)-3-methyl-6-{[7-(3-methylbut-2-en-1-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

(3s,6s)-3-methyl-6-{[7-(3-methylbut-2-en-1-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

C19H23N3O2 (325.179)


   

8,19-dimethoxy-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,⁹.0⁴,⁷]icosa-2(9),3,7,16-tetraene

8,19-dimethoxy-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,⁹.0⁴,⁷]icosa-2(9),3,7,16-tetraene

C21H27NO2 (325.2042)


   

(12e)-12-ethylidene-10-(hydroxymethyl)-14-methyl-2-oxo-9,14-diazapentacyclo[9.5.2.0¹,⁹.0³,⁸.0¹⁴,¹⁷]octadeca-3,5,7-trien-14-ium

(12e)-12-ethylidene-10-(hydroxymethyl)-14-methyl-2-oxo-9,14-diazapentacyclo[9.5.2.0¹,⁹.0³,⁸.0¹⁴,¹⁷]octadeca-3,5,7-trien-14-ium

[C20H25N2O2]+ (325.1916)


   

(9s)-5,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

(9s)-5,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

C20H23NO3 (325.1678)


   

(4r,7r)-n-[(2s)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

(4r,7r)-n-[(2s)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

C19H23N3O2 (325.179)


   

(1r,5r,8r,9s,11r,14r,17r,18r)-5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,16-dione

(1r,5r,8r,9s,11r,14r,17r,18r)-5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,16-dione

C21H27NO2 (325.2042)


   

(3r,5s,7ar,11ar)-3-(chloromethyl)-5-hexyl-decahydropyrrolo[2,1-j]quinolin-7-one

(3r,5s,7ar,11ar)-3-(chloromethyl)-5-hexyl-decahydropyrrolo[2,1-j]quinolin-7-one

C19H32ClNO (325.2172)


   

2-{7-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]heptyl}cyclohex-2-en-1-one

2-{7-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]heptyl}cyclohex-2-en-1-one

C18H31NO4 (325.2253)


   

2-({1-hydroxy-2-[(1r,2s)-3-oxo-2-pentylcyclopentyl]ethylidene}amino)-3-methylpentanoic acid

2-({1-hydroxy-2-[(1r,2s)-3-oxo-2-pentylcyclopentyl]ethylidene}amino)-3-methylpentanoic acid

C18H31NO4 (325.2253)


   

(1s,9s,13s,14r,17s)-4-ethenyl-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione

(1s,9s,13s,14r,17s)-4-ethenyl-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione

C21H27NO2 (325.2042)


   

2-(4-hydroxy-4-methylpent-2-en-1-yl)-2,6-dimethylpyrano[3,2-c]quinolin-5-one

2-(4-hydroxy-4-methylpent-2-en-1-yl)-2,6-dimethylpyrano[3,2-c]quinolin-5-one

C20H23NO3 (325.1678)


   

(7-oxo-5,6-dihydropyrrolizin-1-yl)methyl 2,3-dihydroxy-2-(1-methoxyethyl)-3-methylbutanoate

(7-oxo-5,6-dihydropyrrolizin-1-yl)methyl 2,3-dihydroxy-2-(1-methoxyethyl)-3-methylbutanoate

C16H23NO6 (325.1525)


   

(1r,2s,3r,5r,6s,10s,16s)-2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13(19)-ene-14,20-dione

(1r,2s,3r,5r,6s,10s,16s)-2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13(19)-ene-14,20-dione

C21H27NO2 (325.2042)


   

14,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2,4,6,13,15-hexaene

14,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2,4,6,13,15-hexaene

C20H23NO3 (325.1678)


   

(3s,6s,8ar,12ar)-3-chloro-6-hexyl-decahydro-1h-pyrido[2,1-j]quinolin-8-one

(3s,6s,8ar,12ar)-3-chloro-6-hexyl-decahydro-1h-pyrido[2,1-j]quinolin-8-one

C19H32ClNO (325.2172)


   

2-{[1-hydroxy-2-(3-oxo-2-pentylcyclopentyl)ethylidene]amino}-3-methylpentanoic acid

2-{[1-hydroxy-2-(3-oxo-2-pentylcyclopentyl)ethylidene]amino}-3-methylpentanoic acid

C18H31NO4 (325.2253)


   

3,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene

3,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene

C20H23NO3 (325.1678)


   

(4s,7r)-n-(1-hydroxypropan-2-yl)-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

(4s,7r)-n-(1-hydroxypropan-2-yl)-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

C19H23N3O2 (325.179)


   

(2e,4e,8e)-9-(2h-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)nona-2,4,8-trien-1-one

(2e,4e,8e)-9-(2h-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)nona-2,4,8-trien-1-one

C20H23NO3 (325.1678)


   

3-hydroxy-n-[2-hydroxy-1-(5-hydroxy-6-methyloxan-2-yl)pyrimidin-4-ylidene]-3-methylbutanamide

3-hydroxy-n-[2-hydroxy-1-(5-hydroxy-6-methyloxan-2-yl)pyrimidin-4-ylidene]-3-methylbutanamide

C15H23N3O5 (325.1638)


   

(2e,7e,9e)-11-ethoxy-6-hydroxy-n-(2-hydroxy-2-methylpropyl)dodeca-2,7,9-trienimidic acid

(2e,7e,9e)-11-ethoxy-6-hydroxy-n-(2-hydroxy-2-methylpropyl)dodeca-2,7,9-trienimidic acid

C18H31NO4 (325.2253)


   

2,3,3,7-tetramethyl-6-[(1e,3e)-3-methyl-4-(1h-pyrrol-2-yl)buta-1,3-dien-1-yl]-2h-furo[3,2-c]pyran-4-one

2,3,3,7-tetramethyl-6-[(1e,3e)-3-methyl-4-(1h-pyrrol-2-yl)buta-1,3-dien-1-yl]-2h-furo[3,2-c]pyran-4-one

C20H23NO3 (325.1678)


   

(2s,3s,5r,8s)-5,9,9,18-tetramethyl-4,10-dioxa-18-azapentacyclo[9.8.0.0²,⁸.0³,⁵.0¹²,¹⁷]nonadeca-1(11),12,14,16-tetraen-19-one

(2s,3s,5r,8s)-5,9,9,18-tetramethyl-4,10-dioxa-18-azapentacyclo[9.8.0.0²,⁸.0³,⁵.0¹²,¹⁷]nonadeca-1(11),12,14,16-tetraen-19-one

C20H23NO3 (325.1678)


   

(2s,3r,4s)-2-heptyl-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2h,4h-pyrano[2,3-c]pyrrol-5-one

(2s,3r,4s)-2-heptyl-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2h,4h-pyrano[2,3-c]pyrrol-5-one

C17H27NO5 (325.1889)


   

3-(3,7-dimethylocta-2,6-dien-1-yl)-4-methoxy-2-methylquinolin-1-ium-1-olate

3-(3,7-dimethylocta-2,6-dien-1-yl)-4-methoxy-2-methylquinolin-1-ium-1-olate

C21H27NO2 (325.2042)


   

(2z)-n-[2-(3,4-dimethoxyphenyl)ethyl]-n-methyl-3-phenylprop-2-enamide

(2z)-n-[2-(3,4-dimethoxyphenyl)ethyl]-n-methyl-3-phenylprop-2-enamide

C20H23NO3 (325.1678)


   

3-(chloromethyl)-5-hexyl-decahydropyrrolo[2,1-j]quinolin-7-one

3-(chloromethyl)-5-hexyl-decahydropyrrolo[2,1-j]quinolin-7-one

C19H32ClNO (325.2172)


   

(1s,4r,6s,7r,10r,11r,12r,16s,17r)-10-hydroxy-12-methyl-3-methylidene-8-azaheptacyclo[8.7.1.1⁴,¹⁷.1⁸,¹².0¹,⁶.0⁷,¹⁶.0¹¹,¹⁶]icosan-19-one

(1s,4r,6s,7r,10r,11r,12r,16s,17r)-10-hydroxy-12-methyl-3-methylidene-8-azaheptacyclo[8.7.1.1⁴,¹⁷.1⁸,¹².0¹,⁶.0⁷,¹⁶.0¹¹,¹⁶]icosan-19-one

C21H27NO2 (325.2042)


   

(2s)-2-[(2e)-4-hydroxy-4-methylpent-2-en-1-yl]-2,6-dimethylpyrano[3,2-c]quinolin-5-one

(2s)-2-[(2e)-4-hydroxy-4-methylpent-2-en-1-yl]-2,6-dimethylpyrano[3,2-c]quinolin-5-one

C20H23NO3 (325.1678)


   

(2e)-3-[(2r,3r)-3-heptyloxiran-2-yl]-1-[(3r,4s,5s)-2,3,4-trihydroxy-5-methyl-4,5-dihydropyrrol-3-yl]prop-2-en-1-one

(2e)-3-[(2r,3r)-3-heptyloxiran-2-yl]-1-[(3r,4s,5s)-2,3,4-trihydroxy-5-methyl-4,5-dihydropyrrol-3-yl]prop-2-en-1-one

C17H27NO5 (325.1889)


   

n-acetyl-n-[2-(5-hydroxy-1h-indol-3-yl)ethyl]-2-methyl-1h-pyrrole-3-carboxamide

n-acetyl-n-[2-(5-hydroxy-1h-indol-3-yl)ethyl]-2-methyl-1h-pyrrole-3-carboxamide

C18H19N3O3 (325.1426)


   

(1r,2s,3r,5r,6s,10s,16r,19s)-2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13-ene-15,20-dione

(1r,2s,3r,5r,6s,10s,16r,19s)-2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13-ene-15,20-dione

C21H27NO2 (325.2042)


   

(1r,10s,11r,12e,14r,17r)-12-ethylidene-10-(hydroxymethyl)-14-methyl-2-oxo-9,14-diazapentacyclo[9.5.2.0¹,⁹.0³,⁸.0¹⁴,¹⁷]octadeca-3,5,7-trien-14-ium

(1r,10s,11r,12e,14r,17r)-12-ethylidene-10-(hydroxymethyl)-14-methyl-2-oxo-9,14-diazapentacyclo[9.5.2.0¹,⁹.0³,⁸.0¹⁴,¹⁷]octadeca-3,5,7-trien-14-ium

[C20H25N2O2]+ (325.1916)


   

(2s)-2,3,3,7-tetramethyl-6-[(1e,3e)-3-methyl-4-(1h-pyrrol-2-yl)buta-1,3-dien-1-yl]-2h-furo[3,2-c]pyran-4-one

(2s)-2,3,3,7-tetramethyl-6-[(1e,3e)-3-methyl-4-(1h-pyrrol-2-yl)buta-1,3-dien-1-yl]-2h-furo[3,2-c]pyran-4-one

C20H23NO3 (325.1678)


   

(9s)-4,5,15-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

(9s)-4,5,15-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

C20H23NO3 (325.1678)


   

(2r,3s,4s)-2-[(2z)-but-2-en-2-yl]-4-methoxy-3-methyl-8-phenyl-2h,3h,4h-pyrano[3,2-c]pyridin-5-ol

(2r,3s,4s)-2-[(2z)-but-2-en-2-yl]-4-methoxy-3-methyl-8-phenyl-2h,3h,4h-pyrano[3,2-c]pyridin-5-ol

C20H23NO3 (325.1678)


   

2-[5-(3,3-dimethyloxiran-2-yl)-3-methylpent-2-en-1-yl]-1,3-dimethylquinolin-4-one

2-[5-(3,3-dimethyloxiran-2-yl)-3-methylpent-2-en-1-yl]-1,3-dimethylquinolin-4-one

C21H27NO2 (325.2042)


   

4-ethenyl-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione

4-ethenyl-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione

C21H27NO2 (325.2042)


   

2-{7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]heptyl}cyclohex-2-en-1-one

2-{7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]heptyl}cyclohex-2-en-1-one

C18H31NO4 (325.2253)


   

1-[2-(dimethylamino)ethyl]-3,4-dimethoxyphenanthren-2-ol

1-[2-(dimethylamino)ethyl]-3,4-dimethoxyphenanthren-2-ol

C20H23NO3 (325.1678)


   

n-[2-ethoxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enimidic acid

n-[2-ethoxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enimidic acid

C20H23NO3 (325.1678)


   

n-(1-hydroxypropan-2-yl)-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

n-(1-hydroxypropan-2-yl)-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

C19H23N3O2 (325.179)


   

10-hydroxy-12-methyl-3-methylidene-8-azaheptacyclo[8.7.1.1⁴,¹⁷.1⁸,¹².0¹,⁶.0⁷,¹⁶.0¹¹,¹⁶]icosan-19-one

10-hydroxy-12-methyl-3-methylidene-8-azaheptacyclo[8.7.1.1⁴,¹⁷.1⁸,¹².0¹,⁶.0⁷,¹⁶.0¹¹,¹⁶]icosan-19-one

C21H27NO2 (325.2042)


   

(1r,5r,8r,9s,11s,14r,16r,17r,18r)-16-hydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,10-dione

(1r,5r,8r,9s,11s,14r,16r,17r,18r)-16-hydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,10-dione

C20H23NO3 (325.1678)


   

(1r,2s,3r,5r,6s,10s,16r,19r)-2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13-ene-15,20-dione

(1r,2s,3r,5r,6s,10s,16r,19r)-2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13-ene-15,20-dione

C21H27NO2 (325.2042)


   

(2e)-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-3-[(2r)-2-methyl-3-[(2s)-4-oxohexan-2-yl]oxiran-2-yl]prop-2-enimidic acid

(2e)-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-3-[(2r)-2-methyl-3-[(2s)-4-oxohexan-2-yl]oxiran-2-yl]prop-2-enimidic acid

C18H31NO4 (325.2253)


   

3-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-4-methoxy-2-methylquinolin-1-ium-1-olate

3-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-4-methoxy-2-methylquinolin-1-ium-1-olate

C21H27NO2 (325.2042)


   

(1s,2s,3r,5r,6s,10s,16s)-2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13(19)-ene-14,20-dione

(1s,2s,3r,5r,6s,10s,16s)-2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13(19)-ene-14,20-dione

C21H27NO2 (325.2042)


   

(1s,4r,5s,8r)-1,2-dihydroxy-8-[(1e,3r)-3-hydroxydec-1-en-1-yl]-4-methyl-6-oxa-3-azabicyclo[3.2.1]oct-2-en-7-one

(1s,4r,5s,8r)-1,2-dihydroxy-8-[(1e,3r)-3-hydroxydec-1-en-1-yl]-4-methyl-6-oxa-3-azabicyclo[3.2.1]oct-2-en-7-one

C17H27NO5 (325.1889)


   

2-[(2e)-5-(3,3-dimethyloxiran-2-yl)-3-methylpent-2-en-1-yl]-1,3-dimethylquinolin-4-one

2-[(2e)-5-(3,3-dimethyloxiran-2-yl)-3-methylpent-2-en-1-yl]-1,3-dimethylquinolin-4-one

C21H27NO2 (325.2042)


   

5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,16-dione

5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,16-dione

C21H27NO2 (325.2042)


   

(9s)-4,16-dimethoxy-10,15-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaen-5-ol

(9s)-4,16-dimethoxy-10,15-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaen-5-ol

C20H23NO3 (325.1678)


   

(1r,4s,5r,8s)-1,2-dihydroxy-8-[(1e,3s)-3-hydroxydec-1-en-1-yl]-4-methyl-6-oxa-3-azabicyclo[3.2.1]oct-2-en-7-one

(1r,4s,5r,8s)-1,2-dihydroxy-8-[(1e,3s)-3-hydroxydec-1-en-1-yl]-4-methyl-6-oxa-3-azabicyclo[3.2.1]oct-2-en-7-one

C17H27NO5 (325.1889)


   

(2s)-1-[(2s,3r,4e,6r)-3-hydroxy-2,4,6-trimethyldec-4-enoyl]pyrrolidine-2-carboxylic acid

(2s)-1-[(2s,3r,4e,6r)-3-hydroxy-2,4,6-trimethyldec-4-enoyl]pyrrolidine-2-carboxylic acid

C18H31NO4 (325.2253)


   

2-(3,4-dimethoxyphenanthren-1-yl)-n,n-dimethylethanamine oxide

2-(3,4-dimethoxyphenanthren-1-yl)-n,n-dimethylethanamine oxide

C20H23NO3 (325.1678)


   

(3s,6s)-3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

(3s,6s)-3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

C19H23N3O2 (325.179)


   

(1r,5r,8r,9s,17r,18r)-5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,16-dione

(1r,5r,8r,9s,17r,18r)-5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,16-dione

C21H27NO2 (325.2042)


   

2,2,6-trimethyl-8-[(3-methylbut-2-en-1-yl)oxy]pyrano[3,2-c]quinolin-5-one

2,2,6-trimethyl-8-[(3-methylbut-2-en-1-yl)oxy]pyrano[3,2-c]quinolin-5-one

C20H23NO3 (325.1678)


   

16-hydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,10-dione

16-hydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,10-dione

C20H23NO3 (325.1678)


   

1-(3-hydroxy-2,4,6-trimethyldec-4-enoyl)pyrrolidine-2-carboxylic acid

1-(3-hydroxy-2,4,6-trimethyldec-4-enoyl)pyrrolidine-2-carboxylic acid

C18H31NO4 (325.2253)


   

2-[6-(2-hydroxy-2-phenylethyl)piperidin-2-yl]-1-phenylethanol

2-[6-(2-hydroxy-2-phenylethyl)piperidin-2-yl]-1-phenylethanol

C21H27NO2 (325.2042)


   

3-chloro-6-hexyl-decahydro-1h-pyrido[2,1-j]quinolin-8-one

3-chloro-6-hexyl-decahydro-1h-pyrido[2,1-j]quinolin-8-one

C19H32ClNO (325.2172)


   

methyl[2-(2,3,4-trimethoxyphenanthren-1-yl)ethyl]amine

methyl[2-(2,3,4-trimethoxyphenanthren-1-yl)ethyl]amine

C20H23NO3 (325.1678)


   

2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13(19)-ene-14,20-dione

2,6-dimethyl-8-azahexacyclo[11.5.1.1¹,⁵.0²,¹⁰.0³,⁸.0¹⁶,¹⁹]icos-13(19)-ene-14,20-dione

C21H27NO2 (325.2042)


   

2-heptyl-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2h,4h-pyrano[2,3-c]pyrrol-5-one

2-heptyl-3,4-dihydroxy-6-methoxy-3-methyl-7-methylidene-2h,4h-pyrano[2,3-c]pyrrol-5-one

C17H27NO5 (325.1889)


   

(4s,7r)-n-[(2r)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

(4s,7r)-n-[(2r)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid

C19H23N3O2 (325.179)


   

(3s)-3-methyl-6-{[7-(3-methylbut-2-en-1-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

(3s)-3-methyl-6-{[7-(3-methylbut-2-en-1-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

C19H23N3O2 (325.179)


   

3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

C19H23N3O2 (325.179)


   

(1r,5r,8r,9s,11s,14s,17r,18r)-5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,16-dione

(1r,5r,8r,9s,11s,14s,17r,18r)-5,7-dimethyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,16-dione

C21H27NO2 (325.2042)


   

(3s,6s)-3-methyl-6-{[1-(3-methylbut-2-en-1-yl)indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

(3s,6s)-3-methyl-6-{[1-(3-methylbut-2-en-1-yl)indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol

C19H23N3O2 (325.179)


   

(1s,12s)-15-ethylidene-7-hydroxy-13-(hydroxymethyl)-17-methyl-3,17-diazapentacyclo[12.3.1.0²,¹⁰.0⁴,⁹.0¹²,¹⁷]octadeca-2(10),4,6,8-tetraen-17-ium

(1s,12s)-15-ethylidene-7-hydroxy-13-(hydroxymethyl)-17-methyl-3,17-diazapentacyclo[12.3.1.0²,¹⁰.0⁴,⁹.0¹²,¹⁷]octadeca-2(10),4,6,8-tetraen-17-ium

[C20H25N2O2]+ (325.1916)


   

(3e)-6-{[(2r,3r,4e)-1,3-dihydroxy-2,4-dimethylhept-4-en-1-ylidene]amino}-2,4-dimethyl-5-oxohex-3-enoic acid

(3e)-6-{[(2r,3r,4e)-1,3-dihydroxy-2,4-dimethylhept-4-en-1-ylidene]amino}-2,4-dimethyl-5-oxohex-3-enoic acid

C17H27NO5 (325.1889)