Exact Mass: 285.1477

Exact Mass Matches: 285.1477

Found 500 metabolites which its exact mass value is equals to given mass value 285.1477, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Piperine

(2E,4E)-5-(2H-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)penta-2,4-dien-1-one

C17H19NO3 (285.1365)


Piperine, also known as fema 2909, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. Piperine is a pepper tasting compound. Piperine is found in the highest concentration within pepper (Piper nigrum) and many other Piper species. Piperine has also been detected, but not quantified, in dills and herbs and spices. Piperine is responsible for the hot taste of pepper. Piperine has been used in trials studying the treatment of Multiple Myeloma and Deglutition Disorders. It is used to impart pungent taste to brandy. Piperine is a N-acylpiperidine that is piperidine substituted by a (1E,3E)-1-(1,3-benzodioxol-5-yl)-5-oxopenta-1,3-dien-5-yl group at the nitrogen atom. It is an alkaloid isolated from the plant Piper nigrum. It has a role as a NF-kappaB inhibitor, a plant metabolite, a food component and a human blood serum metabolite. It is a member of benzodioxoles, a N-acylpiperidine, a piperidine alkaloid and a tertiary carboxamide. It is functionally related to an (E,E)-piperic acid. Bioperine has been used in trials studying the treatment of Multiple Myeloma and Deglutition Disorders. Piperine is a natural product found in Macropiper, Piper boehmeriifolium, and other organisms with data available. See also: Black Pepper (part of) ... View More ... Constituent of pepper (Piper nigrum) and many other Piper subspecies (Piperaceae). It is used to impart pungent taste to brandy. Responsible for the hot taste of pepper. Flavour ingredient. Piperine is found in dill, herbs and spices, and pepper (spice). A N-acylpiperidine that is piperidine substituted by a (1E,3E)-1-(1,3-benzodioxol-5-yl)-5-oxopenta-1,3-dien-5-yl group at the nitrogen atom. It is an alkaloid isolated from the plant Piper nigrum. Piperine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=94-62-2 (retrieved 2024-07-01) (CAS RN: 94-62-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell. Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell.

   

Letrozole

Letrozole, Pharmaceutical Secondary Standard; Certified Reference Material

C17H11N5 (285.1014)


Letrozole is a member of triazoles and a nitrile. It has a role as an antineoplastic agent and an EC 1.14.14.14 (aromatase) inhibitor. Letrozole, or CGS 20267, is an oral non-steroidal type II aromatase inhibitor first described in the literature in 1990. It is a third generation aromatase inhibitor like [exemestane] and [anastrozole], meaning it does not significantly affect cortisol, aldosterone, and thyroxine. Letrozole was granted FDA approval on 25 July 1997. Letrozole is an Aromatase Inhibitor. The mechanism of action of letrozole is as an Aromatase Inhibitor. Letrozole is a nonsteroidal inhibitor of aromatase which effectively blocks estrogen synthesis in postmenopausal women and is used as therapy of estrogen receptor positive breast cancer, usually after resection and after failure of tamoxifen. Letrozole has been associated with a low rate of serum enzyme elevations during therapy and rare instances of clinically apparent liver injury. Letrozole is a nonsteroidal inhibitor of estrogen synthesis with antineoplastic activity. As a third-generation aromatase inhibitor, letrozole selectively and reversibly inhibits aromatase, which may result in growth inhibition of estrogen-dependent breast cancer cells. Aromatase, a cytochrome P-450 enzyme localized to the endoplasmic reticulum of the cell and found in many tissues including those of the premenopausal ovary, liver, and breast, catalyzes the aromatization of androstenedione and testosterone into estrone and estradiol, the final step in estrogen biosynthesis. Letrozole (INN, trade name Femara®) is an oral non-steroidal aromatase inhibitor that has been introduced for the adjuvant treatment of hormonally-responsive breast cancer. Estrogens are produced by the conversion of androgens through the activity of the aromatase enzyme. Letrozole blocks production of estrogens in this way by competitive, reversible binding to the heme of its cytochrome P450 unit. The action is specific, and letrozole does not reduce production of mineralo- or corticosteroids. In contrast, the antiestrogenic action of tamoxifen, the major medical therapy prior to the arrival of aromatase inhibitors, is due to its interfering with the estrogen receptor, rather than inhibiting estrogen production. Letrozole is approved by the United States Food and Drug Administration (FDA) for the treatment of local or metastatic breast cancer that is hormone receptor positive or has an unknown receptor status in postmenopausal women. Side effects include signs and symptoms of hypoestrogenism. There is concern that long term use may lead to osteoporosis, which is why prescriptions of Letrozole are often accompanied by prescriptions of osteoporosis-fighting medication such as Fosamax. Letrozole has shown to reduce estrogen levels by 98 percent while raising testosterone levels. The anti-estrogen action of letrozole is preferred by athletes and bodybuilders for use during a steroid cycle to reduce bloating due to excess water retention and prevent the formation of gynecomastia related breast tissue that is a side effect of some anabolic steroids. Usage above 2.5 mg/day is known to potentially temporarily kill sex drive. Above 5mg/day for extended periods may cause kidney problems. Letrozole has also been shown to delay the fusing of the growth plates in adolescents. This may boost the effectiveness of growth hormone, and thus Letrozole is used to treat adolescents and children with short stature. A triazole and benzonitrile derivative that is a selective non-steroidal aromatase inhibitor, similar to ANASTROZOLE. It is used in the treatment of metastatic or locally advanced breast cancer in postmenopausal women. See also: Letrozole; ribociclib succinate (component of). Letrozole (INN, trade name Femara) is an oral non-steroidal aromatase inhibitor that has been introduced for the adjuvant treatment of hormonally-responsive breast cancer L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BG - Aromatase inhibitors D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D047072 - Aromatase Inhibitors C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3585 Letrozole (CGS 20267) is a potent, selective, reversible and orally active non-steroidal inhibitor of aromatase, with an IC50 of 11.5 nM. Letrozole selective inhibits estrogen biosynthesis, and can be used for the research of breast cancer[1][2][3].

   

Machiline

7-Isoquinolinol, 1,2,3,4-tetrahydro-1-[(4-hydroxyphenyl)methyl]-6-methoxy-, (1R)-

C17H19NO3 (285.1365)


(R)-coclaurine is a coclaurine. It is an enantiomer of a (S)-coclaurine. (R)-Coclaurine is a natural product found in Mezilaurus synandra, Stephania excentrica, and other organisms with data available.

   

Coclaurine

(1S)-1-[(4-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

C17H19NO3 (285.1365)


(S)-coclaurine is the (S)-enantiomer of coclaurine. It is a conjugate base of a (S)-coclaurinium. It is an enantiomer of a (R)-coclaurine. Coclaurine is a natural product found in Delphinium pentagynum, Damburneya salicifolia, and other organisms with data available. Coclaurine, also known as (r,s)-coclaurine or machiline, is a member of the class of compounds known as benzylisoquinolines. Benzylisoquinolines are organic compounds containing an isoquinoline to which a benzyl group is attached. Coclaurine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coclaurine can be found in custard apple and soursop, which makes coclaurine a potential biomarker for the consumption of these food products. Coclaurine is a nicotinic acetylcholine receptor antagonist which has been isolated from a variety of plant sources including Nelumbo nucifera, Sarcopetalum harveyanum, Ocotea duckei, and others. It belongs to the class of tetrahydroisoquinoline alkaloids. Dimerization of coclaurine leads to the biscoclaurine alkaloids such as cepharanthine .

   

Aposcopolamine

Hyoscine Hydrobromide Imp. C (EP); Hyoscine Imp. C (EP); (1R,2R,4S,5S,7s)-9-Methyl-3-oxa-9-azatricyclo[3.3.1.02,4]non-7-yl 2-Phenylprop-2-enoate; Apohyoscine; Hyoscine Hydrobromide Impurity C; Hyoscine Impurity C

C17H19NO3 (285.1365)


Aposcopolamine is an alkaloid that can be isolated from Datura ferox. Aposcopolamin can closely binds with ACHE, ADRA2A and CHRM2. Aposcopolamine can be used for the research of Alzheimer's disease[1]. Aposcopolamine is an alkaloid that can be isolated from Datura ferox. Aposcopolamin can closely binds with ACHE, ADRA2A and CHRM2. Aposcopolamine can be used for the research of Alzheimer's disease[1]. Aposcopolamine is an alkaloid that can be isolated from Datura ferox. Aposcopolamin can closely binds with ACHE, ADRA2A and CHRM2. Aposcopolamine can be used for the research of Alzheimer's disease[1].

   

Norcodeine

(1S,5R,13R,14S,17R)-10-methoxy-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7,9,11(18),15-tetraen-14-ol

C17H19NO3 (285.1365)


Norcodeine is a metabolite of codeine. Norcodeine is an opiate analogue that is the N-demethylated derivative of codeine. Norcodeine has relatively little opioid activity in its own right, but is formed as a metabolite of codeine following ingestion. (Wikipedia) D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate

   

Morphine

(1S,5R,13R,14S,17R)-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraene-10,14-diol

C17H19NO3 (285.1365)


Morphine, also known as (-)-morphine or morphine sulfate, is a member of the class of compounds known as morphinans. Morphinans are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Morphine is soluble (in water) and a very weakly acidic compound (based on its pKa). Morphine can be synthesized from morphinan. Morphine is also a parent compound for other transformation products, including but not limited to, myrophine, heroin, and codeine. Morphine can be found in a number of food items such as nanking cherry, eggplant, millet, and common hazelnut, which makes morphine a potential biomarker for the consumption of these food products. Morphine can be found primarily in blood and urine, as well as in human kidney and liver tissues. In humans, morphine is involved in several metabolic pathways, some of which include heroin action pathway, morphine metabolism pathway, heroin metabolism pathway, and codeine metabolism pathway. Morphine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Morphine is a drug which is used for the relief and treatment of severe pain. The primary source of morphine is isolation from poppy straw of the opium poppy. In 2013, an estimated 523 000 kg of morphine were produced. About 45 000 kg were used directly for pain, a four-time increase over the last twenty years. Most use for this purpose was in the developed world. About 70\\% of morphine is used to make other opioids such as hydromorphone, oxymorphone, and heroin. It is a Schedule II drug in the United States, Class A in the United Kingdom, and Schedule I in Canada. It is on the World Health Organizations List of Essential Medicines, the most effective and safe medicines needed in a health system. Morphine is sold under many trade names . Primarily hepatic (90\\%), converted to dihydromorphinone and normorphineand is) also converted to morphine-3-glucuronide (M3G) and morphine-6-glucuronide. Virtually all morphine is converted to glucuronide metabolites; only a small fraction (less than 5\\%) of absorbed morphine is demethylated (DrugBank). In the treatment of morphine overdosage, primary attention should be given to the re- establishment of a patent airway and institution of assisted or controlled ventilation. Supportive measures (including oxygen, vasopressors) should be employed in the management of circulatory shock and pulmonary edema accompanying overdose as indicated. Cardiac arrest or arrhythmias may require cardiac massage or defibrillation. The pure opioid antagonists, such as naloxone, are specific antidotes against respiratory depression which results from opioid overdose. Naloxone should be administered intravenously; however, because its duration of action is relatively short, the patient must be carefully monitored until spontaneous respiration is reliably re-established. If the response to naloxone is suboptimal or not sustained, additional naloxone may be administered, as needed, or given by continuous infusion to maintain alertness and respiratory function; however, there is no information available about the cumulative dose of naloxone that may be safely administered (L1712) (T3DB). Morphine is the principal alkaloid in opium and the prototype opiate analgesic and narcotic. In 2017, morphine was the 155th most commonly prescribed medication in the United States, with more than four million prescriptions. Morphine is used primarily to treat both acute and chronic severe pain. Its duration of analgesia is about three to seven hours. A large overdose of morphine can cause asphyxia and death by respiratory depression if the person does not receive medical attention immediately. Morphine is naturally produced by several plants (such as the opium poppy) and animals (PMID: 22578954). Morphine was first isolated between 1803 and 1805 by Friedrich Sertürner. Sertürner originally named the substance morphium after the Greek god of dreams, Morpheus, as it has a tendency to cause sleep. The primary source of morphine is isolation from poppy straw of the opium poppy. Morphine is also endogenously produced by humans. In the mid 2000s it was found morphine can be synthesized by white blood cells (PMID 22578954). CYP2D6, a cytochrome P450 isoenzyme, catalyzes the biosynthesis of morphine from codeine and dopamine from tyramine. The morphine biosynthetic pathway in humans occurs as follows: L-tyrosine -> para-tyramine or L-DOPA -> dopamine -> (S)-norlaudanosoline -> (S)-reticuline -> 1,2-dehydroretinulinium -> (R)-reticuline -> salutaridine -> salutaridinol -> thebaine -> neopinone -> codeinone -> codeine -> morphine. (S)-Norlaudanosoline (also known as tetrahydropapaveroline) which is an important intermediate in the WBC biosynthesis of morphine can also be synthesized from 3,4-dihydroxyphenylacetaldehyde (DOPAL), a metabolite of L-DOPA and dopamine. Morphine has widespread effects in the central nervous system and on smooth muscle (PMID: 4582903). The precise mechanism of the analgesic action of morphine is not fully known. However, specific CNS opiate receptors have been identified and likely play a role in the induction of analgesic effects. Morphine first acts on the mu-opioid receptors. The mechanism of respiratory depression involves a reduction in the responsiveness of the brain stem respiratory centers to increases in carbon dioxide tension and electrical stimulation. It has been shown that morphine binds to and inhibits GABA inhibitory interneurons. These interneurons normally inhibit the descending pain inhibition pathway. So, without the inhibitory signals, pain modulation can proceed downstream. When the dose of morphine is reduced after long-term use, opioid withdrawal symptoms such as drowsiness, vomiting, and constipation may also occur (PMID: 23244430). Morphine is only found in easily detectable quantities in individuals that have used or taken this drug. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2744 CONFIDENCE standard compound; INTERNAL_ID 1580

   

Mepyramine

N-[(4-Methoxyphenyl)methyl]-n,n-dimethyl-N-2-pyridinyl-1,2-ethanediamine

C17H23N3O (285.1841)


Mepyramine (also known as pyrilamine) is a first generation antihistamine, targeting the H1 receptor. However, it rapidly permeates the brain and so often causes drowsiness as a side effect. It is used in over-the-counter combination products for colds and menstrual symptoms. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist CONFIDENCE standard compound; EAWAG_UCHEM_ID 3006 D018926 - Anti-Allergic Agents

   

Probenecid

4-((Dipropylamino)sulphonyl)benzoic acid

C13H19NO4S (285.1035)


The prototypical uricosuric agent. It inhibits the renal excretion of organic anions and reduces tubular reabsorption of urate. Probenecid has also been used to treat patients with renal impairment, and, because it reduces the renal tubular excretion of other drugs, has been used as an adjunct to antibacterial therapy. [PubChem] CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243; ORIGINAL_PRECURSOR_SCAN_NO 4241 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4209; ORIGINAL_PRECURSOR_SCAN_NO 4206 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4239; ORIGINAL_PRECURSOR_SCAN_NO 4234 ORIGINAL_PRECURSOR_SCAN_NO 4241; CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4238; ORIGINAL_PRECURSOR_SCAN_NO 4234 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4245; ORIGINAL_PRECURSOR_SCAN_NO 4243 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4200; ORIGINAL_PRECURSOR_SCAN_NO 4198 M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AB - Preparations increasing uric acid excretion D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C26170 - Protective Agent > C921 - Uricosuric Agent D010592 - Pharmaceutic Aids

   

Hydromorphone

(1S,5R,13R,17R)-10-hydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C17H19NO3 (285.1365)


Hydromorphone is only found in individuals that have used or taken this drug. It is an opioid analgesic derived from morphine and used mainly as an analgesic. It has a shorter duration of action and is more potent than morphine. [PubChem]Hydromorphone is a narcotic analgesic; its principal therapeutic effect is relief of pain. Hydromorphone interacts predominantly with the opioid mu-receptors. These mu-binding sites are discretely distributed in the human brain, with high densities in the posterior amygdala, hypothalamus, thalamus, nucleus caudatus, putamen, and certain cortical areas. They are also found on the terminal axons of primary afferents within laminae I and II (substantia gelatinosa) of the spinal cord and in the spinal nucleus of the trigeminal nerve. In clinical settings, Hydromorphone exerts its principal pharmacological effect on the central nervous system and gastrointestinal tract. Hydromorphone also binds with kappa-receptors which are thought to mediate spinal analgesia, miosis and sedation. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Leu-Gly-Pro

SCHEMBL10883746

C13H23N3O4 (285.1688)


   

Leucomethylene blue

N3,N3,N7,N7-tetramethyl-10H-phenothiazine-3,7-diamine

C16H19N3S (285.13)


C26170 - Protective Agent > C1509 - Neuroprotective Agent

   

narwedine

Galanthaminone

C17H19NO3 (285.1365)


   
   

Isococculidine

Isococculidine; Erythrinan, 1,2-didehydro-3,15-dimethoxy-, (3-beta)-

C18H23NO2 (285.1729)


   
   

Apohyoscine

1alphaH,5alphaH-Tropan-3alpha-ol, 6beta,7beta-epoxy-, atropate (ester)

C17H19NO3 (285.1365)


Aposcopolamine is an alkaloid that can be isolated from Datura ferox. Aposcopolamin can closely binds with ACHE, ADRA2A and CHRM2. Aposcopolamine can be used for the research of Alzheimer's disease[1]. Aposcopolamine is an alkaloid that can be isolated from Datura ferox. Aposcopolamin can closely binds with ACHE, ADRA2A and CHRM2. Aposcopolamine can be used for the research of Alzheimer's disease[1]. Aposcopolamine is an alkaloid that can be isolated from Datura ferox. Aposcopolamin can closely binds with ACHE, ADRA2A and CHRM2. Aposcopolamine can be used for the research of Alzheimer's disease[1].

   
   

HC Blue no. 2

2,2-[[4-[(2-Hydroxyethyl)amino]-3-nitrophenyl]imino]bis-ethanol

C12H19N3O5 (285.1325)


   

Vidarabine monohydrate

Vidarabine monohydrate

C10H15N5O5 (285.1073)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent D009676 - Noxae > D000963 - Antimetabolites Vidarabine monohydrate is an adenine arabinoside. Vidarabine monohydrate an antiviral agent which is active against herpes simplex viruses (HSV) and varicella zoster viruses[1].

   

Coclaurine

6-Methoxy-7-hydroxy-1-[(4-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline

C17H19NO3 (285.1365)


Coclaurine, also known as (r,s)-coclaurine or machiline, is a member of the class of compounds known as benzylisoquinolines. Benzylisoquinolines are organic compounds containing an isoquinoline to which a benzyl group is attached. Coclaurine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coclaurine can be found in custard apple and soursop, which makes coclaurine a potential biomarker for the consumption of these food products. Coclaurine is a nicotinic acetylcholine receptor antagonist which has been isolated from a variety of plant sources including Nelumbo nucifera, Sarcopetalum harveyanum, Ocotea duckei, and others. It belongs to the class of tetrahydroisoquinoline alkaloids. Dimerization of coclaurine leads to the biscoclaurine alkaloids such as cepharanthine .

   

Alprenolol hydrochloride

Alprenolol hydrochloride

C15H24ClNO2 (285.1495)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Alprenolol ((RS)-Alprenolol; dl-Alprenolol) hydrochloride is an orally active non-selective β-adrenoceptor antagonist and an antagonist of 5-HT1A and 5-HT1B receptors. Alprenolol hydrochloride is used as an anti-hypertensive, anti-anginal and anti-arrhythmic agent[1][2][3].

   

2-Propen-1-one, 1-[(2S,5R)-2-methyl-5-(7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-1-piperidinyl]-

2-Propen-1-one, 1-[(2S,5R)-2-methyl-5-(7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-1-piperidinyl]-

C15H19N5O (285.159)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C308 - Immunotherapeutic Agent

   

Isothipendyl

dimethyl(1-{9-thia-2,4-diazatricyclo[8.4.0.0³,⁸]tetradeca-1(14),3(8),4,6,10,12-hexaen-2-yl}propan-2-yl)amine

C16H19N3S (285.13)


Isothipendyl is only found in individuals that have used or taken this drug. It is an antihistamine and anticholinergic used as an antipruritic.Isothipendyl is a selective histamine H1 antagonist and binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

Secodemethylclausenamide

2,3-Dihydroxy-3-phenyl-N-(2-phenylethyl)propanimidate

C17H19NO3 (285.1365)


Secodemethylclausenamide is found in fruits. Secodemethylclausenamide is an alkaloid from Clausena lansium (wampee). Alkaloid from Clausena lansium (wampee). Secodemethylclausenamide is found in fruits.

   

norhydrocodone

(1R,5S,13S,17S)-10-methoxy-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C17H19NO3 (285.1365)


norhydrocodone is a metabolite of hydrocodone. Hydrocodone or dihydrocodeinone is a semi-synthetic opioid derived from either of two naturally occurring opiates: codeine and thebaine. It is an orally active narcotic analgesic and antitussive. It is available in tablet, capsule, and syrup form. (Wikipedia) D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

Erysopine

16-methoxy-10-azatetracyclo[8.7.0.0¹,¹³.0²,⁷]heptadeca-2(7),3,5,12,14-pentaene-4,5-diol

C17H19NO3 (285.1365)


Erysopine is found in green vegetables. Erysopine is an alkaloid from Erythrina fusca (gallito

   

Glycylprolylhydroxyproline

(2S,4R)-1-[(2S)-1-(2-aminoacetyl)pyrrolidine-2-carbonyl]-4-hydroxypyrrolidine-2-carboxylic acid

C12H19N3O5 (285.1325)


Glycylprolylhydroxyproline is a tripeptide that has been found in urine and blood serum (PMID 5134921). In growing children, higher level excretion of urinary hydroxyproline peptides (including glycylprolylhydroxyproline) has been observed (PMID 14105582). [HMDB] Glycylprolylhydroxyproline is a tripeptide that has been found in urine and blood serum (PMID: 5134921). In growing children, higher level excretion of urinary hydroxyproline peptides (including glycylprolylhydroxyproline) has been observed (PMID: 14105582).

   

2-Octenoylcarnitine

(3S)-3-[(2E)-Oct-2-enoyloxy]-4-(trimethylammonio)butanoic acid

C15H27NO4 (285.194)


2-Octenoylcarnitine is an acylcarnitine. More specifically, it is an 2-octenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(-)-Morphine

4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraene-10,14-diol

C17H19NO3 (285.1365)


(-)-Morphine is found in green vegetables. (-)-Morphine is a principal alkaloid of opium (Papaver somniferum). Minor constituent of lettuce. Principal alkaloid of opium (Papaver somniferum). Minor constituent of lettuce. (-)-Morphine is found in green vegetables.

   

N-Monodesmethyl-rizatriptan

3-[2-(dimethylamino)ethyl]-5-(1H-1,2,4-triazol-1-ylmethyl)-1H-indol-6-ol

C15H19N5O (285.159)


N-Monodesmethyl-rizatriptan is a metabolite of rizatriptan. Rizatriptan (Maxalt) is a 5-HT1 agonist triptan drug developed by Merck & Co. for the treatment of migraine headaches. It is available in strengths of 5 and 10 mg as tablets and orally disintegrating tablets (Maxalt-MLT). Maxalt obtained approval by the United States Food and Drug Administration (FDA) on June 29, 1998. It is a second-generation triptan. Rizatriptan is available only by prescription in Australia, the United States, Canada and New Zealand. (Wikipedia)

   

Octenoyl-L-carnitine

3-hydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]undec-5-enoate

C15H27NO4 (285.194)


Octenoyl-L-carnitine is an acylcarnitine. More specifically, it is an octenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Octenoyl-L-carnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Octenoyl-L-carnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E)-Octenoylcarnitine

3-[(2E)-Oct-2-enoyloxy]-4-(trimethylammonio)butanoic acid

C15H27NO4 (285.194)


(2E)-Octenoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-Octenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-Octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

dimethylidenebutanedioylcarnitine

3-[(3-carboxy-2,3-dimethylidenepropanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C13H19NO6 (285.1212)


dimethylidenebutanedioylcarnitine is an acylcarnitine. More specifically, it is an dimethylidenebutanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. dimethylidenebutanedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine dimethylidenebutanedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E,4E)-Hexa-2,4-dienedioylcarnitine

3-[(5-carboxypenta-2,4-dienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C13H19NO6 (285.1212)


(2E,4E)-hexa-2,4-dienedioylcarnitine is an acylcarnitine. More specifically, it is an (2E,4E)-hexa-2,4-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E,4E)-hexa-2,4-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E,4E)-hexa-2,4-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Octenoylcarnitine

3-(oct-3-enoyloxy)-4-(trimethylazaniumyl)butanoate

C15H27NO4 (285.194)


3-Octenoylcarnitine is an acylcarnitine. More specifically, it is an oct-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-Octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

6-Octenoylcarnitine

3-(oct-6-enoyloxy)-4-(trimethylazaniumyl)butanoate

C15H27NO4 (285.194)


6-Octenoylcarnitine is an acylcarnitine. More specifically, it is an oct-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 6-Octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

4-Octenoylcarnitine

3-(oct-4-enoyloxy)-4-(trimethylazaniumyl)butanoate

C15H27NO4 (285.194)


4-Octenoylcarnitine is an acylcarnitine. More specifically, it is an oct-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-Octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Octenoylcarnitine

3-(oct-5-enoyloxy)-4-(trimethylazaniumyl)butanoate

C15H27NO4 (285.194)


5-Octenoylcarnitine is an acylcarnitine. More specifically, it is an oct-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Propylpent-4-enoylcarnitine

3-[(2-propylpent-4-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H27NO4 (285.194)


2-Propylpent-4-enoylcarnitine is an acylcarnitine. More specifically, it is an 2-propylpent-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Propylpent-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Propylpent-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E)-2-Propylpent-2-enoylcarnitine

3-[(2-propylpent-2-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H27NO4 (285.194)


(2E)-2-Propylpent-2-enoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-2-propylpent-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-2-Propylpent-2-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-2-Propylpent-2-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(3Z)-2-Propylpent-3-enoylcarnitine

3-[(2-Propylpent-3-enoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C15H27NO4 (285.194)


(3Z)-2-Propylpent-3-enoylcarnitine is an acylcarnitine. More specifically, it is an (3Z)-2-propylpent-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (3Z)-2-Propylpent-3-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (3Z)-2-Propylpent-3-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(1R,9S)-10-(Cyclopropylmethyl)-4-hydroxy-1,13-dimethyl-10-azatricyclo[7.3.1.02,7]trideca-2(7),3,5-trien-8-one

(1R,9S)-10-(Cyclopropylmethyl)-4-hydroxy-1,13-dimethyl-10-azatricyclo[7.3.1.02,7]trideca-2(7),3,5-trien-8-one

C18H23NO2 (285.1729)


   

1-Tert-butyl 4-ethyl 5-oxoazepane-1,4-dicarboxylate

1-Tert-butyl 4-ethyl 5-oxoazepane-1,4-dicarboxylic acid

C14H23NO5 (285.1576)


   

3-Carbamyl-(3'-picolyl)-4-methoxy-1-benzamide

6-methoxy-N1-[(pyridin-3-yl)methyl]benzene-1,3-dicarboxamide

C15H15N3O3 (285.1113)


   

Acetamide, N-hydroxy-N-(1-(4-(phenylmethoxy)phenyl)ethyl)-

Acetamide, N-hydroxy-N-(1-(4-(phenylmethoxy)phenyl)ethyl)-

C17H19NO3 (285.1365)


D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors

   

cis-3,4',5-Trimethoxy-3'-aminostilbene

5-[2-(3,5-dimethoxyphenyl)ethenyl]-2-methoxyaniline

C17H19NO3 (285.1365)


   

Galanthaminone

9-methoxy-4-methyl-11-oxa-4-azatetracyclo[8.6.1.0¹,¹².0⁶,¹⁷]heptadeca-6,8,10(17),15-tetraen-14-one

C17H19NO3 (285.1365)


   

N-Norcodeine

10-methoxy-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7,9,11(18),15-tetraen-14-ol

C17H19NO3 (285.1365)


   

5-(1,3-Benzodioxol-5-yl)-1-piperidin-1-ylpenta-2,4-dien-1-one

5-(2H-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)penta-2,4-dien-1-one

C17H19NO3 (285.1365)


   

Prothipendyl

dimethyl(3-{9-thia-2,4-diazatricyclo[8.4.0.0^{3,8}]tetradeca-1(14),3(8),4,6,10,12-hexaen-2-yl}propyl)amine

C16H19N3S (285.13)


C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics

   

2-(3-(Diallylamino)propionyl)benzothiophene

1-(1-benzothiophen-2-yl)-3-[bis(prop-2-en-1-yl)amino]propan-1-one

C17H19NOS (285.1187)


   

Trachelanthamine

[(1R,8S)-2,3,5,6,7,8-hexahydro-1H-pyrrolizin-1-yl]methyl (2S)-2-hydroxy-2-[(1R)-1-hydroxyethyl]-3-methylbutanoate

C15H27NO4 (285.194)


Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids (2S,3R)-((1R,7aS)-hexahydro-1H-pyrrolizin-1-yl)methyl 2,3-dihydroxy-2-isopropylbutanoate is a natural product found in Eupatorium cannabinum, Trachelanthus korolkowii, and other organisms with data available.

   

O-Methyltembamide

O-Methyltembamide

C17H19NO3 (285.1365)


   
   
   
   
   
   
   

CHEMBL4302147

CHEMBL4302147

C17H19NO3 (285.1365)


   

Carbazomycin D

Carbazomycin D

C17H19NO3 (285.1365)


   

MEGxp0_001126

MEGxp0_001126

C18H23NO2 (285.1729)


   
   

Norcanelilline

Norcanelilline

C17H19NO3 (285.1365)


   
   

SCHEMBL19532549

SCHEMBL19532549

C17H19NO3 (285.1365)


   

N-Methylhigenamine

N-Methylhigenamine

C17H19NO3 (285.1365)


   
   

Isoeudistomin U

Isoeudistomin U

C19H15N3 (285.1266)


   

1-(benzylamino)-3-(3,4-dimethylphenoxy)propan-2-ol

1-(benzylamino)-3-(3,4-dimethylphenoxy)propan-2-ol

C18H23NO2 (285.1729)


   

Maybridge1_001794

Maybridge1_001794

C13H19NO4S (285.1035)


   
   

(2-Methyl-1H-indol-3-yl)(naphthalen-1-yl)methanone

(2-Methyl-1H-indol-3-yl)(naphthalen-1-yl)methanone

C20H15NO (285.1154)


   

SCHEMBL2182422

SCHEMBL2182422

C18H23NO2 (285.1729)


   

2-demethoxymontanine

2-demethoxymontanine

C17H19NO3 (285.1365)


   

8-Aza-D-homo-oestron

8-Aza-D-homo-oestron

C18H23NO2 (285.1729)


   
   

Mycosporine 2

Mycosporine 2

C13H19NO6 (285.1212)


   

Piperine

Isopiperine

C17H19NO3 (285.1365)


Constituent of pepper (Piper nigrum) (Piperaceae). Isopiperine is found in herbs and spices and pepper (spice). C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic Origin: Plant; SubCategory_DNP: Alkaloids derived from lysine, Piperidine alkaloids D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors Annotation level-1 MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MXXWOMGUGJBKIW-YPCIICBESA-N_STSL_0203_Piperine_0031fmol_180831_S2_L02M02_45; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.245 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.243 Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell. Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell.

   

3,5-Hexalobine E

3,5-Hexalobine E

C18H23NO2 (285.1729)


   

Cbz-DL-Phenylalaninol

Cbz-DL-Phenylalaninol

C17H19NO3 (285.1365)


   
   

Lindelofine

Lindelofine

C15H27NO4 (285.194)


   

2,4-dimethyl-3-pyrrolylcarbonyl alpha-L-rhamnopyranoside

2,4-dimethyl-3-pyrrolylcarbonyl alpha-L-rhamnopyranoside

C13H19NO6 (285.1212)


   

Moiramide A|octatrienyl-D-beta-phenylalanine

Moiramide A|octatrienyl-D-beta-phenylalanine

C17H19NO3 (285.1365)


   

6-oxyapohyoscyamine

6-oxyapohyoscyamine

C17H19NO3 (285.1365)


   

3,6-Di-(2,3-epoxy-3-methylbutyl)-indol|ent-3,6-hexalobine C

3,6-Di-(2,3-epoxy-3-methylbutyl)-indol|ent-3,6-hexalobine C

C18H23NO2 (285.1729)


   

CHEMBL4301969

CHEMBL4301969

C17H19NO3 (285.1365)


   

Val-Ala-Pro|VAP

Val-Ala-Pro|VAP

C13H23N3O4 (285.1688)


   

2,5-Dioxo-3-isopropyl-1H-pyrrole-1-propanoic acid 2,3-dihydroxypropyl ester

2,5-Dioxo-3-isopropyl-1H-pyrrole-1-propanoic acid 2,3-dihydroxypropyl ester

C13H19NO6 (285.1212)


   

litsericinone

litsericinone

C17H19NO3 (285.1365)


   

iteamine|o-aminobenzyl beta-D-glucopyranoside

iteamine|o-aminobenzyl beta-D-glucopyranoside

C13H19NO6 (285.1212)


   

Glycosmisindole

Glycosmisindole

C18H23NO2 (285.1729)


   
   
   

2,3-Hexalobine E

2,3-Hexalobine E

C18H23NO2 (285.1729)


   

3,6-(E)-hexalobine E

3,6-(E)-hexalobine E

C18H23NO2 (285.1729)


   
   

2-[(Benzyloxy)amino]-3-phenylpropanoic acid methyl ester

2-[(Benzyloxy)amino]-3-phenylpropanoic acid methyl ester

C17H19NO3 (285.1365)


   

CHEMBL4209013

CHEMBL4209013

C17H19NO3 (285.1365)


   
   

N-[2-(2,2-Dimethyl-2H-1-benzopyran-6-yl)ethyl]-3-methyl-2-butenamide

N-[2-(2,2-Dimethyl-2H-1-benzopyran-6-yl)ethyl]-3-methyl-2-butenamide

C18H23NO2 (285.1729)


   

Oxime-8alpha-Estrone,INN

Oxime-8alpha-Estrone,INN

C18H23NO2 (285.1729)


   

Erysolin|erysoline

Erysolin|erysoline

C17H19NO3 (285.1365)


   

PSN375963

4-[5-(4-butylcyclohexyl)-1,2,4-oxadiazol-3-yl]-pyridine

C17H23N3O (285.1841)


   
   
   
   
   
   
   
   

(±)-Coclaurine

(±)-Coclaurine

C17H19NO3 (285.1365)


   
   

pyrilamine

PYR_286.1915_11.5

C17H23N3O (285.1841)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1700

   

probenecid

Probenecid (Benemid)

C13H19NO4S (285.1035)


M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AB - Preparations increasing uric acid excretion D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C26170 - Protective Agent > C921 - Uricosuric Agent D010592 - Pharmaceutic Aids

   

norcodeine

N-Desmethylcodeine

C17H19NO3 (285.1365)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate A morphinane-like compound that is the N-demethylated derivative of codeine.

   

chavicine

NCGC00094872-09_C17H19NO3_(2E,4E)-5-(1,3-Benzodioxol-5-yl)-1-(1-piperidinyl)-2,4-pentadien-1-one

C17H19NO3 (285.1365)


   
   

hydromorphone

hydromorphone

C17H19NO3 (285.1365)


A morphinane alkaloid that is a hydrogenated ketone derivative of morphine. A semi-synthetic drug, it is a centrally acting pain medication of the opioid class. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Viridiflorine

Viridiflorine

C15H27NO4 (285.194)


Annotation level-1

   

N-Benzoyl homoveratrylamine

N-Benzoyl homoveratrylamine

C17H19NO3 (285.1365)


   

octylphenazolone

octylphenazolone

C18H23NO2 (285.1729)


   

2,9;-DEOXYGUANOSINE

2,9;-DEOXYGUANOSINE

C10H15N5O5 (285.1073)


   

trans-2-Octenoyl-carnitine; AIF; CE0; CorrDec

trans-2-Octenoyl-carnitine; AIF; CE0; CorrDec

C15H27NO4 (285.194)


   

trans-2-Octenoyl-carnitine; AIF; CE10; CorrDec

trans-2-Octenoyl-carnitine; AIF; CE10; CorrDec

C15H27NO4 (285.194)


   

trans-2-Octenoyl-carnitine; AIF; CE30; CorrDec

trans-2-Octenoyl-carnitine; AIF; CE30; CorrDec

C15H27NO4 (285.194)


   

trans-2-Octenoyl-carnitine; AIF; CE0; MS2Dec

trans-2-Octenoyl-carnitine; AIF; CE0; MS2Dec

C15H27NO4 (285.194)


   

trans-2-Octenoyl-carnitine; AIF; CE10; MS2Dec

trans-2-Octenoyl-carnitine; AIF; CE10; MS2Dec

C15H27NO4 (285.194)


   

trans-2-Octenoyl-carnitine; AIF; CE30; MS2Dec

trans-2-Octenoyl-carnitine; AIF; CE30; MS2Dec

C15H27NO4 (285.194)


   

Octenoyl-carnitine; LC-tDDA; CE10

Octenoyl-carnitine; LC-tDDA; CE10

C15H27NO4 (285.194)


   

Octenoyl-carnitine; LC-tDDA; CE20

Octenoyl-carnitine; LC-tDDA; CE20

C15H27NO4 (285.194)


   

Octenoyl-carnitine; LC-tDDA; CE30

Octenoyl-carnitine; LC-tDDA; CE30

C15H27NO4 (285.194)


   

Octenoyl-carnitine; LC-tDDA; CE40

Octenoyl-carnitine; LC-tDDA; CE40

C15H27NO4 (285.194)


   

1-Pyridylhydroxybutyl-hypoxanthine

1-Pyridylhydroxybutyl-hypoxanthine

C14H15N5O2 (285.1226)


   

Piperin

InChI=1\C17H19NO3\c19-17(18-10-4-1-5-11-18)7-3-2-6-14-8-9-15-16(12-14)21-13-20-15\h2-3,6-9,12H,1,4-5,10-11,13H2\b6-2+,7-3

C17H19NO3 (285.1365)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell. Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell.

   

Bifemelane M1

Bifemelane M1

C18H23NO2 (285.1729)


   

Hydroxybifemelane (M2)

Hydroxybifemelane (M2)

C18H23NO2 (285.1729)


   

3-[[2-(dimethylamino)ethoxy](2-methylphenyl)methyl]-Phenol

3-[[2-(dimethylamino)ethoxy](2-methylphenyl)methyl]-Phenol

C18H23NO2 (285.1729)


   

p-Cresol, a-[2-(dimethylamino)ethoxy]-a-o-tolyl-

p-Cresol, a-[2-(dimethylamino)ethoxy]-a-o-tolyl-

C18H23NO2 (285.1729)


   

3-[[2-(dimethylamino)ethoxy]phenylmethyl]-4-methyl-Phenol

3-[[2-(dimethylamino)ethoxy]phenylmethyl]-4-methyl-Phenol

C18H23NO2 (285.1729)


   

Orphenadrine N-oxide

Orphenadrine N-oxide

C18H23NO2 (285.1729)


   
   
   
   
   
   
   
   
   
   
   
   
   
   

N-Tritylaziridine

N-Tritylaziridine

C21H19N (285.1517)


   

Glycylprolylhydroxyproline

Glycylprolylhydroxyproline

C12H19N3O5 (285.1325)


   

Isothipendyl

dimethyl(1-{9-thia-2,4-diazatricyclo[8.4.0.0^{3,8}]tetradeca-1(10),3,5,7,11,13-hexaen-2-yl}propan-2-yl)amine

C16H19N3S (285.13)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

Erysopine

12-methoxy-5H,6H,8H,12H,13H-indolo[7a,1-a]isoquinoline-2,3-diol

C17H19NO3 (285.1365)


   

Secodemethylclausenamide

2,3-dihydroxy-3-phenyl-N-(2-phenylethyl)propanamide

C17H19NO3 (285.1365)


   

(-)-Morphine

4-methyl-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{5,17}.0^{7,18}]octadeca-7(18),8,10,15-tetraene-10,14-diol

C17H19NO3 (285.1365)


   

CAR 8:1

(3S)-3-[(2E)-oct-2-enoyloxy]-4-(trimethylammonio)butanoate;(E)-2-octenoyl-L-carnitine;2-octenoylcarnitine

C15H27NO4 (285.194)


   

Tritylazide

Tritylazide

C19H15N3 (285.1266)


   

2-(3-(tert-butoxycarbonyl)phenyl)-3-Methylpyridin-1-ium hydroxide

2-(3-(tert-butoxycarbonyl)phenyl)-3-Methylpyridin-1-ium hydroxide

C17H19NO3 (285.1365)


   

9-Benzyl-9H-carbazole-3-carbaldehyde

9-Benzyl-9H-carbazole-3-carbaldehyde

C20H15NO (285.1154)


   

(S)-N-Boc-2-pyrrolidone-5-carboxylic acid tert-butyl ester

(S)-N-Boc-2-pyrrolidone-5-carboxylic acid tert-butyl ester

C14H23NO5 (285.1576)


   

1-[2-Amino-1-(4-methoxyphenyl)-ethyl]-cyclohexanol hydrochloride

1-[2-Amino-1-(4-methoxyphenyl)-ethyl]-cyclohexanol hydrochloride

C15H24ClNO2 (285.1495)


   

Epinastin HCl

Epinastine hydrochloride

C16H16ClN3 (285.1033)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist Epinastine hydrochloride (WAL801 hydrochloride) is an antihistamine and mast cell stabilizer. Epinastine hydrochloride is a potent, selective and orally-active histamine H1 receptor antagonist. Epinastine hydrochloride also inhibits IL-8 release and has an antiallergic action[1][2][3].

   

N-(2,5-Diethoxyphenyl)benzamide

N-(2,5-Diethoxyphenyl)benzamide

C17H19NO3 (285.1365)


   

1-Benzyl-1,2-dimethyl-1H-benzo[e]indole

1-Benzyl-1,2-dimethyl-1H-benzo[e]indole

C21H19N (285.1517)


   

1,3-DIPHENYL-1,1,3,3-TETRAMETHYLDISILAZANE

1,3-DIPHENYL-1,1,3,3-TETRAMETHYLDISILAZANE

C16H23NSi2 (285.1369)


   

4-MORPHOLIN-4-YL-2-PHENYL-BUTYRIC ACID HCL

4-MORPHOLIN-4-YL-2-PHENYL-BUTYRIC ACID HCL

C14H20ClNO3 (285.1132)


   

3-BENZO[1,3]DIOXOL-5-YL-3-(2-METHOXY-PHENYL)-PROPYLAMINE

3-BENZO[1,3]DIOXOL-5-YL-3-(2-METHOXY-PHENYL)-PROPYLAMINE

C17H19NO3 (285.1365)


   

N,N,N-Tripropyl-1-propanaminium perchlorate

N,N,N-Tripropyl-1-propanaminium perchlorate

C12H28ClNO4 (285.1707)


   

3-(2-ETHOXYCARBONYL-ACETYL)-PYRROLIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

3-(2-ETHOXYCARBONYL-ACETYL)-PYRROLIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

C14H23NO5 (285.1576)


   

4-Pyridinecarboxylicacid, 2-[(3,4-dimethoxyphenyl)methylene]hydrazide

4-Pyridinecarboxylicacid, 2-[(3,4-dimethoxyphenyl)methylene]hydrazide

C15H15N3O3 (285.1113)


   

(S)-Cbz-Phenylalaninol

(S)-Cbz-Phenylalaninol

C17H19NO3 (285.1365)


   

Methyl 2-[4-(4-piperidinyloxy)phenyl]acetatehydrochloride

Methyl 2-[4-(4-piperidinyloxy)phenyl]acetatehydrochloride

C14H20ClNO3 (285.1132)


   

(R)-2-Pyrrolidineboronic acid pinanediol ester hydrochloride

(R)-2-Pyrrolidineboronic acid pinanediol ester hydrochloride

C14H25BClNO2 (285.1667)


   

3-[(1S,2S)-2-[(dimethylamino)methyl]-1-hydroxycyclohexyl]phenol,hydrochloride

3-[(1S,2S)-2-[(dimethylamino)methyl]-1-hydroxycyclohexyl]phenol,hydrochloride

C15H24ClNO2 (285.1495)


   

Benzoctamine Hydrochloride

Benzoctamine Hydrochloride

C18H20ClN (285.1284)


   

3-(5-methoxy-6,7,8,9-tetrahydroimidazo[1,2-a]quinazolin-2-yl)-5-methyl-1,2,4-oxadiazole

3-(5-methoxy-6,7,8,9-tetrahydroimidazo[1,2-a]quinazolin-2-yl)-5-methyl-1,2,4-oxadiazole

C14H15N5O2 (285.1226)


   

3-(Boc-amino)-3-(3-chlorophenyl)-1-propanol

3-(Boc-amino)-3-(3-chlorophenyl)-1-propanol

C14H20ClNO3 (285.1132)


   

(S)-4-Benzyl-3-(4-fluorophenyl)morpholin-2-one

(S)-4-Benzyl-3-(4-fluorophenyl)morpholin-2-one

C17H16FNO2 (285.1165)


   

ethyltrimethylplumbane

ethyltrimethylplumbane

C5H17Pb (285.1097)


   

5-Deoxy-5-fluoro-2,3-O-isopropylidene-D-cytidine

5-Deoxy-5-fluoro-2,3-O-isopropylidene-D-cytidine

C12H16FN3O4 (285.1125)


   

1-tert-Butyl 4-ethyl 5-oxoazepane-1,4-dicarboxylate

1-tert-Butyl 4-ethyl 5-oxoazepane-1,4-dicarboxylate

C14H23NO5 (285.1576)


   

2,3,4,5-Tetrahydro-3-(trifluoroacetyl)-1,5-methano-1H-3-benzazepine-7,8-diamine

2,3,4,5-Tetrahydro-3-(trifluoroacetyl)-1,5-methano-1H-3-benzazepine-7,8-diamine

C13H14F3N3O (285.1089)


   

gamma-ketotriazole

gamma-ketotriazole

C16H19N3O2 (285.1477)


   

medrylamine

medrylamine

C18H23NO2 (285.1729)


C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

Intriptyline

Intriptyline

C21H19N (285.1517)


   

ISOPROPYL 3-CYCLOPENTYL-1-METHYL-1H-INDOLE-6-CARBOXYLATE

ISOPROPYL 3-CYCLOPENTYL-1-METHYL-1H-INDOLE-6-CARBOXYLATE

C18H23NO2 (285.1729)


   

3-(N-HEXYLSULFAMOYL)BENZOIC ACID

3-(N-HEXYLSULFAMOYL)BENZOIC ACID

C13H19NO4S (285.1035)


   

tert-butyl N-[(4-methylphenyl)sulfonylmethyl]carbamate

tert-butyl N-[(4-methylphenyl)sulfonylmethyl]carbamate

C13H19NO4S (285.1035)


   

Boc-(R)-3-Amino-4-(2-thienyl)-butyric acid

Boc-(R)-3-Amino-4-(2-thienyl)-butyric acid

C13H19NO4S (285.1035)


   

Ethyl N-[(mesitylsulfonyl)oxy]ethanimidate

Ethyl N-[(mesitylsulfonyl)oxy]ethanimidate

C13H19NO4S (285.1035)


   

N-[2-(3,4-dimethoxyphenyl)ethyl]benzamide

N-[2-(3,4-dimethoxyphenyl)ethyl]benzamide

C17H19NO3 (285.1365)


   

Leucine, N-[(4-methylphenyl)sulfonyl]-

Leucine, N-[(4-methylphenyl)sulfonyl]-

C13H19NO4S (285.1035)


   

2-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]acetamide

2-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]acetamide

C15H19N5O (285.159)


   

(4-allylphenyl)diphenylamine

(4-allylphenyl)diphenylamine

C21H19N (285.1517)


   

[2-(5-Cyano-1H-indol-3-yl)-ethyl]-carbamic acid tert-butyl ester

[2-(5-Cyano-1H-indol-3-yl)-ethyl]-carbamic acid tert-butyl ester

C16H19N3O2 (285.1477)


   
   

N-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazolin-2-amine

N-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinazolin-2-amine

C15H20BN3O2 (285.1648)


   

Lanperisone

Lanperisone

C15H18F3NO (285.134)


C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

Adenosine,7,8-dihydro-8-oxo-

Adenosine,7,8-dihydro-8-oxo-

C10H15N5O5 (285.1073)


   

(4-((((Benzyloxy)carbonyl)amino)methyl)phenyl)boronic acid

(4-((((Benzyloxy)carbonyl)amino)methyl)phenyl)boronic acid

C15H16BNO4 (285.1172)


   

1-FURAN-2-YL-2-[2-(2-HYDROXY-ETHYLAMINO)-BENZOIMIDAZOL-1-YL]-ETHANONE

1-FURAN-2-YL-2-[2-(2-HYDROXY-ETHYLAMINO)-BENZOIMIDAZOL-1-YL]-ETHANONE

C15H15N3O3 (285.1113)


   
   

2-CHLORO-N-[2-(3,4-DIETHOXY-PHENYL)-ETHYL]-ACETAMIDE

2-CHLORO-N-[2-(3,4-DIETHOXY-PHENYL)-ETHYL]-ACETAMIDE

C14H20ClNO3 (285.1132)


   

2-(3-METHYL-1H-PYRAZOL-1-YL)-6-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDINE

2-(3-METHYL-1H-PYRAZOL-1-YL)-6-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDINE

C15H20BN3O2 (285.1648)


   

o-benzyl-(d)-serine

o-benzyl-(d)-serine

C17H19NO3 (285.1365)


   
   
   
   

ditert-butyl (2S)-4-oxopyrrolidine-1,2-dicarboxylate

ditert-butyl (2S)-4-oxopyrrolidine-1,2-dicarboxylate

C14H23NO5 (285.1576)


   

potassium 2-amino-2-methylpropionate octahydrate

potassium 2-amino-2-methylpropionate octahydrate

C4H24KNO10 (285.1037)


   

Benzyl [(1S)-3-hydroxy-1-phenylpropyl]carbamate

Benzyl [(1S)-3-hydroxy-1-phenylpropyl]carbamate

C17H19NO3 (285.1365)


   

(4-((4-METHOXYBENZYL)CARBAMOYL)PHENYL)BORONIC ACID

(4-((4-METHOXYBENZYL)CARBAMOYL)PHENYL)BORONIC ACID

C15H16BNO4 (285.1172)


   
   

N-Boc-4-(Methylsulfonyl)benzylamine

N-Boc-4-(Methylsulfonyl)benzylamine

C13H19NO4S (285.1035)


   

2-Oxa-7-azaspiro[4.5]decane-3,7-dicarboxylic acid7-tert-butyl ester

2-Oxa-7-azaspiro[4.5]decane-3,7-dicarboxylic acid7-tert-butyl ester

C14H23NO5 (285.1576)


   

N-(2-phenylphenyl)-1H-benzimidazol-2-amine

N-(2-phenylphenyl)-1H-benzimidazol-2-amine

C19H15N3 (285.1266)


   

N-Acetyl-N-[2-(7-methoxy-1-naphthyl)ethyl]acetamide

N-Acetyl-N-[2-(7-methoxy-1-naphthyl)ethyl]acetamide

C17H19NO3 (285.1365)


   

1-BENZYL-4-(3-FLUORO-PHENYL)-PIPERIDIN-4-OL

1-BENZYL-4-(3-FLUORO-PHENYL)-PIPERIDIN-4-OL

C18H20FNO (285.1529)


   

4-(2-PIPERIDINOETHOXY)BENZOIC ACID HYDROCHLORIDE

4-(2-PIPERIDINOETHOXY)BENZOIC ACID HYDROCHLORIDE

C14H20ClNO3 (285.1132)


   

1-O-tert-butyl 3-O-ethyl 4-oxoazepane-1,3-dicarboxylate

1-O-tert-butyl 3-O-ethyl 4-oxoazepane-1,3-dicarboxylate

C14H23NO5 (285.1576)


   

Letrozole related compound B

Letrozole related compound B

C17H11N5 (285.1014)


   

PHENOL, 2-(1,1-DIMETHYLETHYL)-6-(1-METHYLETHYL)-4-(3-PYRIDAZINYLAMINO)-

PHENOL, 2-(1,1-DIMETHYLETHYL)-6-(1-METHYLETHYL)-4-(3-PYRIDAZINYLAMINO)-

C17H23N3O (285.1841)


   
   

2-((4-HYDROXYPHENETHYL)AMINO)-1-(4-HYDROXYPHENYL)PROPAN-1-ONE

2-((4-HYDROXYPHENETHYL)AMINO)-1-(4-HYDROXYPHENYL)PROPAN-1-ONE

C17H19NO3 (285.1365)


   

(S)-AMINO-O-TOLYL-ACETICACID

(S)-AMINO-O-TOLYL-ACETICACID

C16H19N3O2 (285.1477)


   

(3aR,5R,5aS,8aS,8bR)-5-(azidomethyl)-2,2,7,7-tetramethyl-5,5a,8a,8b-tetrahydro-3aH-di[1,3]dioxolo[4,5-a:5,4-d]pyran

(3aR,5R,5aS,8aS,8bR)-5-(azidomethyl)-2,2,7,7-tetramethyl-5,5a,8a,8b-tetrahydro-3aH-di[1,3]dioxolo[4,5-a:5,4-d]pyran

C12H19N3O5 (285.1325)


   

BOC-D,L-5,5,5-TRIFLUOROLEUCINE

BOC-D,L-5,5,5-TRIFLUOROLEUCINE

C11H18F3NO4 (285.1188)


   

(R)-3-((tert-butoxycarbonyl)amino)-4-(thiophen-3-yl)butanoic acid

(R)-3-((tert-butoxycarbonyl)amino)-4-(thiophen-3-yl)butanoic acid

C13H19NO4S (285.1035)


   

(2-Methyl-1H-indol-3-yl)(1-naphthyl)methanone

(2-Methyl-1H-indol-3-yl)(1-naphthyl)methanone

C20H15NO (285.1154)


   

1-Benzyl-4-(4-fluorophenyl)-4-piperidinol

1-Benzyl-4-(4-fluorophenyl)-4-piperidinol

C18H20FNO (285.1529)


   

Piperazine, 1-[(3-formyl-1H-indol-1-yl)acetyl]-4-methyl- (9CI)

Piperazine, 1-[(3-formyl-1H-indol-1-yl)acetyl]-4-methyl- (9CI)

C16H19N3O2 (285.1477)


   

Boc-(S)-3-Amino-4-(3-thienyl)-butyric acid

Boc-(S)-3-Amino-4-(3-thienyl)-butyric acid

C13H19NO4S (285.1035)


   

METHYL 5-OXO-6-(PYRIDIN-2-YLAMINO)-1,2,3,5-TETRAHYDROINDOLIZINE-8-CARBOXYLATE

METHYL 5-OXO-6-(PYRIDIN-2-YLAMINO)-1,2,3,5-TETRAHYDROINDOLIZINE-8-CARBOXYLATE

C15H15N3O3 (285.1113)


   

ETHYL 5-(TERT-BUTYL)-2-METHYL-1-PHENYL-1H-PYRROLE-3-CARBOXYLATE

ETHYL 5-(TERT-BUTYL)-2-METHYL-1-PHENYL-1H-PYRROLE-3-CARBOXYLATE

C18H23NO2 (285.1729)


   

2-Chloro-6-(trifluoromethyl)nicotinonitrile

2-Chloro-6-(trifluoromethyl)nicotinonitrile

C15H15N3O3 (285.1113)


   

(R)-2-(2-ETHOXYCARBONYL-ACETYL)-PYRROLIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

(R)-2-(2-ETHOXYCARBONYL-ACETYL)-PYRROLIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER

C14H23NO5 (285.1576)


   

2H-1-Benzopyran-8-ol,3-(dipropylamino)-3,4-dihydro-,hydrochloride

2H-1-Benzopyran-8-ol,3-(dipropylamino)-3,4-dihydro-,hydrochloride

C15H24ClNO2 (285.1495)


   

1-Boc-4-phenylethynyl-piperidine

1-Boc-4-phenylethynyl-piperidine

C18H23NO2 (285.1729)


   

(3-((4-Methoxybenzyl)carbamoyl)phenyl)boronic acid

(3-((4-Methoxybenzyl)carbamoyl)phenyl)boronic acid

C15H16BNO4 (285.1172)


   

(+)-PD 128,907 HCl

(+)-PD 128,907 HCl

C14H20ClNO3 (285.1132)


(+)-PD 128907 hydrochloride is a selective dopamine D2/D3 receptor agonist, with Kis of 1.7, 0.84 nM for human and rat D3 receptors, 179, 770 n M for human and rat D3 receptors, respectively.

   

n,o-bis(diethylhydrogensilyl)trifluoroacetamide

n,o-bis(diethylhydrogensilyl)trifluoroacetamide

C10H22F3NOSi2 (285.1192)


   

1H-Pyrrolo[2,3-b]pyridin-6-amine, 2,3-diphenyl-

1H-Pyrrolo[2,3-b]pyridin-6-amine, 2,3-diphenyl-

C19H15N3 (285.1266)


   

Ethyl 5-(2-(tert-butoxycarbonylamino)ethyl)-1,2,4-oxadiazole-3-carboxylate

Ethyl 5-(2-(tert-butoxycarbonylamino)ethyl)-1,2,4-oxadiazole-3-carboxylate

C12H19N3O5 (285.1325)


   
   

1-Benzyl-4-morpholinopiperidine-4-carbonitrile

1-Benzyl-4-morpholinopiperidine-4-carbonitrile

C17H23N3O (285.1841)


   

4-METHYL-2-PHENYL-5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)OXAZOLE

4-METHYL-2-PHENYL-5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)OXAZOLE

C16H20BNO3 (285.1536)


   

9-[(2-methylpropan-2-yl)oxycarbonyl]-1-oxa-9-azaspiro[4.5]decane-3-carboxylic acid

9-[(2-methylpropan-2-yl)oxycarbonyl]-1-oxa-9-azaspiro[4.5]decane-3-carboxylic acid

C14H23NO5 (285.1576)


   

8-(Tert-Butoxycarbonyl)-1-Oxa-8-Azaspiro[4.5]Decane-2-Carboxylic Acid

8-(Tert-Butoxycarbonyl)-1-Oxa-8-Azaspiro[4.5]Decane-2-Carboxylic Acid

C14H23NO5 (285.1576)


   

8-[(2-methylpropan-2-yl)oxycarbonyl]-1-oxa-8-azaspiro[4.5]decane-3-carboxylic acid

8-[(2-methylpropan-2-yl)oxycarbonyl]-1-oxa-8-azaspiro[4.5]decane-3-carboxylic acid

C14H23NO5 (285.1576)


   

1-[1-(1-Benzothiophen-2-yl)cyclohexyl]pyrrolidine

1-(1-(Benzo[b]thiophen-2-yl)cyclohexyl)pyrrolidine

C18H23NS (285.1551)


   

N-benzyl-2-(3,4-dimethoxyphenyl)-N-methylethanamine

N-benzyl-2-(3,4-dimethoxyphenyl)-N-methylethanamine

C18H23NO2 (285.1729)


   

1H-Benz[g]indole-3-carboxaldehyde,2-(2-methylphenyl)-(9CI)

1H-Benz[g]indole-3-carboxaldehyde,2-(2-methylphenyl)-(9CI)

C20H15NO (285.1154)


   

(5,6-DIHYDRO-4H-[1,3]THIAZIN-2-YL)-(4-ETHOXY-PHENYL)-AMINE

(5,6-DIHYDRO-4H-[1,3]THIAZIN-2-YL)-(4-ETHOXY-PHENYL)-AMINE

C17H19NO3 (285.1365)


   

tert-Butyl spiro[indene-1,4-piperidine]-1-carboxylate

tert-Butyl spiro[indene-1,4-piperidine]-1-carboxylate

C18H23NO2 (285.1729)


   

(S)-ethyl 2-(1-(tert-butoxycarbonyl)ethyl)thiazole-5-carboxylate

(S)-ethyl 2-(1-(tert-butoxycarbonyl)ethyl)thiazole-5-carboxylate

C13H19NO4S (285.1035)


   

n-(3-n-butoxy-2-hydroxypropyl)iminodiacetic acid monosodium salt

n-(3-n-butoxy-2-hydroxypropyl)iminodiacetic acid monosodium salt

C11H20NNaO6 (285.1188)


   

2-DEOXYGUANOSINE HYDRATE

2-DEOXYGUANOSINE HYDRATE

C10H15N5O5 (285.1073)


   

1-TERT-BUTYL 3-METHYL 3-ETHYL-4-OXOPIPERIDINE-1,3-DICARBOXYLATE

1-TERT-BUTYL 3-METHYL 3-ETHYL-4-OXOPIPERIDINE-1,3-DICARBOXYLATE

C14H23NO5 (285.1576)


   
   

(2R)-5-Oxo-1,2-pyrrolidinedicarboxylic acid 1,2-bis(tert-butyl) ester

(2R)-5-Oxo-1,2-pyrrolidinedicarboxylic acid 1,2-bis(tert-butyl) ester

C14H23NO5 (285.1576)


   

3,8-DIAMINO-6-PHENYLPHENANTHRIDINE

3,8-DIAMINO-6-PHENYLPHENANTHRIDINE

C19H15N3 (285.1266)


   

4-((4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-PYRAZOL-1-YL)METHYL)PYRIDINE

4-((4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-PYRAZOL-1-YL)METHYL)PYRIDINE

C15H20BN3O2 (285.1648)


   

citral / methyl anthranilate schiffs base

citral / methyl anthranilate schiffs base

C18H23NO2 (285.1729)


   

Benzyl 4-hydrazinylpiperidine-1-carboxylate hydrochloride

Benzyl 4-hydrazinylpiperidine-1-carboxylate hydrochloride

C13H20ClN3O2 (285.1244)


   

3-[4-[(2-chloro-6-fluorophenyl)methyl]piperazin-1-yl]propan-1-amine

3-[4-[(2-chloro-6-fluorophenyl)methyl]piperazin-1-yl]propan-1-amine

C14H21ClFN3 (285.1408)


   

6-[[(4-Methylphenyl)sulphonyl]amino]hexanoic acid

6-[[(4-Methylphenyl)sulphonyl]amino]hexanoic acid

C13H19NO4S (285.1035)


   

N-Methyl-N-(2-(4-aminophenoxy)ethyl)-2-(4-aminophenyl)ethanamine

N-Methyl-N-(2-(4-aminophenoxy)ethyl)-2-(4-aminophenyl)ethanamine

C17H23N3O (285.1841)


   

ETHYL1-(TERT-BUTOXYCARBONYLAMINO)-4-OXOCYCLOHEXANECARBOXYLATE

ETHYL1-(TERT-BUTOXYCARBONYLAMINO)-4-OXOCYCLOHEXANECARBOXYLATE

C14H23NO5 (285.1576)


   
   

N-METHYLHEX-5-EN-1-AMINE 4-METHYLBENZENESULFONATE

N-METHYLHEX-5-EN-1-AMINE 4-METHYLBENZENESULFONATE

C14H23NO3S (285.1399)


   

3-Amino-1-propyl-5H-pyrido(4,3-b)indole acetate

3-Amino-1-propyl-5H-pyrido(4,3-b)indole acetate

C16H19N3O2 (285.1477)


   

3-Amino-4-ethyl-1-methyl-5H-pyrido(4,3-b)indole acetate

3-Amino-4-ethyl-1-methyl-5H-pyrido(4,3-b)indole acetate

C16H19N3O2 (285.1477)


   

(S)-BoroPro-(-)-Pinanediol-HCl

(S)-BoroPro-(-)-Pinanediol-HCl

C14H25BClNO2 (285.1667)


   

4-[2-(1-Pipiridine)ethoxybenzoic acid hydrochloride

4-[2-(1-Pipiridine)ethoxybenzoic acid hydrochloride

C14H20ClNO3 (285.1132)


   

Boc-(S)-3-Amino-4-(2-thienyl)-butyric acid

Boc-(S)-3-Amino-4-(2-thienyl)-butyric acid

C13H19NO4S (285.1035)


   

(2S)-2-Amino-4-methyl-1-[(2S)-2-methyl-2-oxiranyl]-1-pentanone trifluoroacetate (1:1)

(2S)-2-Amino-4-methyl-1-[(2S)-2-methyl-2-oxiranyl]-1-pentanone trifluoroacetate (1:1)

C11H18F3NO4 (285.1188)


   

3-Azido-3-deoxy-1,2:5,6-bis-O-(1-methylethylidene)-alpha-D-galactofuranose

3-Azido-3-deoxy-1,2:5,6-bis-O-(1-methylethylidene)-alpha-D-galactofuranose

C12H19N3O5 (285.1325)


   

(+)-(1R,2R)-O-DESMETHYL TRAMADOL HCL

(+)-(1R,2R)-O-DESMETHYL TRAMADOL HCL

C15H24ClNO2 (285.1495)


   

N-octyl-4-metylpyridinium bromide

N-octyl-4-metylpyridinium bromide

C14H24BrN (285.1092)


   

Methyl N-(2-pyrazinylcarbonyl)phenylalaninate

Methyl N-(2-pyrazinylcarbonyl)phenylalaninate

C15H15N3O3 (285.1113)


   

Benzyl (1-(4-fluorophenyl)cyclopropyl)carbamate

Benzyl (1-(4-fluorophenyl)cyclopropyl)carbamate

C17H16FNO2 (285.1165)


   

9,9-Dimethyl-N-phenyl-9H-fluoren-2-amine

9,9-Dimethyl-N-phenyl-9H-fluoren-2-amine

C21H19N (285.1517)


   

N-prop-2-ynyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide

N-prop-2-ynyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide

C16H20BNO3 (285.1536)


   

5-tert-butyl-1-[2-(2-hydroxyethylsulfanyl)ethyl]-2-methylpyrrole-3-carboxylic acid

5-tert-butyl-1-[2-(2-hydroxyethylsulfanyl)ethyl]-2-methylpyrrole-3-carboxylic acid

C14H23NO3S (285.1399)


   

Glycyl-hydroxyprolyl-proline

Glycyl-hydroxyprolyl-proline

C12H19N3O5 (285.1325)


   

(1-Tosylpyrrolidine-2,5-diyl)dimethanol

(1-Tosylpyrrolidine-2,5-diyl)dimethanol

C13H19NO4S (285.1035)


   

2-Methyl-1,3-di-4-pyridylisoindole

2-Methyl-1,3-di-4-pyridylisoindole

C19H15N3 (285.1266)


   

2-(4-((2-Aminophenyl)sulfonyl)piperazin-1-yl)ethanol

2-(4-((2-Aminophenyl)sulfonyl)piperazin-1-yl)ethanol

C12H19N3O3S (285.1147)


   

N-(2,3,5,6-Tetramethylphenylsulfonyl)-^b-alanine

N-(2,3,5,6-Tetramethylphenylsulfonyl)-^b-alanine

C13H19NO4S (285.1035)


   

N-carbobenzyloxyphenylalaninol

N-carbobenzyloxyphenylalaninol

C17H19NO3 (285.1365)


   

N-octyl-3-metylpyridinium bromide

N-octyl-3-metylpyridinium bromide

C14H24BrN (285.1092)


   

(2S)-2-Amino-4-methyl-1-[(2R)-2-methyloxiranyl]-1-pentanone trifluoroacetate

(2S)-2-Amino-4-methyl-1-[(2R)-2-methyloxiranyl]-1-pentanone trifluoroacetate

C11H18F3NO4 (285.1188)


   

Cbz-D-Phenylalaninol

Cbz-D-Phenylalaninol

C17H19NO3 (285.1365)


   

3-((4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-PYRAZOL-1-YL)METHYL)PYRIDINE

3-((4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-PYRAZOL-1-YL)METHYL)PYRIDINE

C15H20BN3O2 (285.1648)


   

2-((4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-PYRAZOL-1-YL)METHYL)PYRIDINE

2-((4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-PYRAZOL-1-YL)METHYL)PYRIDINE

C15H20BN3O2 (285.1648)


   
   

(-)-O-DESMETHYLTRAMADOL, HYDROCHLORIDE

(-)-O-DESMETHYLTRAMADOL, HYDROCHLORIDE

C15H24ClNO2 (285.1495)


   

3-(Boc-amino)-3-(4-chlorophenyl)-1-propanol

3-(Boc-amino)-3-(4-chlorophenyl)-1-propanol

C14H20ClNO3 (285.1132)


   
   

6-Hydroxyrizatriptan

6-Hydroxyrizatriptan

C15H19N5O (285.159)


   

2-(3-(Diallylamino)propionyl)benzothiophene

2-(3-(Diallylamino)propionyl)benzothiophene

C17H19NOS (285.1187)


   

cis-3,4,5-Trimethoxy-3-aminostilbene

cis-3,4,5-Trimethoxy-3-aminostilbene

C17H19NO3 (285.1365)


   

Prolyl-leucyl-glycine

Prolyl-leucyl-glycine

C13H23N3O4 (285.1688)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

5-(N-Methyl-N-propyl)amiloride

5-(N-Methyl-N-propyl)amiloride

C10H16ClN7O (285.1105)


   

9-Carbazolyl-(4-methylphenyl)methanone

9-Carbazolyl-(4-methylphenyl)methanone

C20H15NO (285.1154)


   

L-alanyl-L-alanine 2-naphthylamide

L-alanyl-L-alanine 2-naphthylamide

C16H19N3O2 (285.1477)


   

2,3-Secoguanosine

2,3-Secoguanosine

C10H15N5O5 (285.1073)


   

(2S)-2-[[(2S)-1-(2-aminoacetyl)pyrrolidine-2-carbonyl]amino]-4-methylpentanoic acid

(2S)-2-[[(2S)-1-(2-aminoacetyl)pyrrolidine-2-carbonyl]amino]-4-methylpentanoic acid

C13H23N3O4 (285.1688)


   

2,4-Dimethyl-5-[(2-methylphenyl)hydrazinylidene]-3-pyrrolecarboxylic acid ethyl ester

2,4-Dimethyl-5-[(2-methylphenyl)hydrazinylidene]-3-pyrrolecarboxylic acid ethyl ester

C16H19N3O2 (285.1477)


   

4-N-hydroxy-1-N-(2-pyridin-4-ylethyl)benzene-1,4-dicarboxamide

4-N-hydroxy-1-N-(2-pyridin-4-ylethyl)benzene-1,4-dicarboxamide

C15H15N3O3 (285.1113)


   
   
   

L-Valyl-L-prolyl-L-alanine

L-Valyl-L-prolyl-L-alanine

C13H23N3O4 (285.1688)


   

L-Prolylglycyl-L-isoleucine

L-Prolylglycyl-L-isoleucine

C13H23N3O4 (285.1688)


   

4-(9H-Fluoren-9-YL)-N,N-dimethylbenzenamine

4-(9H-Fluoren-9-YL)-N,N-dimethylbenzenamine

C21H19N (285.1517)


   

2,5-Bis(trimethylsilylethynyl)aniline

2,5-Bis(trimethylsilylethynyl)aniline

C16H23NSi2 (285.1369)


   

4-[(Cyclopropylethynyl)oxy]-6-fluoro-3-isopropylquinolin-2(1H)-one

4-[(Cyclopropylethynyl)oxy]-6-fluoro-3-isopropylquinolin-2(1H)-one

C17H16FNO2 (285.1165)


   

2-[4-(Dimethylamino)phenyl]-6-Hydroxy-3-Methyl-1,3-Benzothiazol-3-Ium

2-[4-(Dimethylamino)phenyl]-6-Hydroxy-3-Methyl-1,3-Benzothiazol-3-Ium

C16H17N2OS+ (285.1062)


   

(3-Endo)-8-methyl-8-azabicyclo[3.2.1]oct-3-YL 1H-pyrrolo[2,3-B]pyridine-3-carboxylate

(3-Endo)-8-methyl-8-azabicyclo[3.2.1]oct-3-YL 1H-pyrrolo[2,3-B]pyridine-3-carboxylate

C16H19N3O2 (285.1477)


   

Prothipendyl

Prothipendyl

C16H19N3S (285.13)


C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics

   
   

Unkie

MORPHINE, (5A,6A)-7,8-DIDEHYDRO-4,5-EPOXY-17-METHYLMORPHINIAN-3,6-DIOL, MORPHIUM, MORPHIA, DOLCONTIN, DUROMORPH, MORPHINA, NEPENTHE

C17H19NO3 (285.1365)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Femara

4-[(4-cyanophenyl)-(1,2,4-triazol-1-yl)methyl]benzonitrile

C17H11N5 (285.1014)


L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BG - Aromatase inhibitors D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D047072 - Aromatase Inhibitors C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents Letrozole (CGS 20267) is a potent, selective, reversible and orally active non-steroidal inhibitor of aromatase, with an IC50 of 11.5 nM. Letrozole selective inhibits estrogen biosynthesis, and can be used for the research of breast cancer[1][2][3].

   

Coformycin(1+)

Coformycin(1+)

C11H17N4O5+ (285.1199)


The conjugate acid of coformycin arising from protonation of the imine nitrogen.

   
   

(10bR,4aS)-buphanisine

(10bR,4aS)-buphanisine

C17H19NO3 (285.1365)


   

(S)-1,2,3,4-Tetrahydro-1-[(4-hydroxyphenyl)methyl]-7-methoxyisoquinoline-6-ol

(S)-1,2,3,4-Tetrahydro-1-[(4-hydroxyphenyl)methyl]-7-methoxyisoquinoline-6-ol

C17H19NO3 (285.1365)


   

dimethylidenebutanedioylcarnitine

dimethylidenebutanedioylcarnitine

C13H19NO6 (285.1212)


   

(2E,4E)-Hexa-2,4-dienedioylcarnitine

(2E,4E)-Hexa-2,4-dienedioylcarnitine

C13H19NO6 (285.1212)


   

N-Propionyl-N-(4,6,7-trimethyl-quinazolin-2-yl)-guanidine

N-Propionyl-N-(4,6,7-trimethyl-quinazolin-2-yl)-guanidine

C15H19N5O (285.159)


   

2-phenyl-N-[2-(phenylmethylthio)ethyl]acetamide

2-phenyl-N-[2-(phenylmethylthio)ethyl]acetamide

C17H19NOS (285.1187)


   

N-[4-(diethylamino)benzylidene]-2-furohydrazide

N-[4-(diethylamino)benzylidene]-2-furohydrazide

C16H19N3O2 (285.1477)


   

1-(6-hydroxy-3,6-dimethyl-4-phenyl-5,7-dihydro-4H-2,1-benzoxazol-5-yl)ethanone

1-(6-hydroxy-3,6-dimethyl-4-phenyl-5,7-dihydro-4H-2,1-benzoxazol-5-yl)ethanone

C17H19NO3 (285.1365)


   

N-[(2-methylphenyl)methyl]-2-[(4-methylphenyl)thio]acetamide

N-[(2-methylphenyl)methyl]-2-[(4-methylphenyl)thio]acetamide

C17H19NOS (285.1187)


   

1-(3,4-dihydro-1H-isoquinolin-2-yl)-2-(2-fluorophenoxy)ethanone

1-(3,4-dihydro-1H-isoquinolin-2-yl)-2-(2-fluorophenoxy)ethanone

C17H16FNO2 (285.1165)


   

Promethazine(1+)

Promethazine(1+)

C17H21N2S+ (285.1425)


   

2-Methyl-3,7-diphenylpyrazolo[1,5-a]pyrimidine

2-Methyl-3,7-diphenylpyrazolo[1,5-a]pyrimidine

C19H15N3 (285.1266)


   

[(1S,5R)-8-methyl-8-azoniabicyclo[3.2.1]octan-3-yl] 1H-indole-3-carboxylate

[(1S,5R)-8-methyl-8-azoniabicyclo[3.2.1]octan-3-yl] 1H-indole-3-carboxylate

C17H21N2O2+ (285.1603)


   

2-(2,5-dimethylphenoxy)-N-(2-hydroxy-5-methylphenyl)acetamide

2-(2,5-dimethylphenoxy)-N-(2-hydroxy-5-methylphenyl)acetamide

C17H19NO3 (285.1365)


   
   

Gly-pro-hyp

Gly-pro-hyp

C12H19N3O5 (285.1325)


A tripeptide composed of glycine, L-proline and 3-hydroxy-L-proline units joined in sequence by peptide linkages.

   

3,7-Bis(dimethylamino)phenothiazine

3,7-Bis(dimethylamino)phenothiazine

C16H19N3S (285.13)


   

9-oxo-N-(1-phenylethyl)bicyclo[3.3.1]nonane-3-carboxamide

9-oxo-N-(1-phenylethyl)bicyclo[3.3.1]nonane-3-carboxamide

C18H23NO2 (285.1729)


   

2-(2-Fluorophenyl)-5-(4-methylpiperidin-1-yl)-1,3-oxazole-4-carbonitrile

2-(2-Fluorophenyl)-5-(4-methylpiperidin-1-yl)-1,3-oxazole-4-carbonitrile

C16H16FN3O (285.1277)


   

3-[5-(4-Methoxyphenyl)-1-prop-2-enyl-2-pyrrolyl]propanoic acid

3-[5-(4-Methoxyphenyl)-1-prop-2-enyl-2-pyrrolyl]propanoic acid

C17H19NO3 (285.1365)


   

(2,6-Dimethyl-phenoxy)-acetic acid (1-methyl-1H-pyrrol-2-ylmethylene)-hydrazide

(2,6-Dimethyl-phenoxy)-acetic acid (1-methyl-1H-pyrrol-2-ylmethylene)-hydrazide

C16H19N3O2 (285.1477)


   

1-(2-Ethyl-3-benzofuranyl)-3-(1-piperidinyl)-1-propanone

1-(2-Ethyl-3-benzofuranyl)-3-(1-piperidinyl)-1-propanone

C18H23NO2 (285.1729)


   

1-[2-(Prop-2-en-1-ylphenoxy)]-3-(isopropylamino)propan-2-ol hydrochloride

1-[2-(Prop-2-en-1-ylphenoxy)]-3-(isopropylamino)propan-2-ol hydrochloride

C15H24ClNO2 (285.1495)


   

N,N-di(propan-2-yl)-2-[(1-propyl-5-tetrazolyl)thio]acetamide

N,N-di(propan-2-yl)-2-[(1-propyl-5-tetrazolyl)thio]acetamide

C12H23N5OS (285.1623)


   

8-fluoro-4-(4-methylpiperazin-1-yl)-5H-pyrimido[5,4-b]indole

8-fluoro-4-(4-methylpiperazin-1-yl)-5H-pyrimido[5,4-b]indole

C15H16FN5 (285.139)


   

beta-Saxitoxinol(2+)

beta-Saxitoxinol(2+)

C10H19N7O3+2 (285.1549)


   

(E)-1-hydroxy-2-(non-1-en-1-yl)quinolin-4-one

(E)-1-hydroxy-2-(non-1-en-1-yl)quinolin-4-one

C18H23NO2 (285.1729)


A hydroxylamine that is N-hydroxyquinolin-4-one in which the hydrogen at position 2 has been replaced by a (1E)-non-1-en-1-yl group. It is the most active agent produced by Pseudomonas aeruginosa that modulates the growth and virulence of Staphylococcus aureus; the corresponding Z isomer is inactive.

   
   
   
   
   
   
   
   
   
   

N-(8-carboxy-3-oxooctanoyl)-L-homoserine lactone

N-(8-carboxy-3-oxooctanoyl)-L-homoserine lactone

C13H19NO6 (285.1212)


   

1-(4-Trifluoromethylphenyl)-2-methyl-3-pyrrolidino-1-propanone

1-(4-Trifluoromethylphenyl)-2-methyl-3-pyrrolidino-1-propanone

C15H18F3NO (285.134)


   

4-[Methyl-(phenylmethyl)amino]-1-phenylbutane-1,3-diol

4-[Methyl-(phenylmethyl)amino]-1-phenylbutane-1,3-diol

C18H23NO2 (285.1729)


   
   

(4R,7S,7aR,12bS)-3-methyl-2,4,6,7,7a,13-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinoline-7,9-diol

(4R,7S,7aR,12bS)-3-methyl-2,4,6,7,7a,13-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinoline-7,9-diol

C17H19NO3 (285.1365)


   
   
   
   

2-methylpropanoic acid [3-(1H-benzimidazol-2-yl)-3-cyano-2-oxopropyl] ester

2-methylpropanoic acid [3-(1H-benzimidazol-2-yl)-3-cyano-2-oxopropyl] ester

C15H15N3O3 (285.1113)


   

2-[[(2R)-2-formamido-3-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-formamido-3-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C9H22N2O6P+ (285.1215)


   

(3-Ethoxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(3-Ethoxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C10H24NO6P (285.1341)


   

2-Aminoethyl (2-hydroxy-3-pentoxypropyl) hydrogen phosphate

2-Aminoethyl (2-hydroxy-3-pentoxypropyl) hydrogen phosphate

C10H24NO6P (285.1341)


   

2-(2,3-Dimethoxyphenyl)-3-phenylpropionamide

2-(2,3-Dimethoxyphenyl)-3-phenylpropionamide

C17H19NO3 (285.1365)


   

Morphine

D-(-)-Morphine

C17H19NO3 (285.1365)


A morphinane alkaloid that is a highly potent opiate analgesic psychoactive drug. Morphine acts directly on the central nervous system (CNS) to relieve pain but has a high potential for addiction, with tolerance and both physical and psychological dependence developing rapidly. Morphine is the most abundant opiate found in Papaver somniferum (the opium poppy). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Galanthaminone

Galanthaminone

C17H19NO3 (285.1365)


   

Vidarabine monohydrate

Vidarabine monohydrate

C10H13N5O4.H2O (285.1073)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent D009676 - Noxae > D000963 - Antimetabolites Vidarabine monohydrate is an adenine arabinoside. Vidarabine monohydrate an antiviral agent which is active against herpes simplex viruses (HSV) and varicella zoster viruses[1].

   

TRX-0237

Leucomethylene blue

C16H19N3S (285.13)


A member of the class of phenothiazines that is 10H-phenothiazine in which the ring hydrogens at positions 3 and 7 have been replaced by dimethylamino groups. C26170 - Protective Agent > C1509 - Neuroprotective Agent

   
   

Hymorphan (Salt/Mix)

Hymorphan (Salt/Mix)

C17H19NO3 (285.1365)


   

(RS)-coclaurine

(RS)-coclaurine

C17H19NO3 (285.1365)


   

(S)-Coclaurine

(S)-Coclaurine

C17H19NO3 (285.1365)


The (S)-enantiomer of coclaurine.

   
   
   
   
   
   
   
   

2'-Deoxyguanosine monohydrate

2'-Deoxyguanosine monohydrate

C10H15N5O5 (285.1073)


2'-Deoxyguanosine monohydrate is an endogenous metabolite. 2'-Deoxyguanosine monohydrate is an endogenous metabolite.

   

(3s,4r)-3-[(s)-hydroxy(phenyl)methyl]-1-methyl-4-(1-methylimidazol-4-yl)pyrrolidin-2-one

(3s,4r)-3-[(s)-hydroxy(phenyl)methyl]-1-methyl-4-(1-methylimidazol-4-yl)pyrrolidin-2-one

C16H19N3O2 (285.1477)


   

(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl 2,4-dimethyl-1h-pyrrole-3-carboxylate

(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl 2,4-dimethyl-1h-pyrrole-3-carboxylate

C13H19NO6 (285.1212)


   

11-hydroxy-12-methyl-5-phenyl-6-oxa-12-azatricyclo[7.2.1.0²,⁷]dodec-2(7)-en-3-one

11-hydroxy-12-methyl-5-phenyl-6-oxa-12-azatricyclo[7.2.1.0²,⁷]dodec-2(7)-en-3-one

C17H19NO3 (285.1365)


   

(1r,4'r)-11'-hydroxy-10'-methoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one

(1r,4'r)-11'-hydroxy-10'-methoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one

C17H19NO3 (285.1365)


   

(2s,3s,4r)-3-methyl-2-[(1e,3e)-4-phenylbuta-1,3-dien-1-yl]piperidin-4-yl acetate

(2s,3s,4r)-3-methyl-2-[(1e,3e)-4-phenylbuta-1,3-dien-1-yl]piperidin-4-yl acetate

C18H23NO2 (285.1729)


   

(1s)-1-[(4-hydroxyphenyl)methyl]-7-methoxy-1,2,3,4-tetrahydroisoquinolin-8-ol

(1s)-1-[(4-hydroxyphenyl)methyl]-7-methoxy-1,2,3,4-tetrahydroisoquinolin-8-ol

C17H19NO3 (285.1365)


   

(2r,4s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate

(2r,4s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate

C17H19NO3 (285.1365)


   

1-[(5s)-2,4-dihydroxy-5-isopropyl-5h-pyrrol-3-yl]-5-hydroxy-3-methoxyhexan-1-one

1-[(5s)-2,4-dihydroxy-5-isopropyl-5h-pyrrol-3-yl]-5-hydroxy-3-methoxyhexan-1-one

C14H23NO5 (285.1576)


   

1-[(3-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

1-[(3-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

C17H19NO3 (285.1365)


   

(1s,5r,13r,14r,17r)-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraene-10,14-diol

(1s,5r,13r,14r,17r)-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraene-10,14-diol

C17H19NO3 (285.1365)


   

1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol

1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol

C17H19NO3 (285.1365)


   

n-[(4s,5r,7s,9s)-7-ethyl-9-hydroxy-8,8-dimethyl-2-oxo-1,6-dioxaspiro[4.5]decan-4-yl]ethanimidic acid

n-[(4s,5r,7s,9s)-7-ethyl-9-hydroxy-8,8-dimethyl-2-oxo-1,6-dioxaspiro[4.5]decan-4-yl]ethanimidic acid

C14H23NO5 (285.1576)


   

(4e)-5-(2h-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)penta-2,4-dien-1-one

(4e)-5-(2h-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)penta-2,4-dien-1-one

C17H19NO3 (285.1365)


   

(9bs,11s)-8,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline

(9bs,11s)-8,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline

C18H23NO2 (285.1729)


   

3,6-bis({[(2r)-3,3-dimethyloxiran-2-yl]methyl})-1h-indole

3,6-bis({[(2r)-3,3-dimethyloxiran-2-yl]methyl})-1h-indole

C18H23NO2 (285.1729)


   

3,3-bis(but-3-en-1-yl)-4-methoxy-4h-quinolin-2-ol

3,3-bis(but-3-en-1-yl)-4-methoxy-4h-quinolin-2-ol

C18H23NO2 (285.1729)


   

n-[2-(2,2-dimethylchromen-6-yl)ethyl]-3-methylbut-2-enimidic acid

n-[2-(2,2-dimethylchromen-6-yl)ethyl]-3-methylbut-2-enimidic acid

C18H23NO2 (285.1729)


   

2-(nonan-8-one)-(1h)-4-quinolone

NA

C18H23NO2 (285.1729)


{"Ingredient_id": "HBIN006129","Ingredient_name": "2-(nonan-8-one)-(1h)-4-quinolone","Alias": "NA","Ingredient_formula": "C18H23NO2","Ingredient_Smile": "COC1C2=CC=CC=C2NC(=O)C1(CCC=C)CCC=C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "15682","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

3,3-dimethylallyl-4-methoxy-2-quinolone

NA

C18H23NO2 (285.1729)


{"Ingredient_id": "HBIN007181","Ingredient_name": "3,3-dimethylallyl-4-methoxy-2-quinolone","Alias": "NA","Ingredient_formula": "C18H23NO2","Ingredient_Smile": "COC1C2=CC=CC=C2NC(=O)C1(CCC=C)CCC=C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15154","TCMID_id": "6307","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

3-dimethylallyl-4-methoxy-2-quinolone

NA

C18H23NO2 (285.1729)


{"Ingredient_id": "HBIN008441","Ingredient_name": "3-dimethylallyl-4-methoxy-2-quinolone","Alias": "NA","Ingredient_formula": "C18H23NO2","Ingredient_Smile": "COC1C2=CC=CC=C2NC(=O)C1(CCC=C)CCC=C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "25844","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

aposcopolamine

535-26-2; Prestwick_216; Aposcopolamine

C17H19NO3 (285.1365)


{"Ingredient_id": "HBIN016515","Ingredient_name": "aposcopolamine","Alias": "535-26-2; Prestwick_216; Aposcopolamine","Ingredient_formula": "C17H19NO3","Ingredient_Smile": "CN1C2CC(CC1C3C2O3)OC(=O)C(=C)C4=CC=CC=C4","Ingredient_weight": "285.34 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14344","TCMID_id": "1534","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "98104494","DrugBank_id": "NA"}

   

1-[(4-hydroxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline-6,7-diol

1-[(4-hydroxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline-6,7-diol

C17H19NO3 (285.1365)


   

(1s)-1-[(4-hydroxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline-6,7-diol

(1s)-1-[(4-hydroxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline-6,7-diol

C17H19NO3 (285.1365)


   

(1r)-1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol

(1r)-1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol

C17H19NO3 (285.1365)


   

(1r,2r,4r,5s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate

(1r,2r,4r,5s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate

C17H19NO3 (285.1365)


   

2-[(4s,7r)-10-chloro-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraen-4-yl]acetonitrile

2-[(4s,7r)-10-chloro-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraen-4-yl]acetonitrile

C16H16ClN3 (285.1033)


   

11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-7,8-diol

11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-7,8-diol

C17H19NO3 (285.1365)


   

4,5-dimethoxy-9-azatetracyclo[7.5.2.0¹,¹⁰.0²,⁷]hexadeca-2(7),3,5,13-tetraen-12-one

4,5-dimethoxy-9-azatetracyclo[7.5.2.0¹,¹⁰.0²,⁷]hexadeca-2(7),3,5,13-tetraen-12-one

C17H19NO3 (285.1365)


   

(1r,2s,4r,5s,7s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate

(1r,2s,4r,5s,7s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate

C17H19NO3 (285.1365)


   

(3s)-3-{[(2e,4e,6e)-1-hydroxyocta-2,4,6-trien-1-ylidene]amino}-3-phenylpropanoic acid

(3s)-3-{[(2e,4e,6e)-1-hydroxyocta-2,4,6-trien-1-ylidene]amino}-3-phenylpropanoic acid

C17H19NO3 (285.1365)


   

(1s,13r)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

(1s,13r)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

C17H19NO3 (285.1365)


   

3,4,6-trimethoxy-1,2-dimethyl-9h-carbazole

3,4,6-trimethoxy-1,2-dimethyl-9h-carbazole

C17H19NO3 (285.1365)


   

(+)-narwedine

(+)-narwedine

C17H19NO3 (285.1365)


   

n-[(2s)-2-methoxy-2-(4-methoxyphenyl)ethyl]benzenecarboximidic acid

n-[(2s)-2-methoxy-2-(4-methoxyphenyl)ethyl]benzenecarboximidic acid

C17H19NO3 (285.1365)


   

3,5-dihydroxy-2,6-dimethyl-7-(2-methyl-1,3-thiazol-4-yl)hept-6-enoic acid

3,5-dihydroxy-2,6-dimethyl-7-(2-methyl-1,3-thiazol-4-yl)hept-6-enoic acid

C13H19NO4S (285.1035)


   

(11r)-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-7,8-diol

(11r)-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-7,8-diol

C17H19NO3 (285.1365)


   

8,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline

8,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline

C18H23NO2 (285.1729)


   

(4e)-n-(2-hydroxy-5-oxocyclopent-1-en-1-yl)-5-(2-methylphenyl)pent-4-enimidic acid

(4e)-n-(2-hydroxy-5-oxocyclopent-1-en-1-yl)-5-(2-methylphenyl)pent-4-enimidic acid

C17H19NO3 (285.1365)


   

3,5-bis({[(2r)-3,3-dimethyloxiran-2-yl]methyl})-1h-indole

3,5-bis({[(2r)-3,3-dimethyloxiran-2-yl]methyl})-1h-indole

C18H23NO2 (285.1729)


   

3-(1h-indol-3-ylmethyl)-6-isopropyl-3,6-dihydropyrazine-2,5-diol

3-(1h-indol-3-ylmethyl)-6-isopropyl-3,6-dihydropyrazine-2,5-diol

C16H19N3O2 (285.1477)


   

n-[(2r)-2-methoxy-2-(4-methoxyphenyl)ethyl]benzenecarboximidic acid

n-[(2r)-2-methoxy-2-(4-methoxyphenyl)ethyl]benzenecarboximidic acid

C17H19NO3 (285.1365)


   

(1s)-1-[(3-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

(1s)-1-[(3-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

C17H19NO3 (285.1365)


   

3,4,5-trihydroxy-6-methyloxan-2-yl 2,4-dimethyl-1h-pyrrole-3-carboxylate

3,4,5-trihydroxy-6-methyloxan-2-yl 2,4-dimethyl-1h-pyrrole-3-carboxylate

C13H19NO6 (285.1212)


   

(4e,7e)-7-(chloromethylidene)-n-(3-methylbutyl)dec-4-enimidic acid

(4e,7e)-7-(chloromethylidene)-n-(3-methylbutyl)dec-4-enimidic acid

C16H28ClNO (285.1859)


   

3-[(1-hydroxyocta-2,4,6-trien-1-ylidene)amino]-3-phenylpropanoic acid

3-[(1-hydroxyocta-2,4,6-trien-1-ylidene)amino]-3-phenylpropanoic acid

C17H19NO3 (285.1365)


   

(3e)-4-(3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-1h-indol-2-yl)-2-methylbut-3-en-2-ol

(3e)-4-(3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-1h-indol-2-yl)-2-methylbut-3-en-2-ol

C18H23NO2 (285.1729)


   

3,6-bis({[(2s)-3,3-dimethyloxiran-2-yl]methyl})-1h-indole

3,6-bis({[(2s)-3,3-dimethyloxiran-2-yl]methyl})-1h-indole

C18H23NO2 (285.1729)


   

(1r,5s,9r,11r)-11-hydroxy-12-methyl-5-phenyl-6-oxa-12-azatricyclo[7.2.1.0²,⁷]dodec-2(7)-en-3-one

(1r,5s,9r,11r)-11-hydroxy-12-methyl-5-phenyl-6-oxa-12-azatricyclo[7.2.1.0²,⁷]dodec-2(7)-en-3-one

C17H19NO3 (285.1365)


   

3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-5-{[(2s)-3,3-dimethyloxiran-2-yl]methyl}-1h-indole

3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-5-{[(2s)-3,3-dimethyloxiran-2-yl]methyl}-1h-indole

C18H23NO2 (285.1729)


   
   

3,5-bis[(3,3-dimethyloxiran-2-yl)methyl]-1h-indole

3,5-bis[(3,3-dimethyloxiran-2-yl)methyl]-1h-indole

C18H23NO2 (285.1729)


   

4-(4-hydroxyphenyl)-6-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-7-ol

4-(4-hydroxyphenyl)-6-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-7-ol

C17H19NO3 (285.1365)


   

4-{3-[(3,3-dimethyloxiran-2-yl)methyl]-1h-indol-6-yl}-2-methylbut-3-en-2-ol

4-{3-[(3,3-dimethyloxiran-2-yl)methyl]-1h-indol-6-yl}-2-methylbut-3-en-2-ol

C18H23NO2 (285.1729)


   

(3s,6s)-3-(1h-indol-3-ylmethyl)-6-isopropyl-3,6-dihydropyrazine-2,5-diol

(3s,6s)-3-(1h-indol-3-ylmethyl)-6-isopropyl-3,6-dihydropyrazine-2,5-diol

C16H19N3O2 (285.1477)


   

4-(4-hydroxyphenyl)-6-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-5-ol

4-(4-hydroxyphenyl)-6-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-5-ol

C17H19NO3 (285.1365)


   

4-{3-[(3,3-dimethyloxiran-2-yl)methyl]-1h-indol-5-yl}-2-methylbut-3-en-2-ol

4-{3-[(3,3-dimethyloxiran-2-yl)methyl]-1h-indol-5-yl}-2-methylbut-3-en-2-ol

C18H23NO2 (285.1729)


   

(1r,13s,15r)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

(1r,13s,15r)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

C17H19NO3 (285.1365)


   

(3e)-4-(3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-1h-indol-5-yl)-2-methylbut-3-en-2-ol

(3e)-4-(3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-1h-indol-5-yl)-2-methylbut-3-en-2-ol

C18H23NO2 (285.1729)


   

(1s,13s,15r)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

(1s,13s,15r)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

C17H19NO3 (285.1365)


   

15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

C17H19NO3 (285.1365)


   

(9bs,11r)-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-7,8-diol

(9bs,11r)-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-7,8-diol

C17H19NO3 (285.1365)


   

(2s)-2-{[(benzyloxy)(hydroxy)methylidene]amino}-3-phenylpropan-1-ol

(2s)-2-{[(benzyloxy)(hydroxy)methylidene]amino}-3-phenylpropan-1-ol

C17H19NO3 (285.1365)


   

7-(chloromethylidene)-n-(3-methylbutyl)dec-4-enimidic acid

7-(chloromethylidene)-n-(3-methylbutyl)dec-4-enimidic acid

C16H28ClNO (285.1859)


   

(1r)-1-[(4-hydroxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline-6,7-diol

(1r)-1-[(4-hydroxyphenyl)methyl]-2-methyl-3,4-dihydro-1h-isoquinoline-6,7-diol

C17H19NO3 (285.1365)


   

3-{[(2e,4e,6e)-1-hydroxyocta-2,4,6-trien-1-ylidene]amino}-3-phenylpropanoic acid

3-{[(2e,4e,6e)-1-hydroxyocta-2,4,6-trien-1-ylidene]amino}-3-phenylpropanoic acid

C17H19NO3 (285.1365)


   

(2s,3r,4s)-3-hydroxy-6-{[(2e)-1-hydroxy-2-methylpent-2-en-1-ylidene]amino}-2,4-dimethyl-5-oxohexanoic acid

(2s,3r,4s)-3-hydroxy-6-{[(2e)-1-hydroxy-2-methylpent-2-en-1-ylidene]amino}-2,4-dimethyl-5-oxohexanoic acid

C14H23NO5 (285.1576)


   

(1r,10s)-4,5-dimethoxy-9-azatetracyclo[7.5.2.0¹,¹⁰.0²,⁷]hexadeca-2(7),3,5,13-tetraen-12-one

(1r,10s)-4,5-dimethoxy-9-azatetracyclo[7.5.2.0¹,¹⁰.0²,⁷]hexadeca-2(7),3,5,13-tetraen-12-one

C17H19NO3 (285.1365)


   

3,6-bis[(3,3-dimethyloxiran-2-yl)methyl]-1h-indole

3,6-bis[(3,3-dimethyloxiran-2-yl)methyl]-1h-indole

C18H23NO2 (285.1729)


   

(9bs,11r)-7-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-8,11-diol

(9bs,11r)-7-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-8,11-diol

C17H19NO3 (285.1365)


   

8-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-7,11-diol

8-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-7,11-diol

C17H19NO3 (285.1365)


   

7-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-8,11-diol

7-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline-8,11-diol

C17H19NO3 (285.1365)


   

n-{7-ethyl-9-hydroxy-8,8-dimethyl-2-oxo-1,6-dioxaspiro[4.5]decan-4-yl}ethanimidic acid

n-{7-ethyl-9-hydroxy-8,8-dimethyl-2-oxo-1,6-dioxaspiro[4.5]decan-4-yl}ethanimidic acid

C14H23NO5 (285.1576)


   

2,3-dihydroxy-n-(2-phenylethyl)nona-6,8-diynimidic acid

2,3-dihydroxy-n-(2-phenylethyl)nona-6,8-diynimidic acid

C17H19NO3 (285.1365)


   

(1s,13r,15r)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

(1s,13r,15r)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

C17H19NO3 (285.1365)


   

4-{3-[(3,3-dimethyloxiran-2-yl)methyl]-1h-indol-2-yl}-2-methylbut-3-en-2-ol

4-{3-[(3,3-dimethyloxiran-2-yl)methyl]-1h-indol-2-yl}-2-methylbut-3-en-2-ol

C18H23NO2 (285.1729)


   

(2e)-1-[(3r,4r)-3,4-diacetylpyrrolidin-1-yl]-3-phenylprop-2-en-1-one

(2e)-1-[(3r,4r)-3,4-diacetylpyrrolidin-1-yl]-3-phenylprop-2-en-1-one

C17H19NO3 (285.1365)


   

(1s,4'r)-11'-hydroxy-10'-methoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one

(1s,4'r)-11'-hydroxy-10'-methoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one

C17H19NO3 (285.1365)


   

3-{3h,4h,9h-pyrido[3,4-b]indol-1-yl}-1h-indole

3-{3h,4h,9h-pyrido[3,4-b]indol-1-yl}-1h-indole

C19H15N3 (285.1266)


   

(1r,2r,4s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate

(1r,2r,4s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate

C17H19NO3 (285.1365)


   

(3z)-4-(3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-1h-indol-6-yl)-2-methylbut-3-en-2-ol

(3z)-4-(3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-1h-indol-6-yl)-2-methylbut-3-en-2-ol

C18H23NO2 (285.1729)


   

(3e)-4-(3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-1h-indol-6-yl)-2-methylbut-3-en-2-ol

(3e)-4-(3-{[(2r)-3,3-dimethyloxiran-2-yl]methyl}-1h-indol-6-yl)-2-methylbut-3-en-2-ol

C18H23NO2 (285.1729)


   

(4e)-7-(chloromethylidene)-n-(3-methylbutyl)dec-4-enimidic acid

(4e)-7-(chloromethylidene)-n-(3-methylbutyl)dec-4-enimidic acid

C16H28ClNO (285.1859)


   

4,15-dimethoxy-10-azatetracyclo[8.6.1.0²,⁷.0¹³,¹⁷]heptadeca-2,4,6,13-tetraene

4,15-dimethoxy-10-azatetracyclo[8.6.1.0²,⁷.0¹³,¹⁷]heptadeca-2,4,6,13-tetraene

C18H23NO2 (285.1729)


   

(9bs,11r,13as)-8,11-dimethoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinoline

(9bs,11r,13as)-8,11-dimethoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinoline

C18H23NO2 (285.1729)


   

(2s,3r,5r,6e)-3,5-dihydroxy-2,6-dimethyl-7-(2-methyl-1,3-thiazol-4-yl)hept-6-enoic acid

(2s,3r,5r,6e)-3,5-dihydroxy-2,6-dimethyl-7-(2-methyl-1,3-thiazol-4-yl)hept-6-enoic acid

C13H19NO4S (285.1035)


   

(1r)-1-[(4-hydroxyphenyl)methyl]-7-methoxy-1,2,3,4-tetrahydroisoquinolin-8-ol

(1r)-1-[(4-hydroxyphenyl)methyl]-7-methoxy-1,2,3,4-tetrahydroisoquinolin-8-ol

C17H19NO3 (285.1365)


   

1-[(4-hydroxyphenyl)methyl]-7-methoxy-1,2,3,4-tetrahydroisoquinolin-8-ol

1-[(4-hydroxyphenyl)methyl]-7-methoxy-1,2,3,4-tetrahydroisoquinolin-8-ol

C17H19NO3 (285.1365)


   

2-[(4s)-10-chloro-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraen-4-yl]acetonitrile

2-[(4s)-10-chloro-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraen-4-yl]acetonitrile

C16H16ClN3 (285.1033)


   

2,4-dihydroxy-n-(2-phenylethyl)nona-6,8-diynimidic acid

2,4-dihydroxy-n-(2-phenylethyl)nona-6,8-diynimidic acid

C17H19NO3 (285.1365)


   

(4s)-4-(4-hydroxyphenyl)-6-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-5-ol

(4s)-4-(4-hydroxyphenyl)-6-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-5-ol

C17H19NO3 (285.1365)


   

1-(2,4-dihydroxy-5-isopropyl-5h-pyrrol-3-yl)-5-hydroxy-3-methoxyhexan-1-one

1-(2,4-dihydroxy-5-isopropyl-5h-pyrrol-3-yl)-5-hydroxy-3-methoxyhexan-1-one

C14H23NO5 (285.1576)


   

(1s,5s,9s,11r)-11-hydroxy-12-methyl-5-phenyl-6-oxa-12-azatricyclo[7.2.1.0²,⁷]dodec-2(7)-en-3-one

(1s,5s,9s,11r)-11-hydroxy-12-methyl-5-phenyl-6-oxa-12-azatricyclo[7.2.1.0²,⁷]dodec-2(7)-en-3-one

C17H19NO3 (285.1365)


   

8,11-dimethoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinoline

8,11-dimethoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinoline

C18H23NO2 (285.1729)


   

3-[hydroxy(phenyl)methyl]-1-methyl-4-(1-methylimidazol-4-yl)pyrrolidin-2-one

3-[hydroxy(phenyl)methyl]-1-methyl-4-(1-methylimidazol-4-yl)pyrrolidin-2-one

C16H19N3O2 (285.1477)


   

(1r,13r,15r)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

(1r,13r,15r)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.0¹,¹³.0²,¹⁰.0⁴,⁸]nonadeca-2,4(8),9,16-tetraene

C17H19NO3 (285.1365)


   

(6e)-3,5-dihydroxy-2,6-dimethyl-7-(2-methyl-1,3-thiazol-4-yl)hept-6-enoic acid

(6e)-3,5-dihydroxy-2,6-dimethyl-7-(2-methyl-1,3-thiazol-4-yl)hept-6-enoic acid

C13H19NO4S (285.1035)


   

2-(8-oxononyl)-1h-quinolin-4-one

2-(8-oxononyl)-1h-quinolin-4-one

C18H23NO2 (285.1729)


   

11'-hydroxy-10'-methoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one

11'-hydroxy-10'-methoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one

C17H19NO3 (285.1365)


   

n-[2-methoxy-2-(4-methoxyphenyl)ethyl]benzenecarboximidic acid

n-[2-methoxy-2-(4-methoxyphenyl)ethyl]benzenecarboximidic acid

C17H19NO3 (285.1365)


   

2-{[(benzyloxy)(hydroxy)methylidene]amino}-3-phenylpropan-1-ol

2-{[(benzyloxy)(hydroxy)methylidene]amino}-3-phenylpropan-1-ol

C17H19NO3 (285.1365)