Exact Mass: 180.0715
Exact Mass Matches: 180.0715
Found 500 metabolites which its exact mass value is equals to given mass value 180.0715
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Isopropyl 4-hydroxybenzoate
Isopropylparaben is a 4-hydroxybenzoate ester.
Theophylline
Theophylline is an odorless white crystalline powder. Odorless. Bitter taste. (NTP, 1992) Theophylline is a dimethylxanthine having the two methyl groups located at positions 1 and 3. It is structurally similar to caffeine and is found in green and black tea. It has a role as a vasodilator agent, a bronchodilator agent, a muscle relaxant, an EC 3.1.4.* (phosphoric diester hydrolase) inhibitor, an anti-asthmatic drug, an anti-inflammatory agent, an immunomodulator, an adenosine receptor antagonist, a drug metabolite, a fungal metabolite and a human blood serum metabolite. A methylxanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Mechanistically, theophylline acts as a phosphodiesterase inhibitor, adenosine receptor blocker, and histone deacetylase activator. Theophylline is marketed under several brand names such as Uniphyl and Theochron, and it is indicated mainly for asthma, bronchospasm, and COPD. Theophylline anhydrous is a Methylxanthine. Theophylline is an orally administered xanthine derivative that induces relaxation of smooth muscle in the bronchial tree causing bronchodilation. Theophylline is widely used in therapy of asthma and is not believed to cause liver injury. Theophylline is a natural product found in Theobroma grandiflorum, Coffea arabica, and other organisms with data available. Theophylline is a natural alkaloid derivative of xanthine isolated from the plants Camellia sinensis and Coffea arabica. Theophylline appears to inhibit phosphodiesterase and prostaglandin production, regulate calcium flux and intracellular calcium distribution, and antagonize adenosine. Physiologically, this agent relaxes bronchial smooth muscle, produces vasodilation (except in cerebral vessels), stimulates the CNS, stimulates cardiac muscle, induces diuresis, and increases gastric acid secretion; it may also suppress inflammation and improve contractility of the diaphragm. (NCI04) A methylxanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Mechanistically, theophylline acts as a phosphodiesterase inhibitor, adenosine receptor blocker, and histone deacetylase activator. Theophylline is marketed under several brand names such as Uniphyl and Theochron, and it is indicated mainly for asthma, bronchospasm, and COPD. A methyl xanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Theophylline inhibits the 3,5-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE that degrades CYCLIC AMP thus potentiates the actions of agents that act through ADENYLYL CYCLASES and cyclic AMP. See also: Paullinia cupana seed (part of). Theophylline, also known as quibron TSR or uniphyl, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Theophylline also binds to the adenosine A2B receptor and blocks adenosine mediated bronchoconstriction. Theophylline is a drug which is used for the treatment of the symptoms and reversible airflow obstruction associated with chronic asthma and other chronic lung diseases, such as emphysema and chronic bronchitis. Theophylline is marketed under several brand names such as Theophylline and Theochron, and it is indicated mainly for asthma, bronchospasm, and COPD. Within humans, theophylline participates in a number of enzymatic reactions. In particular, theophylline and formaldehyde can be biosynthesized from caffeine; which is mediated by the enzymes cytochrome P450 1A2, cytochrome P450 3A4, cytochrome P450 2C8, cytochrome P450 2C9, and cytochrome P450 2E1. In addition, theophylline can be converted into 1-methylxanthine and formaldehyde; which is mediated by the enzyme cytochrome P450 1A2. In humans, theophylline is involved in caffeine metabolism. Theophylline is a bitter tasting compound. Outside of the human body, Theophylline is found, on average, in the highest concentration within cocoa beans and tea. Theophylline has also been detected, but not quantified in a few different foods, such as arabica coffee, lemons, and pummelo. This could make theophylline a potential biomarker for the consumption of these foods. Theophylline is a potentially toxic compound. A dimethylxanthine having the two methyl groups located at positions 1 and 3. It is structurally similar to caffeine and is found in green and black tea. Theophylline, also known as 1,3-dimethylxanthine, is a drug that inhibits phosphodiesterase and blocks adenosine receptors.[1] It is used to treat chronic obstructive pulmonary disease (COPD) and asthma.[2] Its pharmacology is similar to other methylxanthine drugs (e.g., theobromine and caffeine).[1] Trace amounts of theophylline are naturally present in tea, coffee, chocolate, yerba maté, guarana, and kola nut.[1][3] The name 'theophylline' derives from "Thea"—the former genus name for tea + Legacy Greek φύλλον (phúllon, "leaf") + -ine. The use of theophylline is complicated by its interaction with various drugs and by the fact that it has a narrow therapeutic window (<20 mcg/mL).[2] Its use must be monitored by direct measurement of serum theophylline levels to avoid toxicity. It can also cause nausea, diarrhea, increase in heart rate, abnormal heart rhythms, and CNS excitation (headaches, insomnia, irritability, dizziness and lightheadedness).[2][11] Seizures can also occur in severe cases of toxicity, and are considered to be a neurological emergency.[2] Its toxicity is increased by erythromycin, cimetidine, and fluoroquinolones, such as ciprofloxacin. Some lipid-based formulations of theophylline can result in toxic theophylline levels when taken with fatty meals, an effect called dose dumping, but this does not occur with most formulations of theophylline.[12] Theophylline toxicity can be treated with beta blockers. In addition to seizures, tachyarrhythmias are a major concern.[13] Theophylline should not be used in combination with the SSRI fluvoxamine.[14][15] Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5].
Theobromine
Theobromine is an odorless white crystalline powder. Bitter taste. pH (saturated solution in water): 5.5-7. (NTP, 1992) Theobromine, also known as xantheose, is the principal alkaloid of Theobroma cacao (cacao plant).[4] Theobromine is slightly water-soluble (330 mg/L) with a bitter taste.[5] In industry, theobromine is used as an additive and precursor to some cosmetics.[4] It is found in chocolate, as well as in a number of other foods, including tea (Camellia sinensis), some American hollies (yaupon and guayusa) and the kola nut. It is a white or colourless solid, but commercial samples can appear yellowish.[5] Theobromine is a dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. It has a role as an adenosine receptor antagonist, a food component, a plant metabolite, a human blood serum metabolite, a mouse metabolite, a vasodilator agent and a bronchodilator agent. Theobromine (3,7-dimethylxanthine) is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9) Theobromine is a natural product found in Theobroma grandiflorum, Theobroma mammosum, and other organisms with data available. 3,7-Dimethylxanthine. The principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than THEOPHYLLINE and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9) See also: Paullinia cupana seed (part of). Theobromine, or 3,7-Dimethylxanthine, is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. Theobromine is a bitter alkaloid of the methylxanthine family, which also includes the similar compounds theophylline and caffeine. Despite its name, the compound contains no bromine. Theobromine is derived from Theobroma, the genus of the cacao tree, which is composed of the Greek roots theo ("God") and broma ("food"), meaning "food of the gods". It is the primary alkaloid found in cocoa and chocolate, and is one of the causes for chocolates mood-elevating effects. The amount found in chocolate is small enough that chocolate can be safely consumed by humans in large quantities, but animals that metabolize theobromine more slowly, such as cats and dogs, can easily consume enough chocolate to cause chocolate poisoning. Theobromine is a stimulant frequently confused with caffeine. Theobromine has very different effects on the human body from caffeine; it is a mild, lasting stimulant with a mood improving effect, whereas caffeine has a strong, immediate effect and increases stress. In medicine, it is used as a diuretic, vasodilator, and myocardial stimulant. There is a possible association between prostate cancer and theobromine. Theobromine is a contributing factor in acid reflux because it relaxes the esophageal sphincter muscle, allowing stomach acid access to the esophagus. A dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. Constituent of tea leaves (Camellia thea), cocoa Theobroma cacao, cola nut (Cola acuminata) and guarana (Paullinia cupana); flavouring ingredient with a bitter taste Biosynthesis Theobromine is a purine alkaloid derived from xanthosine, a nucleoside. Cleavage of the ribose and N-methylation yields 7-methylxanthosine. 7-Methylxanthosine in turn is the precursor to theobromine, which in turn is the precursor to caffeine.[24] Even without dietary intake, theobromine may occur in the body as it is a product of the human metabolism of caffeine, which is metabolised in the liver into 12\% theobromine, 4\% theophylline, and 84\% paraxanthine.[25] In the liver, theobromine is metabolized into xanthine and subsequently into methyluric acid.[26] Important enzymes include CYP1A2 and CYP2E1.[27] The elimination half life of theobromine is between 6 and 8 hours.[1][2] Unlike caffeine, which is highly water-soluble, theobromine is only slightly water-soluble and is more fat soluble, and thus peaks more slowly in the blood. While caffeine peaks after only 30 minutes, theobromine requires 2–3 hours to peak.[28] The primary mechanism of action for theobromine inside the body is inhibition of adenosine receptors.[5] Its effect as a phosphodiesterase inhibitor[29] is thought to be small.[5]
Coniferyl alcohol
Coniferyl alcohol (CAS: 458-35-5), also known as coniferol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl alcohol is an organic compound. When copolymerized with related aromatic compounds, coniferyl alcohol forms lignin or lignans. Coniferyl alcohol is an intermediate in the biosynthesis of eugenol, stilbenoids, and coumarin. Outside of the human body, coniferyl alcohol has been detected, but not quantified in, several different foods, such as common sages, chestnuts, cereals and cereal products, gingers, and cashew nuts. This could make coniferyl alcohol a potential biomarker for the consumption of these foods. Gum benzoin contains a significant amount of coniferyl alcohol and its esters. Coniferyl alcohol is an organic compound. This colourless crystalline solid is a phytochemical, one of the monolignols. It is synthesized via the phenylpropanoid biochemical pathway. Coniferol is a phenylpropanoid that is one of the main monolignols, produced by the reduction of the carboxy functional group in cinnamic acid and the addition of a hydroxy and a methoxy substituent to the aromatic ring. It has a role as a monolignol, a mouse metabolite, a pheromone, an animal metabolite, a plant metabolite and a volatile oil component. It is a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamyl alcohol. Coniferyl alcohol is a natural product found in Asparagus cochinchinensis, Xanthium spinosum, and other organisms with data available. See also: Polignate Sodium (monomer of); Ammonium lignosulfonate (monomer of); Calcium lignosulfonate (50000 MW) (monomer of) ... View More ... Coniferyl alcohol is an intermediate in biosynthesis of eugenol and of stilbene and coumarin. Gum benzoin contains significant amount of coniferyl alcohol and its esters.; Coniferyl alcohol is an organic compound. This colourless crystalline solid is a phytochemical, one of the monolignols. It is synthetized via the phenylpropanoid biochemical pathway. When copolymerized with related aromatic compounds, coniferyl alcohol forms lignin or lignans. [HMDB]. Coniferyl alcohol is found in many foods, some of which are canada blueberry, eggplant, winged bean, and flaxseed. A phenylpropanoid that is one of the main monolignols, produced by the reduction of the carboxy functional group in cinnamic acid and the addition of a hydroxy and a methoxy substituent to the aromatic ring. Coniferyl alcohol is an intermediate in biosynthesis of eugenol and of stilbenoids and coumarin[1]. Coniferyl alcohol specifically inhibits fungal growth[1]. Coniferyl alcohol is an intermediate in biosynthesis of eugenol and of stilbenoids and coumarin[1]. Coniferyl alcohol specifically inhibits fungal growth[1].
Paraxanthine
Paraxanthine, also known as p-xanthine, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Paraxanthine exists in all living organisms, ranging from bacteria to humans. Within humans, paraxanthine participates in a number of enzymatic reactions. In particular, paraxanthine and formaldehyde can be biosynthesized from caffeine; which is catalyzed by the enzyme cytochrome P450 1A2. In addition, paraxanthine and acetyl-CoA can be converted into 5-acetylamino-6-formylamino-3-methyluracil through its interaction with the enzyme arylamine N-acetyltransferase 2. In humans, paraxanthine is involved in caffeine metabolism. 1,7-dimethylxanthine (paraxanthine) is the preferential path of caffeine metabolism in humans. Acquisition and generation of the data is financially supported in part by CREST/JST. Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.
1,10-Phenanthroline
CONFIDENCE standard compound; INTERNAL_ID 1008; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5191; ORIGINAL_PRECURSOR_SCAN_NO 5190 CONFIDENCE standard compound; INTERNAL_ID 1008; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5188; ORIGINAL_PRECURSOR_SCAN_NO 5186 CONFIDENCE standard compound; INTERNAL_ID 1008; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5119; ORIGINAL_PRECURSOR_SCAN_NO 5117 CONFIDENCE standard compound; INTERNAL_ID 1008; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5135; ORIGINAL_PRECURSOR_SCAN_NO 5132 CONFIDENCE standard compound; INTERNAL_ID 1008; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5127; ORIGINAL_PRECURSOR_SCAN_NO 5126 CONFIDENCE standard compound; INTERNAL_ID 1008; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE standard compound; INTERNAL_ID 176; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5120; ORIGINAL_PRECURSOR_SCAN_NO 5117 CONFIDENCE standard compound; INTERNAL_ID 176; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5192; ORIGINAL_PRECURSOR_SCAN_NO 5190 CONFIDENCE standard compound; INTERNAL_ID 176; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5087 CONFIDENCE standard compound; INTERNAL_ID 176; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5117; ORIGINAL_PRECURSOR_SCAN_NO 5116 CONFIDENCE standard compound; INTERNAL_ID 176; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5141; ORIGINAL_PRECURSOR_SCAN_NO 5139 CONFIDENCE standard compound; INTERNAL_ID 176; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5194; ORIGINAL_PRECURSOR_SCAN_NO 5193 D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Acquisition and generation of the data is financially supported in part by CREST/JST. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors KEIO_ID P057
4-chloro-L-lysine
An L-lysine derivative that is L-lysine substituted by a chloro group at position 4.
aminophylline
Aminophylline is a mixture of theophylline with 1/2 mol of ethylenediamine. This data is actually MS2 data of theophylline.; KEIO_ID A237 KEIO_ID A237; Aminophylline is a mixture of theophylline with 1/2 mol of ethylenediamine. This data is actually MS2 data of theophylline.
Protionamide
J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AD - Thiocarbamide derivatives D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent
Propylparaben
Propyl-4-hydroxybenzoate appears as colorless crystals or white powder or chunky white solid. Melting point 95-98 °C. Odorless or faint aromatic odor. Low toxicity, Tasteless (numbs the tongue). pH: 6.5-7.0 (slightly acidic) in solution. Propylparaben is the benzoate ester that is the propyl ester of 4-hydroxybenzoic acid. Preservative typically found in many water-based cosmetics, such as creams, lotions, shampoos and bath products. Also used as a food additive. It has a role as an antifungal agent and an antimicrobial agent. It is a benzoate ester, a member of phenols and a paraben. It is functionally related to a propan-1-ol and a 4-hydroxybenzoic acid. Propylparaben is used in allergenic testing. Propylparaben is a Standardized Chemical Allergen. The physiologic effect of propylparaben is by means of Increased Histamine Release, and Cell-mediated Immunity. Propylparaben is a natural product found in Microtropis fokienensis, Soymida febrifuga, and other organisms with data available. Propylparaben is an antimicrobial agent, preservative, flavouring agent. Propylparaben belongs to the family of Hydroxybenzoic Acid Derivatives. These are compounds containing an hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxylic acid. Propylparaben, also known as propyl chemosept or propyl parasept, belongs to the class of organic compounds known as p-hydroxybenzoic acid alkyl esters. These are aromatic compounds containing a benzoic acid, which is esterified with an alkyl group and para-substituted with a hydroxyl group. Propylparaben is a sweet, burnt, and hawthorn tasting compound. Propylparaben is a potentially toxic compound. Propylparaben is an antimicrobial agent, preservative, flavouring agent. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Antimicrobial agent, preservative, flavouring agent Propylparaben (Propyl parahydroxybenzoate) is an antimicrobial preservative which can be produced naturally by plants and bacteria. Propylparaben is prevalently used in cosmetics, pharmaceuticals, and foods. Propylparaben disrupts antral follicle growth and steroidogenic function by altering the cell-cycle, apoptosis, and steroidogenesis pathways. Propylparaben also decreases sperm number and motile activity in rats[1][2][3]. Propylparaben (Propyl parahydroxybenzoate) is an antimicrobial preservative which can be produced naturally by plants and bacteria. Propylparaben is prevalently used in cosmetics, pharmaceuticals, and foods. Propylparaben disrupts antral follicle growth and steroidogenic function by altering the cell-cycle, apoptosis, and steroidogenesis pathways. Propylparaben also decreases sperm number and motile activity in rats[1][2][3].
2,6-Dimethoxy-4-vinylphenol
4-Vinylsyringol is a phenolic compound with potential antioxidant activity, which can be isolated from rapeseed oil[1].
4-Methoxybenzyl acetate
4-Methoxybenzyl acetate is found in fruits. 4-Methoxybenzyl acetate is found in fruits, Bourbon vanilla and Tahiti vanilla. 4-Methoxybenzyl acetate is used in flavour industry. Found in fruits, Bourbon vanilla and Tahiti vanilla. It is used in flavour industry.
3-(3-Hydroxyphenyl)-2-methylpropionic acid
3-(3-Hydroxyphenyl)-2-methylpropionic acid is a metabolite of carbidopa. Carbidopa (Lodosyn) is a drug given to people with Parkinsons disease in order to inhibit peripheral metabolism of levodopa. This property is significant in that it allows a greater proportion of peripheral levodopa to cross the blood brain barrier for central nervous system effect. (Wikipedia)
4-Hydroxy-2,6,6-trimethyl-3-oxo-1,4-cyclohexadiene-1-carboxaldehyde
4-Hydroxy-2,6,6-trimethyl-3-oxo-1,4-cyclohexadiene-1-carboxaldehyde is found in herbs and spices. 4-Hydroxy-2,6,6-trimethyl-3-oxo-1,4-cyclohexadiene-1-carboxaldehyde is a constituent of saffron, Crocus sativus. Constituent of saffron, Crocus sativus. 4-Hydroxy-2,6,6-trimethyl-3-oxo-1,4-cyclohexadiene-1-carboxaldehyde is found in herbs and spices.
3-Methoxybenzenepropanoic acid
3-Methoxybenzenepropanoic acid, also known as 3-(3-methoxyphenyl)propionate or 3-methoxydihydrocinnamate, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. 3-Methoxybenzenepropanoic acid is a naturally occurring human metabolite, It is an organic acid and excreted in human urine (PMID: 8087979) [HMDB] 3-(3-Methoxyphenyl)propionic acid is an organic acid, naturally occurring human metabolite and excreted in human urine.
Adrenochrome o-semiquinone
Adrenochrome semiquinone is the intermediate in the formation of adrenochrome,which is a reaction in which a total of two electrons are removed. Adrenochrome formed in the cells can also suffer conjugation with cellular GSH, leading to its depletion, or polymerize into several other compounds. Adrenochrome semiquinone is the intermediate in the formation of adrenochrome,which is a reaction in which a total of two electrons are removed.
4-Ethoxy-3-methoxybenzaldehyde
4-Ethoxy-3-methoxybenzaldehyde is isolated from storax. 4-Ethoxy-3-methoxybenzaldehyde is a flavouring. 4-Ethoxy-3-methoxybenzaldehyde is a stabilise
2-Phenyl-1,3-dioxolane-4-methanol
Benzaldehyde glyceryl acetal comprising this compound and/or 5-Hydroxy-2-phenyl-1,3-dioxane
1-(2,4-Dihydroxyphenyl)-1-butanone
1-(2,4-Dihydroxyphenyl)-1-butanone is a preservative for foo
Benzaldehyde glyceryl acetal
*Benzaldehyde glyceryl acetal*, comprising this compound and/or 2-Phenyl-1,3-dioxolane-4-methanol
Propyl 2-furanacrylate
Propyl 2-furanacrylate is a flavouring ingredient. Flavouring ingredient
10-hydroxy-(2E,8E)-decadien-4-ynoic Acid
10-hydroxy-(2E,8E)-decadien-4-ynoic Acid is considered to be practically insoluble (in water) and acidic. 10-hydroxy-(2E,8E)-decadien-4-ynoic Acid is a fatty acid lipid molecule
Protionamide
J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AD - Thiocarbamide derivatives D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent
1-(3,4-Dimethoxyphenyl)ethanone
1-(3,4-dimethoxyphenyl)ethanone, also known as 3,4-dimethoxyacetophenone, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. 1-(3,4-dimethoxyphenyl)ethanone is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). 1-(3,4-dimethoxyphenyl)ethanone is a sweet, floral, and woody tasting compound found in oat and tea, which makes 1-(3,4-dimethoxyphenyl)ethanone a potential biomarker for the consumption of these food products.
Propiovanillone
Propiovanillone is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Propiovanillone is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Propiovanillone can be found in sunflower, which makes propiovanillone a potential biomarker for the consumption of this food product.
trans-[6]-Shogaol
Trans-[6]-shogaol is a member of the class of compounds known as phenylacetaldehydes. Phenylacetaldehydes are compounds containing a phenylacetaldehyde moiety, which consists of a phenyl group substituted at the second position by an acetalydehyde. Trans-[6]-shogaol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Trans-[6]-shogaol can be found in ginger, which makes trans-[6]-shogaol a potential biomarker for the consumption of this food product.
Theophylline
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5].
paraxanthine
Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.
2,7-Dihydroxy-3-isopropyl-2,4,6-cycloheptatrienone
Ethyl 2-methoxybenzoate
CONFIDENCE standard compound; INTERNAL_ID 949; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4348; ORIGINAL_PRECURSOR_SCAN_NO 4343 CONFIDENCE standard compound; INTERNAL_ID 949; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4380; ORIGINAL_PRECURSOR_SCAN_NO 4378 CONFIDENCE standard compound; INTERNAL_ID 949; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4326; ORIGINAL_PRECURSOR_SCAN_NO 4325 CONFIDENCE standard compound; INTERNAL_ID 949; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4351; ORIGINAL_PRECURSOR_SCAN_NO 4347 CONFIDENCE standard compound; INTERNAL_ID 949; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4397; ORIGINAL_PRECURSOR_SCAN_NO 4392 CONFIDENCE standard compound; INTERNAL_ID 949; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4371; ORIGINAL_PRECURSOR_SCAN_NO 4370
(+)-desacetylcalaminthone|3,8-dihydroxy-6-methoxy-1-methylanthraquinone-2-carboxylic acid
1,3-dihydroxydeca-4,6-diyn-8-one|8,10-Dihydroxy-4,6-decadiyn-3-one
1-Hydroxy-1-(2-hydroxy-4-methylphenyl)-2-propanone
ETHYL MANDELATE
D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids
(R, E)-6-(4-oxopent-2-enyl)-5,6-dihydro-pyran-2-one|(R,E)-6-(4-oxopent-2-enyl)-5,6-dihydro-2H-pyran-2-one|6(R)-(4-oxopent-2-enyl)-5,6-dihydro-2H-pyran-2-one
2-Cyclopentene-1-acetaldehyde, 2-formyl-4-hydroxy-3-methyl-alpha-methylene-, (1R-trans)-
(E)-Dihydro-5-(5-hydroxy-3-hexen-1-ynyl)-2(5H)-furanone|9-hydroxydec-7E-en-5-yn-4-olide
5-hydroxy-3S-hydroxymethyl-6-methyl-2,3-dihydrobenzofuran
5,6-Dimethyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione
2,5-Cyclohexadiene-1,4-dione, 3-hydroxy-5-methyl-2-(1-methylethyl)-
theobromine
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines C - Cardiovascular system > C03 - Diuretics > C03B - Low-ceiling diuretics, excl. thiazides > C03BD - Xanthine derivatives D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; YAPQBXQYLJRXSA-UHFFFAOYSA-N_STSL_0032_Theobromine_8000fmol_180416_S2_LC02_MS02_45; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.367 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.359
Theophylline
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ZFXYFBGIUFBOJW-UHFFFAOYSA-N_STSL_0031_Theophylline_0500fmol_180416_S2_LC02_MS02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5].
paraxanthine
A dimethylxanthine having the two methyl groups located at positions 1 and 7. It is a metabolite of caffeine and theobromine in animals. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QUNWUDVFRNGTCO-UHFFFAOYSA-N_STSL_0243_Paraxanthine_1000fmol_190413_S2_LC02MS02_060; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.
1,10-phenanthroline
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
1-[4-hydroxy-3-(2-hydroxyethyl)phenyl]ethanone
6-ethyl-2,4-dihydroxy-3-methylbenzaldehyde
Propylparaben
CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4056; ORIGINAL_PRECURSOR_SCAN_NO 4053 D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4153; ORIGINAL_PRECURSOR_SCAN_NO 4151 CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4142; ORIGINAL_PRECURSOR_SCAN_NO 4139 CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3966; ORIGINAL_PRECURSOR_SCAN_NO 3964 CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3985; ORIGINAL_PRECURSOR_SCAN_NO 3983 CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4151; ORIGINAL_PRECURSOR_SCAN_NO 4148 CONFIDENCE standard compound; INTERNAL_ID 2372 CONFIDENCE standard compound; INTERNAL_ID 8646 Propylparaben (Propyl parahydroxybenzoate) is an antimicrobial preservative which can be produced naturally by plants and bacteria. Propylparaben is prevalently used in cosmetics, pharmaceuticals, and foods. Propylparaben disrupts antral follicle growth and steroidogenic function by altering the cell-cycle, apoptosis, and steroidogenesis pathways. Propylparaben also decreases sperm number and motile activity in rats[1][2][3]. Propylparaben (Propyl parahydroxybenzoate) is an antimicrobial preservative which can be produced naturally by plants and bacteria. Propylparaben is prevalently used in cosmetics, pharmaceuticals, and foods. Propylparaben disrupts antral follicle growth and steroidogenic function by altering the cell-cycle, apoptosis, and steroidogenesis pathways. Propylparaben also decreases sperm number and motile activity in rats[1][2][3].
3-Methoxybenzenepropanoic acid
3-(3-Methoxyphenyl)propionic acid is an organic acid, naturally occurring human metabolite and excreted in human urine.
m-Methoxyhydrocinnamate
3-(3-Methoxyphenyl)propionic acid is an organic acid, naturally occurring human metabolite and excreted in human urine.
Isopropylparaben
Isopropylparaben is a 4-hydroxybenzoate ester.
Nipasol
D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Propylparaben (Propyl parahydroxybenzoate) is an antimicrobial preservative which can be produced naturally by plants and bacteria. Propylparaben is prevalently used in cosmetics, pharmaceuticals, and foods. Propylparaben disrupts antral follicle growth and steroidogenic function by altering the cell-cycle, apoptosis, and steroidogenesis pathways. Propylparaben also decreases sperm number and motile activity in rats[1][2][3]. Propylparaben (Propyl parahydroxybenzoate) is an antimicrobial preservative which can be produced naturally by plants and bacteria. Propylparaben is prevalently used in cosmetics, pharmaceuticals, and foods. Propylparaben disrupts antral follicle growth and steroidogenic function by altering the cell-cycle, apoptosis, and steroidogenesis pathways. Propylparaben also decreases sperm number and motile activity in rats[1][2][3].
4-hydroxy-2,6,6-trimethyl-3-oxocyclohexa-1,4-diene-1-carbaldehyde
(2S)-2-[(3,4,5-TRIMETHOXYBENZOYL)AMINO]PROPANOICACID
(2S)-1-[(2S)-2-[[(1S)-1-CARBOXY-3-PHENYL-PROPYL]AMINO]PROPANOYL]PYRROLIDINE-2-CARBOXYLICACID
(S)-2-ETHOXY-3-(4-HYDROXY-PHENYL)-PROPIONICACIDETHYLESTER
N-(Phenylmethyl)carbamimidothioic acid methyl ester
1-(2-HYDROXYETHYL)-1H-PYRAZOLO[3,4-B]PYRAZIN-5(4H)-ONE
(2,4-DIOXO-3,4-DIHYDROQUINAZOLIN-1(2H)-YL)ACETICACID
Benzeneacetic acid, a-(hydroxymethyl)-, methyl ester
1H-Imidazo[4,5-d]pyridazine-4,7-dione,5,6-dihydro-5,6-dimethyl-
N-[amino(hydrazinyl)methylidene]pyrazine-2-carboxamide
Quinoxaline, 1,2,3,4-tetrahydro-6-(methylthio)- (7CI)
1,3-Isobenzofurandione, 3a,4,7,7a-tetrahydro-5,6-dimethyl-
1-(4-FLUOROPHENYL)-3-HYDROXY-4,5-DIHYDRO-1H-PYRAZOLE
Coniferol
Coniferyl alcohol is an intermediate in biosynthesis of eugenol and of stilbenoids and coumarin[1]. Coniferyl alcohol specifically inhibits fungal growth[1]. Coniferyl alcohol is an intermediate in biosynthesis of eugenol and of stilbenoids and coumarin[1]. Coniferyl alcohol specifically inhibits fungal growth[1].
Thesal
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines C - Cardiovascular system > C03 - Diuretics > C03B - Low-ceiling diuretics, excl. thiazides > C03BD - Xanthine derivatives D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
3-(3-Methoxyphenyl)propionic acid
3-(3-Methoxyphenyl)propionic acid is an organic acid, naturally occurring human metabolite and excreted in human urine.
4-Hydroxy-2,6,6-trimethyl-3-oxo-1,4-cyclohexadiene-1-carboxaldehyde
10-hydroxy-(2E,8E)-decadien-4-ynoic Acid
A polyunsaturated fatty acid that is deca-2,8-dien-4-ynoic acid substituted at position 10 by a hydroxy group (the 2E,8E-geoisomer)
2,6-Dimethoxy-4-vinylphenol
4-Vinylsyringol is a phenolic compound with potential antioxidant activity, which can be isolated from rapeseed oil[1].
4-chloro-L-lysine zwitterion
An L-alpha-amino acid zwitterion obtained by transfer of a proton from the carboxy to the amino group of 4-chloro-L-lysine
3-Amino-3-(4-hydroxyphenyl)propanoate
A beta-amino-acid anion that is the conjugate base of 3-amino-3-(4-hydroxyphenyl)propanoic acid, arising from deprotonation of the carboxy group.
D-tyrosinate(1-)
An optically active form of tyrosinate(1-) having D-configuration.
tyrosinate(1-)
An alpha-amino-acid anion that is the conjugate base of tyrosine, arising from deprotonation of the carboxy group.
(5s)-5-[(1e,3e)-5-oxohexa-1,3-dien-1-yl]oxolan-2-one
(6r)-6-[(2e)-4-oxopent-2-en-1-yl]-5,6-dihydropyran-2-one
6-[(2z)-but-2-en-2-yl]-3-(hydroxymethyl)pyran-2-one
3-(hydroxymethyl)-6-methyl-2,3-dihydro-1-benzofuran-5-ol
1,3r,8r-trihydroxydec-9-en-4,6-yne
{"Ingredient_id": "HBIN001294","Ingredient_name": "1,3r,8r-trihydroxydec-9-en-4,6-yne","Alias": "1,3r,8r-trihydroxydec-9-en-4,6-yne","Ingredient_formula": "C10H12O3","Ingredient_Smile": "C=CC(C#CC#CC(CCO)O)O","Ingredient_weight": "0","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21687","TCMSP_id": "NA","TCM_ID_id": "9954;9955;16237;16238","PubChem_id": "NA","DrugBank_id": "NA"}
2-(1'-hydroxy-2'-oxopropyl)-5-methylphenol
{"Ingredient_id": "HBIN003573","Ingredient_name": "2-(1'-hydroxy-2'-oxopropyl)-5-methylphenol","Alias": "NA","Ingredient_formula": "C10H12O3","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15896","TCMID_id": "10580","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
2-[4-(methoxymethyl)phenyl]acetic acid
{"Ingredient_id": "HBIN004430","Ingredient_name": "2-[4-(methoxymethyl)phenyl]acetic acid","Alias": "ST5407727; 2-[4-(methoxymethyl)phenyl]ethanoic acid","Ingredient_formula": "C10H12O3","Ingredient_Smile": "COCC1=CC=C(C=C1)CC(=O)O","Ingredient_weight": "180.2 g/mol","OB_score": "82.65706876","CAS_id": "NA","SymMap_id": "SMIT12031","TCMID_id": "NA","TCMSP_id": "MOL011079","TCM_ID_id": "NA","PubChem_id": "22988428","DrugBank_id": "NA"}
4-methyl-2,5-dimethoxybenzaldehyde
{"Ingredient_id": "HBIN010663","Ingredient_name": "4-methyl-2,5-dimethoxybenzaldehyde","Alias": "NA","Ingredient_formula": "C10H12O3","Ingredient_Smile": "CC1=CC(=C(C=C1OC)C=O)OC","Ingredient_weight": "180.2 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "40856","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "602019","DrugBank_id": "NA"}
5,6-dimethyl-3a,4,7,7a-tetrahydro-1,3-lsoben-zofurandione
{"Ingredient_id": "HBIN011147","Ingredient_name": "5,6-dimethyl-3a,4,7,7a-tetrahydro-1,3-lsoben-zofurandione","Alias": "NA","Ingredient_formula": "C10H12O3","Ingredient_Smile": "CC1=C(CC2C(C1)C(=O)OC2=O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15179","TCMID_id": "6411","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}