Carbon Dioxide (BioDeep_00001867606)
Main id: BioDeep_00000004364
代谢物信息卡片
化学式: CO2 (43.9898)
中文名称: 二氧化碳
谱图信息:
最多检出来源 () 0%
Last reviewed on 2024-08-21.
Cite this Page
Carbon Dioxide. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/carbon_dioxide (retrieved
2024-12-22) (BioDeep RN: BioDeep_00001867606). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=O)=O
InChI: InChI=1S/CO2/c2-1-3
描述信息
A one-carbon compound with formula CO2 in which the carbon is attached to each oxygen atom by a double bond. A colourless, odourless gas under normal conditions, it is produced during respiration by all animals, fungi and microorganisms that depend directly or indirectly on living or decaying plants for food.
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases
同义名列表
2 个代谢物同义名
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:16526
- KEGG: C00011
- KEGGdrug: D00004
- PubChem: 280
- DrugBank: DB09157
- ChEMBL: CHEMBL1231871
- MeSH: Carbon Dioxide
- CAS: 18983-82-9
- CAS: 18923-20-1
- CAS: 124-38-9
- MetaboLights: MTBLC16526
- PubChem: 3313
- PDB-CCD: CO2
- 3DMET: B01131
- NIKKAJI: J43.600C
- KNApSAcK: 16526
分类词条
相关代谢途径
Reactome(114)
- Metabolism
- Metabolism of vitamins and cofactors
- Metabolism of proteins
- Post-translational protein modification
- Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins
- Gamma-carboxylation of protein precursors
- Disease
- Diseases of hemostasis
- Defects of Formation of Fibrin Clot (Clotting Cascade)
- Defective factor IX causes hemophilia B
- Defective gamma-carboxylation of F9
- Amino acid and derivative metabolism
- Glyoxylate metabolism and glycine degradation
- Asparagine N-linked glycosylation
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein
- Synthesis of substrates in N-glycan biosythesis
- Metabolism of lipids
- Metabolism of steroids
- Cholesterol biosynthesis
- Metabolism of cofactors
- Ubiquinol biosynthesis
- Synthesis of Dolichyl-phosphate
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism
- Transport of small molecules
- Metabolism of polyamines
- Agmatine biosynthesis
- DNA replication and repair
- DNA repair
- Developmental Biology
- DNA Repair
- DNA Damage Reversal
- Reversal of alkylation damage by DNA dioxygenases
- ALKBH2 mediated reversal of alkylation damage
- ALKBH3 mediated reversal of alkylation damage
- Signaling Pathways
- Signaling by Rho GTPases
- RHO GTPase Effectors
- RHO GTPases activate PKNs
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3
- Cell Cycle
- Cell Cycle, Mitotic
- M Phase
- Mitotic Prophase
- Condensation of Prophase Chromosomes
- Chromatin organization
- Chromatin modifying enzymes
- HDMs demethylate histones
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3
- Maternal to zygotic transition (MZT)
- Chromatin modifications during the maternal to zygotic transition (MZT)
- Immune System
- Innate Immune System
- ROS and RNS production in phagocytes
- Purine metabolism
- Nucleotide metabolism
- Nucleotide catabolism
- Fatty acid metabolism
- Mitochondrial Fatty Acid Beta-Oxidation
- Amino acid synthesis and interconversion (transamination)
- Metabolism of water-soluble vitamins and cofactors
- Tryptophan catabolism
- Cellular responses to stimuli
- Cellular responses to stress
- Gene expression (Transcription)
- Peroxisomal lipid metabolism
- Histidine catabolism
- The tricarboxylic acid cycle
- Carbohydrate metabolism
- Glucose metabolism
- Fatty acyl-CoA biosynthesis
- The citric acid (TCA) cycle and respiratory electron transport
- Pyruvate metabolism and Citric Acid (TCA) cycle
- Citric acid cycle (TCA cycle)
- Pentose phosphate pathway
- Lysine catabolism
- Heme synthesis
- Extracellular matrix organization
- Collagen formation
- Phospholipid metabolism
- Glycerophospholipid biosynthesis
- Synthesis of PE
- Phenylalanine and tyrosine catabolism
- Glycine degradation
- Sulfur amino acid metabolism
- Degradation of cysteine and homocysteine
- Neuronal System
- Transmission across Chemical Synapses
- Neurotransmitter release cycle
- Metabolism of RNA
- tRNA processing
- tRNA modification in the nucleus and cytosol
- Aspartate and asparagine metabolism
- Phenylalanine and tyrosine metabolism
- Porphyrin metabolism
- Heme biosynthesis
- Gluconeogenesis
- Sphingolipid metabolism
- Branched-chain amino acid catabolism
- Nicotinate metabolism
- De novo synthesis of UMP
- Metabolism of amine-derived hormones
- Sphingolipid de novo biosynthesis
- Lipid metabolism
- Tyrosine catabolism
- Cellular response to hypoxia
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism
- alpha-linolenic acid (ALA) metabolism
- Linoleic acid (LA) metabolism
- Alpha-oxidation of phytanate
- Beta-oxidation of very long chain fatty acids
- Metabolism of folate and pterines
- NADPH regeneration
BioCyc(417)
- nucleoside and nucleotide degradation (archaea)
- superpathway of pyrimidine ribonucleosides degradation
- creatinine degradation II
- firefly bioluminescence
- allantoin degradation to ureidoglycolate II (ammonia producing)
- allantoin degradation to glyoxylate III
- superpathway of b heme biosynthesis from glycine
- superpathway of L-phenylalanine biosynthesis
- patulin biosynthesis
- anaerobic energy metabolism (invertebrates, mitochondrial)
- superpathway of anaerobic energy metabolism (invertebrates)
- superpathway of demethylmenaquinol-8 biosynthesis I
- lupanine biosynthesis
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I
- superpathway of aromatic amino acid biosynthesis
- superpathway of bacteriochlorophyll a biosynthesis
- 2-carboxy-1,4-naphthoquinol biosynthesis
- superpathway of L-tyrosine biosynthesis
- superpathway of menaquinol-8 biosynthesis I
- superpathway of hyoscyamine and scopolamine biosynthesis
- superpathway of chorismate metabolism
- gallate degradation III (anaerobic)
- aspartate superpathway
- superpathway of betalain biosynthesis
- superpathway of L-tryptophan biosynthesis
- superpathway of anaerobic sucrose degradation
- tetrapyrrole biosynthesis II (from glycine)
- methanogenesis from acetate
- hyoscyamine and scopolamine biosynthesis
- p-cymene degradation
- Amaryllidacea alkaloids biosynthesis
- plant sterol biosynthesis
- spinosyn A biosynthesis
- chlorzoxazone degradation
- aliphatic glucosinolate biosynthesis, side chain elongation cycle
- glucosinolate biosynthesis from tyrosine
- bacteriochlorophyll e biosynthesis
- superpathway of tryptophan utilization
- superpathway of glycol metabolism and degradation
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- heme b biosynthesis I (aerobic)
- glycolate and glyoxylate degradation I
- protocatechuate degradation I (meta-cleavage pathway)
- bacteriochlorophyll c biosynthesis
- bacteriochlorophyll d biosynthesis
- L-lysine biosynthesis II
- L-lysine biosynthesis I
- glucosinolate biosynthesis from hexahomomethionine
- ubiquinone (coenzyme Q) biosynthesis
- superpathway of sterol biosynthesis
- putrescine biosynthesis IV
- putrescine biosynthesis I
- superpathway of allantoin degradation in yeast
- superpathway of allantoin degradation in plants
- spermidine biosynthesis III
- superpathway of polyamine biosynthesis I
- superpathway of arginine and polyamine biosynthesis
- clavulanate biosynthesis
- urea degradation I
- urea degradation II
- L-arginine degradation VIII (arginine oxidase pathway)
- L-arginine degradation XII
- superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation
- L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
- L-arginine degradation X (arginine monooxygenase pathway)
- L-arginine degradation IX (arginine:pyruvate transaminase pathway)
- superpathway of L-arginine and L-ornithine degradation
- superpathway of purines degradation in plants
- superpathway of citrulline metabolism
- urea degradation
- arginine degradation III (arginine decarboxylase/agmatinase pathway)
- superpathway of arginine and ornithine degradation
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation
- arginine degradation X (arginine monooxygenase pathway)
- formaldehyde oxidation (glutathione-dependent)
- superpathway of aromatic compound degradation
- methanol oxidation to carbon dioxide
- formaldehyde oxidation I
- morphine biosynthesis
- superpathway of C1 compounds oxidation to CO2
- 12-epi-hapalindole biosynthesis
- paerucumarin biosynthesis
- rhabduscin biosynthesis
- hapalindole H biosynthesis
- 12-epi-fischerindole biosynthesis
- 4-hydroxycoumarin and dicoumarol biosynthesis
- 5,5'-dehydrodivanillate degradation
- superpathway of coenzyme A biosynthesis I (bacteria)
- nevadensin biosynthesis
- formaldehyde assimilation I (serine pathway)
- 3-[(E)-2-isocyanoethenyl]-1H-indole biosynthesis
- linamarin biosynthesis
- superpathway of linamarin and lotaustralin biosynthesis
- glucosinolate biosynthesis from dihomomethionine
- superpathway of histidine, purine, and pyrimidine biosynthesis
- purine nucleotides de novo biosynthesis II
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium)
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- isoflavonoid biosynthesis II
- aflatoxins B1 and G1 biosynthesis
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- aurachin A, B, C and D biosynthesis
- hentriaconta-3,6,9,12,15,19,22,25,28-nonaene biosynthesis
- formate to dimethyl sulfoxide electron transfer
- 2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis
- superpathway of quinolone and alkylquinolone biosynthesis
- chitin degradation to ethanol
- tryptophan degradation via kynurenine
- NAD biosynthesis (from tryptophan)
- hydroxycinnamic acid tyramine amides biosynthesis
- ubiquinol-10 biosynthesis
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (prokaryotic)
- ubiquinone-10 biosynthesis (eukaryotic)
- superpathway of nicotine biosynthesis
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- superpathay of heme b biosynthesis from glutamate
- TCA cycle I (prokaryotic)
- formate oxidation to CO2
- γ-butyrobetaine degradation
- superpathway of microbial D-galacturonate and D-glucuronate degradation
- D-carnitine degradation I
- L-carnitine degradation II
- mixed acid fermentation
- 2-aminophenol degradation
- nicotinate degradation I
- L-valine degradation I
- L-arginine degradation V (arginine deiminase pathway)
- superpathway of glyoxylate bypass and TCA
- superpathway of proto- and siroheme biosynthesis
- (-)-dehydrodiconiferyl alcohol degradation
- phenolphthiocerol biosynthesis
- 6-methylpretetramide biosynthesis
- superpathway of tetracycline and oxytetracycline biosynthesis
- vindoline and vinblastine biosynthesis
- plant sterol biosynthesis II
- phenazine-1-carboxylate biosynthesis
- 3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
- 3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
- 3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
- lysine biosynthesis
- beta-alanine degradation
- lysine degradation
- TCA cycle, aerobic respiration
- pantothenate and coenzyme A biosynthesis
- superpathway of gluconate degradation
- superpathway of central carbon metabolism
- IAA biosynthesis I
- NAD biosynthesis II (from tryptophan)
- superpathway of L-lysine degradation
- N10-formyl-tetrahydrofolate biosynthesis
- L-phenylalanine degradation IV (mammalian, via side chain)
- superpathway of ergotamine biosynthesis
- isopropanol biosynthesis (engineered)
- acetone degradation III (to propane-1,2-diol)
- acetone degradation I (to methylglyoxal)
- acetone degradation II (to acetoacetate)
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation
- pyruvate fermentation to acetone
- superpathway of Clostridium acetobutylicum solventogenic fermentation
- ketogenesis
- caffeine degradation V (bacteria, via trimethylurate)
- scopoletin biosynthesis
- coumarins biosynthesis (engineered)
- superpathway of scopolin and esculin biosynthesis
- aflatoxins B2 and G2 biosynthesis
- adenosylcobalamin biosynthesis I (early cobalt insertion)
- 2,4-dichlorophenoxyacetate degradation
- tetrahydroxyxanthone biosynthesis (from benzoate)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- plumbagin biosynthesis
- superpathway of tetrahydroxyxanthone biosynthesis
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- pentose phosphate pathway
- ethylene biosynthesis III (microbes)
- ethylene biosynthesis
- NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
- superpathway NAD/NADP - NADH/NADPH interconversion (yeast)
- spermidine biosynthesis I
- gluconeogenesis I
- superpathway NAD/NADP - NADH/NADPH interconversion
- NAD/NADP-NADH/NADPH cytosolic interconversion
- oleandomycin biosynthesis
- UMP biosynthesis
- L-tyrosine biosynthesis I
- L-phenylalanine biosynthesis I
- validamycin biosynthesis
- salicylate degradation III
- glucosinolate biosynthesis from pentahomomethionine
- itaconate biosynthesis
- polyamine biosynthesis
- spermine biosynthesis II
- ellagic acid degradation to urolithins
- superpathway of histidine, purine and pyrimidine biosynthesis
- allantoin degradation
- glycine cleavage complex
- 2-amino-3-carboxymuconate semialdehyde degradation to 2-oxopentenoate
- proline biosynthesis II (from arginine)
- tryptophan degradation III (eukaryotic)
- uracil degradation II (reductive)
- Serine degradation II
- heme biosynthesis II
- purine nucleotides degradation III (anaerobic)
- purine nucleotides degradation IV (anaerobic)
- folate transformations II (plants)
- glutamate degradation V (via hydroxyglutarate)
- glycine degradation I
- glutamate degradation VII (to butanoate)
- leucine degradation IV
- isoleucine degradation III
- dimethylsulfoniopropionate biosynthesis II (Spartina)
- phenylalanine degradation IV (mammalian, via side chain)
- heme biosynthesis I
- TCA cycle VI (obligate autotrophs)
- tryptophan degradation X (mammalian, via tryptamine)
- glutamine biosynthesis III
- glycine degradation III
- threonine degradation III (to methylglyoxal)
- superpathway of threonine metabolism
- superpathway of lysine, threonine and methionine biosynthesis II
- isoleucine biosynthesis I
- superpathway of lysine, threonine and methionine biosynthesis I
- formylTHF biosynthesis II
- formylTHF biosynthesis I
- isoleucine biosynthesis I (from threonine)
- reductive acetyl coenzyme A pathway II (autotrophic methanogens)
- gluconeogenesis II (Methanobacterium thermoautotrophicum)
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- methyl-coenzyme M oxidation to CO2
- methanogenesis from H2 and CO2
- rhodoquinone-9 biosynthesis
- ubiquinone-9 biosynthesis (eukaryotic)
- heme biosynthesis from uroporphyrinogen-III II
- superpathway of ergosterol biosynthesis I
- superpathway of ergosterol biosynthesis
- L-lysine degradation IV
- L-lysine degradation III
- ephedrine biosynthesis
- prunasin and amygdalin biosynthesis
- lysine degradation I (saccharopine pathway)
- secologanin and strictosidine biosynthesis
- L-homomethionine biosynthesis
- allantoin degradation to glyoxylate II
- allantoin degradation IV (anaerobic)
- 2-nitrobenzoate degradation I
- procollagen hydroxylation and glycosylation
- ethylmalonyl-CoA pathway
- methylaspartate cycle
- superpathway of heme b biosynthesis from uroporphyrinogen-III
- conversion of succinate to propanoate
- pyruvate fermentation to acetate and lactate II
- pyruvate fermentation to acetate I
- archaetidylserine and archaetidylethanolamine biosynthesis
- vitamin B6 degradation
- crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
- TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
- Entner-Doudoroff pathway II (non-phosphorylative)
- pyruvate fermentation to (R)-acetoin II
- L-lysine degradation V
- L-lysine degradation XI (mammalian)
- superpathway of Clostridium acetobutylicum acidogenic fermentation
- grixazone biosynthesis
- L-tyrosine degradation II
- 2-oxobutanoate degradation I
- L-malate degradation I
- L-carnitine degradation III
- superpathway of purine nucleotides de novo biosynthesis I
- methylgallate degradation
- reductive TCA cycle I
- 4-hydroxymandelate degradation
- 4-amino-3-hydroxybenzoate degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- 4-hydroxyphenylacetate degradation
- purine nucleobases degradation I (anaerobic)
- purine nucleobases degradation II (anaerobic)
- superpathway of aromatic compound degradation via 3-oxoadipate
- anaerobic energy metabolism (invertebrates, cytosol)
- UDP-sugars interconversion
- norspermidine biosynthesis
- superpathway of polyamine biosynthesis III
- superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP)
- L-leucine degradation I
- superpathway of (R,R)-butanediol biosynthesis
- superpathway of 2,3-butanediol biosynthesis
- taxadiene biosynthesis (engineered)
- superpathway of rifamycin B biosynthesis
- novobiocin biosynthesis
- superpathway of penicillin, cephalosporin and cephamycin biosynthesis
- L-valine biosynthesis
- deacetylcephalosporin C biosynthesis
- myo-, chiro- and scyllo-inositol degradation
- myo-inositol degradation I
- oxalate degradation V
- rhizocticin A and B biosynthesis
- phosphinothricin tripeptide biosynthesis
- oxalate degradation IV
- L-threonine degradation III (to methylglyoxal)
- meta cleavage pathway of aromatic compounds
- flaviolin dimer and mompain biosynthesis
- L-ascorbate degradation I (bacterial, anaerobic)
- catechol degradation II (meta-cleavage pathway)
- aromatic compounds degradation via β-ketoadipate
- UDP-α-D-xylose biosynthesis
- mandelate degradation to acetyl-CoA
- L-malate degradation II
- methylerythritol phosphate pathway I
- methylerythritol phosphate pathway II
- ubiquinol-8 biosynthesis (prokaryotic)
- superpathway of phylloquinol biosynthesis
- aminopropanol phosphate biosynthesis II
- superpathway of ubiquinol-8 biosynthesis (prokaryotic)
- superpathway of L-threonine metabolism
- sphingolipid biosynthesis (plants)
- L-carnitine biosynthesis
- (S)-reticuline biosynthesis I
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- superpathway of L-methionine salvage and degradation
- L-isoleucine biosynthesis IV
- L-isoleucine biosynthesis II
- UDP-D-xylose biosynthesis
- zymosterol biosynthesis
- cholesterol biosynthesis I
- cholesterol biosynthesis III (via desmosterol)
- superpathway of cholesterol biosynthesis
- fenchone biosynthesis
- fenchol biosynthesis I
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle
- superpathway of glyoxylate cycle
- hinokiresinol biosynthesis
- pyrrolnitrin biosynthesis
- nitrate reduction III (dissimilatory)
- pyruvate to cytochrome bo oxidase electron transfer
- holomycin biosynthesis
- 2,2'-dihydroxybiphenyl degradation
- 2,4-xylenol degradation to protocatechuate
- dhurrin biosynthesis
- taxiphyllin biosynthesis
- superpathway of fumitremorgin biosynthesis
- 2-amino-3-hydroxycyclopent-2-enone biosynthesis
- sphingolipid metabolism
- superpathway of phospholipid biosynthesis
- ester phospholipid biosynthesis
- hyperxanthone E biosynthesis
- phylloquinol biosynthesis
- polyacyltrehalose biosynthesis
- γ-resorcylate degradation II
- γ-resorcylate degradation I
- coenzyme M biosynthesis I
- coelimycin P1 biosynthesis
- lactate oxidation
- superpathway of benzoxazinoid glucosides biosynthesis
- indole-3-acetate degradation
- 4'-methoxyviridicatin biosynthesis
- stipitatate biosynthesis
- myo-, chiro- and scillo-inositol degradation
- myo-inositol degradation
- curcuminoid biosynthesis
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
- isoprene biosynthesis II (engineered)
- isoprene biosynthesis I
- umbelliferone biosynthesis
- pyruvate fermentation to isobutanol (engineered)
- butanol and isobutanol biosynthesis (engineered)
- L-valine degradation II
- valine degradation II
- L-methionine salvage cycle I (bacteria and plants)
- superpathway of bitter acids biosynthesis
- hyperforin and adhyperforin biosynthesis
- colupulone and cohumulone biosynthesis
- tetracenomycin C biosynthesis
- rebeccamycin biosynthesis
- L-glutamate degradation VII (to butanoate)
- L-ascorbate degradation II (bacterial, aerobic)
- biotin biosynthesis
- superpathway of erythromycin biosynthesis
- superpathway of megalomicin A biosynthesis
- erythromycin D biosynthesis
- superpathway of erythromycin biosynthesis (without sugar biosynthesis)
- camptothecin biosynthesis
- superpathway of seleno-compound metabolism
- seleno-amino acid detoxification and volatilization II
- superpathway of L-isoleucine biosynthesis I
- prodigiosin biosynthesis
- superpathway of acetoin and butanediol biosynthesis
- thiocyanate degradation II
- carbon disulfide oxidation I (anaerobic)
- carbon disulfide oxidation II (aerobic)
- carbon disulfide oxidation III (metazoa)
- polybrominated dihydroxylated diphenyl ethers biosynthesis
- spongiadioxin C biosynthesis
- ajmaline and sarpagine biosynthesis
- isoleucine degradation I
- tyrosol biosynthesis
- leucopelargonidin and leucocyanidin biosynthesis
- anthocyanin biosynthesis (pelargonidin 3-O-glucoside)
- glucosinolate biosynthesis from tetrahomomethionine
- gibberellin biosynthesis IV (Gibberella fujikuroi)
- superpathway of gibberellin biosynthesis
- L-threonate degradation
- D-threonate degradation
- uracil degradation I (reductive)
- squid bioluminescence
- 2-keto glutarate dehydrogenase complex
- phenylalanine biosynthesis
- pyridoxal 5'-phosphate biosynthesis
- (5R)-carbapenem biosynthesis
- TCA cycle variation IV
- purine degradation II (anaerobic)
- C4 photosynthetic carbon assimilation cycle
- chlorophyllide a biosynthesis I
- fatty acid biosynthesis -- elongase pathway
- respiration (anaerobic)
- oxaloacetate degradation to pyruvate
- lysine biosynthesis VI
- lysine biosynthesis I
- D-carnitine degradation II
PlantCyc(111)
- superpathway of hyoscyamine and scopolamine biosynthesis
- hyoscyamine and scopolamine biosynthesis
- superpathway of betalain biosynthesis
- lupanine biosynthesis
- superpathway of anaerobic sucrose degradation
- superpathway of isoflavonoids (via naringenin)
- glucosinolate biosynthesis from tyrosine
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- hydroxycinnamic acid tyramine amides biosynthesis
- leucodelphinidin biosynthesis
- luteolinidin 5-O-glucoside biosynthesis
- luteolin biosynthesis
- flavonoid biosynthesis (in equisetum)
- leucopelargonidin and leucocyanidin biosynthesis
- L-arginine degradation X (arginine monooxygenase pathway)
- urea degradation I
- putrescine biosynthesis I
- superpathway of allantoin degradation in plants
- allantoin degradation to glyoxylate III
- superpathway of purines degradation in plants
- urea degradation II
- putrescine biosynthesis IV
- Organic Nitrogen Assimilation
- superpathway of hyoscyamine (atropine) and scopolamine biosynthesis
- nevadensin biosynthesis
- 4-hydroxycoumarin and dicoumarol biosynthesis
- morphine biosynthesis
- superpathway of linamarin and lotaustralin biosynthesis
- linamarin biosynthesis
- superpathway of purine nucleotides de novo biosynthesis I
- inosine-5'-phosphate biosynthesis II
- ureide biosynthesis
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium)
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- ajmaline and sarpagine biosynthesis
- resveratrol biosynthesis
- phytosterol biosynthesis (plants)
- superpathway of gibberellin biosynthesis
- gibberellin biosynthesis II (early C-3 hydroxylation)
- urate conversion to allantoin I
- pinobanksin biosynthesis
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (late decarboxylation)
- superpathway of proto- and siroheme biosynthesis
- superpathway of nicotine biosynthesis
- superpathway of Allium flavor precursors
- alliin metabolism
- 3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
- vindoline, vindorosine and vinblastine biosynthesis
- ketogenesis
- scopoletin biosynthesis
- coumarins biosynthesis (engineered)
- superpathway of scopolin and esculin biosynthesis
- gibberellin inactivation I (2β-hydroxylation)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- superpathway of tetrahydroxyxanthone biosynthesis
- plumbagin biosynthesis
- tetrahydroxyxanthone biosynthesis (from benzoate)
- calystegine biosynthesis
- tropane alkaloids biosynthesis
- 4-hydroxyindole-3-carbonyl nitrile biosynthesis
- superpathway of flavones and derivatives biosynthesis
- aliphatic glucosinolate biosynthesis, side chain elongation cycle
- glucosinolate biosynthesis from pentahomomethionine
- UMP biosynthesis I
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
- superpathway of pyrimidine ribonucleotides de novo biosynthesis
- L-lysine degradation I
- superpathway of glyoxylate cycle and fatty acid degradation
- ephedrine biosynthesis
- prunasin and amygdalin biosynthesis
- flavonol biosynthesis
- syringetin biosynthesis
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- oxalate degradation IV
- 1,4-dihydroxy-2-naphthoate biosynthesis II (plants)
- superpathway of phylloquinol biosynthesis
- (S)-reticuline biosynthesis I
- allantoin degradation to glyoxylate II
- allantoin degradation to ureidoglycolate II (ammonia producing)
- superpathway of phospholipid biosynthesis II (plants)
- sphingolipid biosynthesis (plants)
- 2-carboxy-1,4-naphthoquinol biosynthesis
- cholesterol biosynthesis I
- zymosterol biosynthesis
- superpathway of seleno-compound metabolism
- fenchol biosynthesis I
- fenchone biosynthesis
- chrysin biosynthesis
- hypoglycin biosynthesis
- hinokiresinol biosynthesis
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II
- beta-carboline biosynthesis
- taxiphyllin biosynthesis
- dhurrin biosynthesis
- hyperxanthone E biosynthesis
- superpathway of benzoxazinoid glucosides biosynthesis
- Amaryllidacea alkaloids biosynthesis
- curcuminoid biosynthesis
- cholesterol biosynthesis (plants)
- cholesterol biosynthesis (plants, early side-chain reductase)
- isoprene biosynthesis II (engineered)
- isoprene biosynthesis I
- umbelliferone biosynthesis
- L-methionine salvage cycle I (bacteria and plants)
- phylloquinol biosynthesis
- camptothecin biosynthesis
- seleno-amino acid detoxification and volatilization II
- proanthocyanidins biosynthesis from flavanols
- glucosinolate biosynthesis from tetrahomomethionine
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Somayeh Gholivand, Tai Boon Tan, Masni Mat Yusoff, Hew Weng Choy, Shuh Jun Teow, Yong Wang, Yuanfa Liu, Chin Ping Tan. Advanced fabrication of complex biopolymer microcapsules via RSM-optimized supercritical carbon dioxide solution-enhanced dispersion: A comparative analysis of various microencapsulation techniques.
Food chemistry.
2024 Sep; 452(?):139591. doi:
10.1016/j.foodchem.2024.139591
. [PMID: 38761631] - Munawar Khalil, Marleen Stuhr, Andreas Kunzmann, Hildegard Westphal. Simultaneous ocean acidification and warming do not alter the lipid-associated biochemistry but induce enzyme activities in an asterinid starfish.
The Science of the total environment.
2024 Jul; 932(?):173000. doi:
10.1016/j.scitotenv.2024.173000
. [PMID: 38719050] - Cristiano S Siqueira, Stephanie R Ribeiro, Carine F Milarch, Roger Wagner, Bernardo Baldisserotto, Adalberto L Val, Matheus D Baldissera. Impairment on fillet fatty acid profile and oxidative damage in pirarucu, Arapaima gigas, acutely exposed to extreme ambient temperature.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
2024 07; 293(?):111625. doi:
10.1016/j.cbpa.2024.111625
. [PMID: 38513801] - Sundar Sapkota, Rajan Ghimire, Prakriti Bista, Dale Hartmann, Tawsif Rahman, Sushil Adhikari. Greenhouse gas mitigation and soil carbon stabilization potential of forest biochar varied with biochar type and characteristics.
The Science of the total environment.
2024 Jun; 931(?):172942. doi:
10.1016/j.scitotenv.2024.172942
. [PMID: 38719032] - Reti Ranniku, Ülo Mander, Jordi Escuer-Gatius, Thomas Schindler, Priit Kupper, Arne Sellin, Kaido Soosaar. Dry and wet periods determine stem and soil greenhouse gas fluxes in a northern drained peatland forest.
The Science of the total environment.
2024 Jun; 928(?):172452. doi:
10.1016/j.scitotenv.2024.172452
. [PMID: 38615757] - Ya-Qian Qu, Xiao-Hui Shen, Qian Zhao, Hui Guo, Xu-Rui Li, Jian-Guo Li, Hui-Ling Zang, Jing Qin. CENTRAL VENOUS-TO-ARTERIAL CARBON DIOXIDE PARTIAL PRESSURE DIFFERENCE AS A GUIDING PARAMETER FOR CARDIOTONIC DRUG ADMINISTRATION IN PATIENTS WITH EARLY-STAGE SEPTIC SHOCK.
Shock (Augusta, Ga.).
2024 Jun; 61(6):836-840. doi:
10.1097/shk.0000000000002319
. [PMID: 38713552] - Juan C Baca Cabrera, Regina T Hirl, Rudi Schäufele, Jianjun Zhu, Hai Tao Liu, Xiao Ying Gong, Jérôme Ogée, Hans Schnyder. Half of the 18O enrichment of leaf sucrose is conserved in leaf cellulose of a C3 grass across atmospheric humidity and CO2 levels.
Plant, cell & environment.
2024 Jun; 47(6):2274-2287. doi:
10.1111/pce.14881
. [PMID: 38488789] - Zhihao Xian, Fucheng Guo, Mengli Chen, Yichu Wang, Zihang Zhang, Hao Wu, Jingyi Dai, Xin Zhang, Yi Chen. Plant-microbe involvement: How manganese achieves harmonious nitrogen-removal and carbon-reduction in constructed wetlands.
Bioresource technology.
2024 Jun; 402(?):130794. doi:
10.1016/j.biortech.2024.130794
. [PMID: 38703966] - Matthew D Brooks, Ronnia C Szeto. Biological nitrogen fixation maintains carbon/nitrogen balance and photosynthesis at elevated CO2.
Plant, cell & environment.
2024 Jun; 47(6):2178-2191. doi:
10.1111/pce.14873
. [PMID: 38481026] - Syed Bilal Hussain, Joseph Stinziano, Myrtho O Pierre, Christopher Vincent. Accurate photosynthetic parameter estimation at low stomatal conductance: effects of cuticular conductance and instrumental noise.
Photosynthesis research.
2024 Jun; 160(2-3):111-124. doi:
10.1007/s11120-024-01092-8
. [PMID: 38700726] - Eva Morgner, Meisha Holloway-Phillips, David Basler, Daniel B Nelson, Ansgar Kahmen. Effects of increasing atmospheric CO2 on leaf water δ18O values are small and are attenuated in grasses and amplified in dicotyledonous herbs and legumes when transferred to cellulose δ18O values.
The New phytologist.
2024 Jun; 242(5):1944-1956. doi:
10.1111/nph.19713
. [PMID: 38575849] - Yuan Xu, Stephanie C Schmiege, Thomas D Sharkey. The oxidative pentose phosphate pathway in photosynthesis: a tale of two shunts.
The New phytologist.
2024 Jun; 242(6):2453-2463. doi:
10.1111/nph.19730
. [PMID: 38567702] - Yanxiao Wei, Weizhe Xia, Min Ye, Fuqiang Chen, Yunzhi Qian, Yu-You Li. Optimizing hydraulic retention time of high-rate activated sludge designed for potential integration with partial nitritation/anammox in municipal wastewater treatment.
Bioresource technology.
2024 Jun; 401(?):130710. doi:
10.1016/j.biortech.2024.130710
. [PMID: 38636880] - Fahed A Aloufi, Hamada AbdElgawad, Riyadh F Halawani, Mansour A Balkhyour, Abdelrahim H A Hassan. Selenium nanoparticles induce coumarin metabolism and essential oil production in Trachyspermum ammi under future climate CO2 conditions.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108705. doi:
10.1016/j.plaphy.2024.108705
. [PMID: 38714128] - Cyril Abadie, Julie Lalande, Corentin Dourmap, Anis M Limami, Guillaume Tcherkez. Leaf day respiration involves multiple carbon sources and depends on previous dark metabolism.
Plant, cell & environment.
2024 Jun; 47(6):2146-2162. doi:
10.1111/pce.14871
. [PMID: 38444114] - Minori Nigishi, Ginga Shimakawa, Kansei Yamagishi, Ryosuke Amano, Shun Ito, Yoshinori Tsuji, Chikako Nagasato, Yusuke Matsuda. Low-CO2-inducible bestrophins outside the pyrenoid sustain high photosynthetic efficacy in diatoms.
Plant physiology.
2024 May; 195(2):1432-1445. doi:
10.1093/plphys/kiae137
. [PMID: 38478576] - Prateek Jain. Climate-ready crops: Unveiling the molecular dynamics of CO2 and glucose in plant thermotolerance.
Plant physiology.
2024 May; 195(2):906-907. doi:
10.1093/plphys/kiae131
. [PMID: 38445755] - Jiao Wang, Qian Luo, Xiao Liang, Hua Liu, Changqi Wu, Hanmo Fang, Xuanbo Zhang, Shuting Ding, Jingquan Yu, Kai Shi. Glucose-G protein signaling plays a crucial role in tomato resilience to high temperature and elevated CO2.
Plant physiology.
2024 May; 195(2):1025-1037. doi:
10.1093/plphys/kiae136
. [PMID: 38447060] - Yuzhen Fan, Guillaume Tcherkez, Andrew P Scafaro, Nicolas L Taylor, Robert T Furbank, Susanne von Caemmerer, Owen K Atkin. Variation in leaf dark respiration among C3 and C4 grasses is associated with use of different substrates.
Plant physiology.
2024 May; 195(2):1475-1490. doi:
10.1093/plphys/kiae064
. [PMID: 38324704] - Oceane Cassan, Lea-Lou Pimpare, Timothy Mozzanino, Cecile Fizames, Sebastien Devidal, Fabrice Roux, Alexandru Milcu, Sophie Lebre, Alain Gojon, Antoine Martin. Natural genetic variation underlying the negative effect of elevated CO2 on ionome composition in Arabidopsis thaliana.
eLife.
2024 May; 12(?):. doi:
10.7554/elife.90170
. [PMID: 38780431] - Essombo Essombo Bathelemy, Goune Achille Clovice, Nkongo Essombo Samuel Maximin, Seutche Jean Calvin, Nsouandele Jean Luc, Takembo Ntahkie Clovis, Ben-Bolie Germain Hubert. Estimated greenhouse gas emissions in the Mbalmayo thermal power plant between 2016-2020 using the genetic-Gaussian algorithm coupling.
Environmental monitoring and assessment.
2024 May; 196(6):563. doi:
10.1007/s10661-024-12621-2
. [PMID: 38771410] - Zhe H Weng, Peter M Kopittke, Steffen Schweizer, Jian Jin, Roger Armstrong, Michael Rose, Yunyun Zheng, Ashley Franks, Caixian Tang. Shining a Light on How Soil Organic Carbon Behaves at Fine Scales under Long-Term Elevated CO2: An 8 Year Free-Air Carbon Dioxide Enrichment Study.
Environmental science & technology.
2024 May; 58(20):8724-8735. doi:
10.1021/acs.est.3c10680
. [PMID: 38717952] - Hironori Itoh, Hiroto Yamashita, Kaede C Wada, Jun-Ichi Yonemaru. Real-time emulation of future global warming reveals realistic impacts on the phenological response and quality deterioration in rice.
Proceedings of the National Academy of Sciences of the United States of America.
2024 May; 121(21):e2316497121. doi:
10.1073/pnas.2316497121
. [PMID: 38739807] - Mauricio Tejera-Nieves, Do Young Seong, Lucas Reist, Berkley J Walker. The Dynamic Assimilation Technique measures photosynthetic CO2 response curves with similar fidelity to steady-state approaches in half the time.
Journal of experimental botany.
2024 May; 75(10):2819-2828. doi:
10.1093/jxb/erae057
. [PMID: 38366564] - Yuqi Zhang, Elias Kaiser, Satadal Dutta, Thomas D Sharkey, Leo F M Marcelis, Tao Li. Short-term salt stress reduces photosynthetic oscillations under triose phosphate utilization limitation in tomato.
Journal of experimental botany.
2024 May; 75(10):2994-3008. doi:
10.1093/jxb/erae089
. [PMID: 38436737] - Jun Tominaga, Yoshinobu Kawamitsu. Combined leaf gas-exchange system for model assessment.
Journal of experimental botany.
2024 May; 75(10):2982-2993. doi:
10.1093/jxb/erae081
. [PMID: 38426531] - Ruohua Qu, Na Liu, Qiong Wen, Jingyi Guo, Fei Ge. Molecular mechanism of dissolvable metal nanoparticles-enhanced CO2 fixation by algae: Metal-chlorophyll synthesis.
Environmental pollution (Barking, Essex : 1987).
2024 May; 349(?):123987. doi:
10.1016/j.envpol.2024.123987
. [PMID: 38621453] - Bing Liang, Jianbing Wei, Shangyu Wu, Heyang Hao. Synergistic advantages of volcanic ash weathering in saline soils: CO2 sequestration and enhancement of plant growth.
The Science of the total environment.
2024 May; 925(?):171825. doi:
10.1016/j.scitotenv.2024.171825
. [PMID: 38513852] - Sandra Benavides-Gordillo, Angélica L González, Mônica F Kersch-Becker, Marcelo S Moretti, Dieison A Moi, Marcos P M Aidar, Gustavo Q Romero. Warming and shifts in litter quality drive multiple responses in freshwater detritivore communities.
Scientific reports.
2024 05; 14(1):11137. doi:
10.1038/s41598-024-61624-z
. [PMID: 38750097] - Claas Voigt, Maren Dubbert, Samuli Launiainen, Philipp Porada, Jan Oestmann, Arndt Piayda. Impact of vegetation composition and seasonality on sensitivity of modelled CO2 exchange in temperate raised bogs.
Scientific reports.
2024 05; 14(1):11023. doi:
10.1038/s41598-024-61229-6
. [PMID: 38744922] - Alexander T Strauss, Sarah E Hobbie, Peter B Reich, Eric W Seabloom, Elizabeth T Borer. The effect of diversity on disease reverses from dilution to amplification in a 22-year biodiversity × N × CO2 experiment.
Scientific reports.
2024 05; 14(1):10938. doi:
10.1038/s41598-024-60725-z
. [PMID: 38740878] - Linjie Jiao, Yoshiko Kosugi, Ayaka Sakabe, Yuichi Sempuku, Ting-Wei Chang, Siyu Chen. Wet canopy photosynthesis in a temperate Japanese cypress forest.
Tree physiology.
2024 May; 44(5):. doi:
10.1093/treephys/tpae041
. [PMID: 38598321] - Tao Lu, Fan Lü, Nanlin Liao, Honghui Chai, Hua Zhang, Pinjing He. Material flow analysis and global warming potential assessment of an industrial insect-based bioconversion plant using housefly larvae.
Journal of environmental sciences (China).
2024 May; 139(?):483-495. doi:
10.1016/j.jes.2023.05.007
. [PMID: 38105071] - Massimo Pugliese, Giovanna Gilardi, Angelo Garibaldi, Maria Lodovica Gullino. The Impact of Climate Change on Vegetable Crop Diseases and Their Management: The Value of Phytotron Studies for the Agricultural Industry and Associated Stakeholders.
Phytopathology.
2024 May; 114(5):843-854. doi:
10.1094/phyto-08-23-0284-kc
. [PMID: 38648074] - Pablo Lacerda Ribeiro, Britta Pitann, Schahram Banedjschafie, Karl Hermann Mühling. Effectiveness of three nitrification inhibitors on mitigating trace gas emissions from different soil textures under surface and subsurface drip irrigation.
Journal of environmental management.
2024 May; 359(?):120969. doi:
10.1016/j.jenvman.2024.120969
. [PMID: 38678900] - Demi Sargent, Jeffrey S Amthor, Joseph R Stinziano, John R Evans, Spencer M Whitney, Michael P Bange, David T Tissue, Warren C Conaty, Robert E Sharwood. The importance of species-specific and temperature-sensitive parameterisation of A/Ci models: A case study using cotton (Gossypium hirsutum L.) and the automated 'OptiFitACi' R-package.
Plant, cell & environment.
2024 May; 47(5):1701-1715. doi:
10.1111/pce.14800
. [PMID: 38294051] - Amanda Rayane Damasceno, Sabrina Garcia, Izabela Fonseca Aleixo, Juliane Cristina Gomes Menezes, Iokanam Sales Pereira, Martin G De Kauwe, Vanessa Rodrigues Ferrer, Katrin Fleischer, Thorsten E E Grams, Alacimar V Guedes, Iain Paul Hartley, Bart Kruijt, Laynara Figueiredo Lugli, Nathielly Pires Martins, Richard J Norby, Julyane Stephanie Pires-Santos, Bruno Takeshi Tanaka Portela, Anja Rammig, Leonardo Ramos de Oliveira, Flávia Delgado Santana, Yago Rodrigues Santos, Crisvaldo Cássio Silva de Souza, Gabriela Ushida, David Montenegro Lapola, Carlos Alberto Nobre Quesada, Tomas Ferreira Domingues. In situ short-term responses of Amazonian understory plants to elevated CO2.
Plant, cell & environment.
2024 May; 47(5):1865-1876. doi:
10.1111/pce.14842
. [PMID: 38334166] - Anne Goelzer, Loïc Rajjou, Fabien Chardon, Olivier Loudet, Vincent Fromion. Resource allocation modeling for autonomous prediction of plant cell phenotypes.
Metabolic engineering.
2024 May; 83(?):86-101. doi:
10.1016/j.ymben.2024.03.009
. [PMID: 38561149] - Xiao Gan, Palanivelu Sengottaiyan, Kyu Hyong Park, Sarah M Assmann, Réka Albert. A network-based modeling framework reveals the core signal transduction network underlying high carbon dioxide-induced stomatal closure in guard cells.
PLoS biology.
2024 May; 22(5):e3002592. doi:
10.1371/journal.pbio.3002592
. [PMID: 38691548] - Wei Wu, Le Song, Hong Wang, Lu Feng, Zhenkai Li, Yanqing Li, Le Li, Li Peng. Supercritical CO2 fluid extract from Stellariae Radix ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis by inhibit M1 macrophages polarization via AMPK activation.
Environmental toxicology.
2024 May; 39(5):3188-3197. doi:
10.1002/tox.24145
. [PMID: 38356236] - Nghiem D Nguyen, Sacha B Pulsford, Britta Förster, Sarah Rottet, Loraine Rourke, Benedict M Long, G Dean Price. A carboxysome-based CO2 concentrating mechanism for C3 crop chloroplasts: advances and the road ahead.
The Plant journal : for cell and molecular biology.
2024 May; 118(4):940-952. doi:
10.1111/tpj.16667
. [PMID: 38321620] - V Ravi, Saravanan Raju, Sanket J More. Evaluation of potential increase in photosynthetic efficiency of cassava (Manihot esculenta Crantz) plants exposed to elevated carbon dioxide.
Functional plant biology : FPB.
2024 05; 51(?):. doi:
10.1071/fp23254
. [PMID: 38743837] - Xinyi Li, Tianbo Jia, Haiguang Zhu, Luhan Cai, Yubiao Lu, Jianxin Wang, Hengcong Tao, Peng Li. Bioelectricity facilitates carbon dioxide fixation by Alcaligenes faecalis ZS-1 in a biocathodic microbial fuel cell (MFC).
Bioresource technology.
2024 May; 399(?):130555. doi:
10.1016/j.biortech.2024.130555
. [PMID: 38460556] - Cheng Ji, Jidong Wang, Cong Xu, Yian Gu, Jie Yuan, Dong Liang, Lei Wang, Yunwang Ning, Jie Zhou, Yongchun Zhang. Amendment of straw with decomposing inoculants benefits the ecosystem carbon budget and carbon footprint in a subtropical wheat cropping field.
The Science of the total environment.
2024 May; 923(?):171419. doi:
10.1016/j.scitotenv.2024.171419
. [PMID: 38442752] - Stoja Milovanovic, Darka Markovic, Ivona Jankovic-Castvan, Ivana Lukic. Cornstarch aerogels with thymol, citronellol, carvacrol, and eugenol prepared by supercritical CO2- assisted techniques for potential biomedical applications.
Carbohydrate polymers.
2024 May; 331(?):121874. doi:
10.1016/j.carbpol.2024.121874
. [PMID: 38388060] - G S Krishna Priya, Rahul Gundre, Santanu Bandyopadhyay, Srinivas Seethamraju. Analysis of decarbonization measures for the Indian Cement Sector.
Journal of environmental management.
2024 May; 358(?):120860. doi:
10.1016/j.jenvman.2024.120860
. [PMID: 38615400] - Sandeep Sharma, D H Raviteja, Tarun Kumar, Prem S Bindraban, Renu Pandey. Nutrient remobilization and C:N:P stoichiometry in response to elevated CO2 and low phosphorus availability in rice cultivars introgressed with and without Pup1.
Plant physiology and biochemistry : PPB.
2024 May; 210(?):108657. doi:
10.1016/j.plaphy.2024.108657
. [PMID: 38670030] - Katherine Duchesneau, Camille E Defrenne, Caitlin Petro, Avni Malhotra, Jessica A M Moore, Joanne Childs, Paul J Hanson, Colleen M Iversen, Joel E Kostka. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands.
The New phytologist.
2024 May; 242(3):1333-1347. doi:
10.1111/nph.19690
. [PMID: 38515239] - Talia J Michaud, Lauren C Cline, Erik A Hobbie, Jessica L M Gutknecht, Peter G Kennedy. Herbarium specimens reveal that mycorrhizal type does not mediate declining temperate tree nitrogen status over a century of environmental change.
The New phytologist.
2024 May; 242(4):1717-1724. doi:
10.1111/nph.19452
. [PMID: 38073143] - Lei Wang, Qing-Lai Dang. Using leaf economic spectrum and photosynthetic acclimation to evaluate the potential performance of wintersweet under future climate conditions.
Physiologia plantarum.
2024 May; 176(3):e14318. doi:
10.1111/ppl.14318
. [PMID: 38686542] - Paul Bolay, Nadia Dodge, Kim Janssen, Poul Erik Jensen, Pia Lindberg. Tailoring regulatory components for metabolic engineering in cyanobacteria.
Physiologia plantarum.
2024 May; 176(3):e14316. doi:
10.1111/ppl.14316
. [PMID: 38686633] - Ian S Gilman, Karolina Heyduk, Carlos Maya-Lastra, Lillian P Hancock, Erika J Edwards. Predicting photosynthetic pathway from anatomy using machine learning.
The New phytologist.
2024 May; 242(3):1029-1042. doi:
10.1111/nph.19488
. [PMID: 38173400] - Arthur Gessler, Roman Zweifel. Beyond source and sink control - toward an integrated approach to understand the carbon balance in plants.
The New phytologist.
2024 May; 242(3):858-869. doi:
10.1111/nph.19611
. [PMID: 38375596] - Yuming Sun, Alisdair R Fernie. Plant secondary metabolism in a fluctuating world: climate change perspectives.
Trends in plant science.
2024 May; 29(5):560-571. doi:
10.1016/j.tplants.2023.11.008
. [PMID: 38042677] - Petar Mohorović, Batist Geldhof, Kristof Holsteens, Marilien Rinia, Stijn Daems, Timmy Reijnders, Johan Ceusters, Wim Van den Ende, Bram Van de Poel. Ethylene inhibits photosynthesis via temporally distinct responses in tomato plants.
Plant physiology.
2024 Apr; 195(1):762-784. doi:
10.1093/plphys/kiad685
. [PMID: 38146839] - Qiming Tang, Yuhui Huang, Xiaoxiang Ni, Ming-Ju Amy Lyu, Genyun Chen, Rowan Sage, Xin-Guang Zhu. Increased α-ketoglutarate links the C3-C4 intermediate state to C4 photosynthesis in the genus Flaveria.
Plant physiology.
2024 Apr; 195(1):291-305. doi:
10.1093/plphys/kiae077
. [PMID: 38377473] - Ganesan Ezhumalai, Muthukrishnan Arun, Arulmani Manavalan, Renganathan Rajkumar, Klaus Heese. A Holistic Approach to Circular Bioeconomy Through the Sustainable Utilization of Microalgal Biomass for Biofuel and Other Value-Added Products.
Microbial ecology.
2024 Apr; 87(1):61. doi:
10.1007/s00248-024-02376-1
. [PMID: 38662080] - Kaiqi Jiang, Hai Yu, Zening Sun, Zhiqi Lei, Kangkang Li, Lidong Wang. Zero-Emission Cement Plants with Advanced Amine-Based CO2 Capture.
Environmental science & technology.
2024 Apr; 58(16):6978-6987. doi:
10.1021/acs.est.4c00197
. [PMID: 38598712] - N Cannone, F Malfasi. Climate change triggered synchronous woody plants recruitment in the last two centuries in the treeline ecotone of the Northern Hemisphere.
The Science of the total environment.
2024 Apr; 921(?):170953. doi:
10.1016/j.scitotenv.2024.170953
. [PMID: 38365041] - Daniela Cvitković, Iva Škarica, Verica Dragović-Uzelac, Sandra Balbino. Supercritical CO2 Extraction of Fatty Acids, Phytosterols, and Volatiles from Myrtle (Myrtus communis L.) Fruit.
Molecules (Basel, Switzerland).
2024 Apr; 29(8):. doi:
10.3390/molecules29081755
. [PMID: 38675575] - Fernando Shintate Galindo, Paulo Humberto Pagliari, Edson Cabral da Silva, Bruno Horschut de Lima, Guilherme Carlos Fernandes, Cassio Carlette Thiengo, João Victor Silva Bernardes, Arshad Jalal, Carlos Eduardo Silva Oliveira, Lucila de Sousa Vilela, Enes Furlani Junior, Thiago Assis Rodrigues Nogueira, Vagner do Nascimento, Marcelo Carvalho Minhoto Teixeira Filho, José Lavres. Impact of nitrogen fertilizer sustainability on corn crop yield: the role of beneficial microbial inoculation interactions.
BMC plant biology.
2024 Apr; 24(1):268. doi:
10.1186/s12870-024-04971-3
. [PMID: 38605320] - Genki Horiguchi, Ryoma Oyama, Tatsuki Akabane, Nobuhiro Suzuki, Etsuko Katoh, Yusuke Mizokami, Ko Noguchi, Naoki Hirotsu. Cooperation of an external carbonic anhydrase and HCO3- transporter supports underwater photosynthesis in submerged leaves of the amphibious plant Hygrophila difformis.
Annals of botany.
2024 Apr; 133(2):287-304. doi:
10.1093/aob/mcad161
. [PMID: 37832038] - Xiaoshun Tu, Jing Wang, Xiaoyu Liu, Yu Liu, Yinghua Zhang, Yves Uwiragiye, Ahmed S Elrys, Jinbo Zhang, Zucong Cai, Yi Cheng, Christoph Müller. Warming-Induced Stimulation of Soil N2O Emissions Counteracted by Elevated CO2 from Nine-Year Agroecosystem Temperature and Free Air Carbon Dioxide Enrichment.
Environmental science & technology.
2024 Apr; 58(14):6215-6225. doi:
10.1021/acs.est.3c10775
. [PMID: 38546713] - Oliver Mantovani, Michael Haffner, Peter Walke, Abdalla A Elshereef, Berenike Wagner, Daniel Petras, Karl Forchhammer, Khaled A Selim, Martin Hagemann. The redox-sensitive R-loop of the carbon control protein SbtB contributes to the regulation of the cyanobacterial CCM.
Scientific reports.
2024 04; 14(1):7885. doi:
10.1038/s41598-024-58354-7
. [PMID: 38570698] - Kyungmin Kim, Archana Juyal, Alexandra Kravchenko. Soil pore characteristics and the fate of new switchgrass-derived carbon in switchgrass and prairie bioenergy cropping systems.
Scientific reports.
2024 04; 14(1):7824. doi:
10.1038/s41598-024-58444-6
. [PMID: 38570696] - Zia Ur Rahman Farooqi, Ayesha Abdul Qadir, Sehrish Khalid, Ghulam Murtaza, Muhammad Nadeem Ashraf, Shafeeq-Ur-Rahman, Wasim Javed, Muhammad Ahmed Waqas, Minggang Xu. Greenhouse gas emissions, carbon stocks and wheat productivity following biochar, compost and vermicompost amendments: comparison of non-saline and salt-affected soils.
Scientific reports.
2024 04; 14(1):7752. doi:
10.1038/s41598-024-56381-y
. [PMID: 38565858] - Kai Xin, Jun Cheng, Ruhan Guo, Lei Qian, Yulun Wu, Weijuan Yang. Nuclear mutagenesis and adaptive evolution improved photoautotrophic growth of Euglena gracilis with flue-gas CO2 fixation.
Bioresource technology.
2024 Apr; 397(?):130497. doi:
10.1016/j.biortech.2024.130497
. [PMID: 38408501] - Qing Zhu, William J Riley, Jinyun Tang, Nicholas J Bouskill. Plant responses to elevated CO2 under competing hypotheses of nitrogen and phosphorus limitations.
Ecological applications : a publication of the Ecological Society of America.
2024 Apr; 34(3):e2967. doi:
10.1002/eap.2967
. [PMID: 38469663] - Xiaojun Wang, Jie Wang, Yanuo Zou, Yujing Bie, Athar Mahmood, Lu Zhang, Lirong Liao, Zilin Song, Guobin Liu, Chao Zhang. Urea fertilization increased CO2 and CH4 emissions by enhancing C-cycling genes in semi-arid grasslands.
Journal of environmental management.
2024 Apr; 356(?):120718. doi:
10.1016/j.jenvman.2024.120718
. [PMID: 38537467] - Chih-Lu Wang, Pei-Qi Luo, Fang-Yu Hu, Yi Li, Chang-Lin Sung, Yun-Hung Kuang, Shau-Ching Lin, Zhi-Wei Yang, Charng-Pei Li, Shou-Horng Huang, Sherry Lou Hechanova, Kshirod K Jena, Chia-Hung Hsieh, Wen-Po Chuang. Pyramiding BPH genes in rice maintains resistance against the brown planthopper under climate change.
Pest management science.
2024 Apr; 80(4):1740-1750. doi:
10.1002/ps.7902
. [PMID: 38015011] - Masako Mishio, Emi Sudo, Hiroshi Ozaki, Riichi Oguchi, Ryo Fujimoto, Nobuharu Fujii, Kouki Hikosaka. Heterotic growth of hybrids of Arabidopsis thaliana is enhanced by elevated atmospheric CO2.
American journal of botany.
2024 Apr; 111(4):e16317. doi:
10.1002/ajb2.16317
. [PMID: 38634444] - Haimei Zhou, Jiang Peng, Wanling Zhao, Yongjun Zeng, Kailiu Xie, Guanjun Huang. Leaf diffusional capacity largely contributes to the reduced photosynthesis in rice plants under magnesium deficiency.
Plant physiology and biochemistry : PPB.
2024 Apr; 209(?):108565. doi:
10.1016/j.plaphy.2024.108565
. [PMID: 38537380] - Shenglan Li, Evgenios Agathokleous, Shuangjiang Li, Yansen Xu, Jiaxuan Xia, Zhaozhong Feng. Climate gradient and leaf carbon investment influence the effects of climate change on water use efficiency of forests: A meta-analysis.
Plant, cell & environment.
2024 Apr; 47(4):1070-1083. doi:
10.1111/pce.14777
. [PMID: 38018689] - Weijia Fan, Yu Liu, Xiaohan Xu, Xu Dong, Haixia Wang. Effects of HCO3- and CO2 conversion rates on carbon assimilation strategies in marine microalgae: Implication by stable carbon isotope analysis of fatty acids.
Plant physiology and biochemistry : PPB.
2024 Apr; 209(?):108530. doi:
10.1016/j.plaphy.2024.108530
. [PMID: 38520966] - Federica Pasquarelli, Giuseppina Oliva, Aniello Mariniello, Antonio Buonerba, Chi-Wang Li, Vincenzo Belgiorno, Vincenzo Naddeo, Tiziano Zarra. Carbon neutrality in wastewater treatment plants: An integrated biotechnological-based solution for nutrients recovery, odour abatement and CO2 conversion in alternative energy drivers.
Chemosphere.
2024 Apr; 354(?):141700. doi:
10.1016/j.chemosphere.2024.141700
. [PMID: 38490615] - Ivana Milenkovic, Milan Borišev, Yiqun Zhou, Sladjana Z Spasic, Dunja Spasic, Roger M Leblanc, Ksenija Radotic. Non-toxic orange carbon dots stimulate photosynthesis and CO2 assimilation in hydroponically cultivated green beans (Phaseolus vulgaris).
Functional plant biology : FPB.
2024 04; 51(?):. doi:
10.1071/fp23164
. [PMID: 38560925] - AnjaniKumar S V Brahmandam, Vara Prasad Kasa, Brajesh Kumar Dubey, Padmanav Mahakud, Khanindra Pathak. From slag to green: Aided-phytoremediation as a sustainable tool to rehabilitate land contaminated by steel slag and assessment of CO2 sequestration.
The Science of the total environment.
2024 Apr; 919(?):170858. doi:
10.1016/j.scitotenv.2024.170858
. [PMID: 38342451] - Rahul Thunuguntla, Hasan K Atiyeh, Hailin Zhang, Thaddeus C Ezeji, Ralph S Tanner. Biochar facilitated Biological CO2 conversion to C2-C6 alcohols and fatty acids.
Bioresource technology.
2024 Apr; 397(?):130464. doi:
10.1016/j.biortech.2024.130464
. [PMID: 38401811] - ". Increasing atmospheric CO2 differentially supports arsenite stress mitigating impact of arbuscular mycorrhizal fungi in wheat and soybean plants (Chemosphere, Volume 296, June 2022, 134044).
Chemosphere.
2024 Apr; 353(?):141620. doi:
10.1016/j.chemosphere.2024.141620
. [PMID: 38528413] - Jinhui Wang, Qi Yu, Qiujun Zhou, Maocan Tao, Yi Cao, Xiaohong Yang. Application of fractional carbon dioxide laser monotherapy in keloids: A meta-analysis.
Journal of cosmetic dermatology.
2024 Apr; 23(4):1178-1186. doi:
10.1111/jocd.16106
. [PMID: 38251806] - Deepesh Singh Chauhan, Kaustubha Mohanty. Exploring microalgal nutrient-light synergy to enhance CO2 utilization and lipid productivity in sustainable long-term water recycling cultivation.
Journal of environmental management.
2024 Apr; 356(?):120631. doi:
10.1016/j.jenvman.2024.120631
. [PMID: 38522275] - Mayank Pratap Singh Bangari, Karaba N Nataraja. Can endophytes minimize photosynthetic limitation?.
Trends in plant science.
2024 Apr; 29(4):403-405. doi:
10.1016/j.tplants.2023.12.005
. [PMID: 38155045] - Yang You, Weiqi Jiang, Lingxin Yi, Guangyun Zhang, Zechen Peng, Shenghua Chang, Fujiang Hou. Seeding alpine grasses in low altitude region increases global warming potential during early seedling growth.
Journal of environmental management.
2024 Apr; 356(?):120679. doi:
10.1016/j.jenvman.2024.120679
. [PMID: 38531141] - P P Povinec, I Kontul', M Ješkovský, J Kaizer, M Richtáriková, A Šivo, J Zeman. Long-term radiocarbon variation studies in the air and tree rings of Slovakia.
Journal of environmental radioactivity.
2024 Apr; 274(?):107401. doi:
10.1016/j.jenvrad.2024.107401
. [PMID: 38412700] - Xiaohan Yang, Yang Liu, Guoliang Yuan, David J Weston, Gerald A Tuskan. Engineering Crassulacean Acid Metabolism in C3 and C4 Plants.
Cold Spring Harbor perspectives in biology.
2024 04; 16(4):. doi:
10.1101/cshperspect.a041674
. [PMID: 38052496] - Wenjing Ouyang, Emilie Wientjes, Peter E L van der Putten, Ludovico Caracciolo, Ruixuan Zhao, Collins Agho, Maurizio Junior Chiurazzi, Marius Bongers, Paul C Struik, Herbert van Amerongen, Xinyou Yin. Roles for leakiness and O2 evolution in explaining lower-than-theoretical quantum yields of photosynthesis in the PEP-CK subtype of C4 plants.
The New phytologist.
2024 Apr; 242(2):431-443. doi:
10.1111/nph.19614
. [PMID: 38406986] - Xubing Lin, Shuying Lin, Licheng Peng, Miao Chen, Xing Cheng, Shiyu Xie, Ruiqi Bao, Yuanyuan Su, Tariq Mehmood. Effects of polypropylene microplastics on carbon dioxide dynamics in intertidal mangrove sediments.
Environmental pollution (Barking, Essex : 1987).
2024 Apr; 346(?):123682. doi:
10.1016/j.envpol.2024.123682
. [PMID: 38428788] - Zhilin Ni, Jinhu Liu, Wenting Cui, Liang Cao, Shuozeng Dou. Interactive impacts of CO2-induced seawater acidification and cadmium exposure on antioxidant defenses of juvenile tongue sole Cynoglossus semilaevis.
Marine pollution bulletin.
2024 Apr; 201(?):116284. doi:
10.1016/j.marpolbul.2024.116284
. [PMID: 38522335] - Zeeshan Khan, Tariq Shah, Ghulam Haider, Fazal Adnan, Zeshan Sheikh, Mohamed A El-Sheikh, Muhammad Faraz Bhatti, Parvaiz Ahmad. Mycorrhizosphere bacteria inhibit greenhouse gas emissions from microplastics contaminated soil by regulating soil enzyme activities and microbial community structure.
Journal of environmental management.
2024 Apr; 356(?):120673. doi:
10.1016/j.jenvman.2024.120673
. [PMID: 38508003] - Meiyu Cui, Zakia Fatima, Zhao Wang, Yang Lei, Xiangai Zhao, Mingshi Jin, Lu Liu, Chunyu Yu, Meihui Tong, Donghao Li. Specific fractionation of ginsenosides based on activated carbon fibers and online fast screening of ginseng extract by mass spectrometry.
Journal of chromatography. A.
2024 Mar; 1719(?):464774. doi:
10.1016/j.chroma.2024.464774
. [PMID: 38422707] - Mikk Espenberg, Kristin Pille, Bin Yang, Martin Maddison, Mohamed Abdalla, Pete Smith, Xiuzhen Li, Ping-Lung Chan, Ülo Mander. Towards an integrated view on microbial CH4, N2O and N2 cycles in brackish coastal marsh soils: A comparative analysis of two sites.
The Science of the total environment.
2024 Mar; 918(?):170641. doi:
10.1016/j.scitotenv.2024.170641
. [PMID: 38325442] - Hatice Merve Güven, Havva Ateş. A holistic approach to the recovery of valuable substances from the treatment sludge formed from chemical precipitation of fruit processing industry wastewater.
The Science of the total environment.
2024 Mar; 917(?):170372. doi:
10.1016/j.scitotenv.2024.170372
. [PMID: 38280603] - Zhen Chen, Zu-Wen Yuan, Wei-Xin Luo, Xun Wu, Jin-Long Pan, Yong-Qi Yin, Hai-Chen Shao, Kui Xu, Wei-Zhi Li, Yuan-Liang Hu, Zhe Wang, Kun-Shan Gao, Xiong-Wen Chen. UV-A radiation increases biomass yield by enhancing energy flow and carbon assimilation in the edible cyanobacterium Nostoc sphaeroides.
Applied and environmental microbiology.
2024 Mar; 90(3):e0211023. doi:
10.1128/aem.02110-23
. [PMID: 38391210] - Awais Shakoor, Elise Pendall, Muhammad Saleem Arif, Taimoor Hassan Farooq, Shahid Iqbal, Sher Muhammad Shahzad. Does no-till crop management mitigate gaseous emissions and reduce yield disparities: An empirical US-China evaluation.
The Science of the total environment.
2024 Mar; 917(?):170310. doi:
10.1016/j.scitotenv.2024.170310
. [PMID: 38272081] - Yancai Zhi, Xiaona Li, Xiaowei Wang, Minghao Jia, Zhenyu Wang. Photosynthesis promotion mechanisms of artificial humic acid depend on plant types: A hydroponic study on C3 and C4 plants.
The Science of the total environment.
2024 Mar; 917(?):170404. doi:
10.1016/j.scitotenv.2024.170404
. [PMID: 38281646] - Hongzhao Li, Liwen Lin, Yutao Peng, Yongzhou Hao, Zhen Li, Jing Li, Min Yu, Xuewen Li, Yusheng Lu, Wenjie Gu, Baige Zhang. Biochar's dual role in greenhouse gas emissions: Nitrogen fertilization dependency and mitigation potential.
The Science of the total environment.
2024 Mar; 917(?):170293. doi:
10.1016/j.scitotenv.2024.170293
. [PMID: 38286282] - Johanna Berlinghof, Luis M Montilla, Friederike Peiffer, Grazia M Quero, Ugo Marzocchi, Travis B Meador, Francesca Margiotta, Maria Abagnale, Christian Wild, Ulisse Cardini. Accelerated nitrogen cycling on Mediterranean seagrass leaves at volcanic CO2 vents.
Communications biology.
2024 Mar; 7(1):341. doi:
10.1038/s42003-024-06011-0
. [PMID: 38503855] - Nataša Šibanc, Dave R Clark, Thorunn Helgason, Alex J Dumbrell, Irena Maček. Extreme environments simplify reassembly of communities of arbuscular mycorrhizal fungi.
mSystems.
2024 Mar; 9(3):e0133123. doi:
10.1128/msystems.01331-23
. [PMID: 38376262] - Suma Sreekanta, Allison Haaning, Austin Dobbels, Riley O'Neill, Anna Hofstad, Kamaldeep Virdi, Fumiaki Katagiri, Robert M Stupar, Gary J Muehlbauer, Aaron J Lorenz. Variation in shoot architecture traits and their relationship to canopy coverage and light interception in soybean (Glycine max).
BMC plant biology.
2024 Mar; 24(1):194. doi:
10.1186/s12870-024-04859-2
. [PMID: 38493116]