Beta-Alanine (BioDeep_00000003101)
Secondary id: BioDeep_00000400270
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin BioNovoGene_Lab2019
代谢物信息卡片
化学式: C3H7NO2 (89.0477)
中文名称: β-丙氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 39.94%
Last reviewed on 2024-07-01.
Cite this Page
Beta-Alanine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/beta-alanine (retrieved
2024-12-23) (BioDeep RN: BioDeep_00000003101). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CN)C(=O)O
InChI: InChI=1S/C3H7NO2/c4-2-1-3(5)6/h1-2,4H2,(H,5,6)
描述信息
beta-Alanine is the only naturally occurring beta-amino acid - an amino acid in which the amino group is at the beta-position from the carboxylate group. It is formed in vivo by the degradation of dihydrouracil and carnosine. It is a component of the naturally occurring peptides carnosine and anserine and also of pantothenic acid (vitamin B-5), which itself is a component of coenzyme A. Under normal conditions, beta-alanine is metabolized into acetic acid. beta-Alanine can undergo a transanimation reaction with pyruvate to form malonate-semialdehyde and L-alanine. The malonate semialdehyde can then be converted into malonate via malonate-semialdehyde dehydrogenase. Malonate is then converted into malonyl-CoA and enter fatty acid biosynthesis. Since neuronal uptake and neuronal receptor sensitivity to beta-alanine have been demonstrated, beta-alanine may act as a false transmitter replacing gamma-aminobutyric acid. When present in sufficiently high levels, beta-alanine can act as a neurotoxin, a mitochondrial toxin, and a metabotoxin. A neurotoxin is a compound that damages the brain or nerve tissue. A mitochondrial toxin is a compound that damages mitochondria and reduces cellular respiration as well as oxidative phosphorylation. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of beta-alanine are associated with at least three inborn errors of metabolism, including GABA-transaminase deficiency, hyper-beta-alaninemia, and methylmalonate semialdehyde dehydrogenase deficiency. beta-Alanine is a central nervous system (CNS) depressant and is an inhibitor of GABA transaminase. The associated inhibition of GABA transaminase and displacement of GABA from CNS binding sites can also lead to GABAuria (high levels of GABA in the urine) and convulsions. In addition to its neurotoxicity, beta-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function. Cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation, which damages mitochondria and increases oxidative stress (PMID: 27023909). Individuals suffering from mitochondrial defects or mitochondrial toxicity typically develop neurotoxicity, hypotonia, respiratory distress, and cardiac failure. beta-Alanine is a biomarker for the consumption of meat, especially red meat.
Widely distributed in plants including algae, fungi and many higher plants. Flavouring ingredient
β-Alanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-95-9 (retrieved 2024-07-01) (CAS RN: 107-95-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
β-Alanine is a non-essential amino acid that is shown to be metabolized into carnosine, which functions as an intracellular buffer.
β-Alanine is a non-essential amino acid that is shown to be metabolized into carnosine, which functions as an intracellular buffer.
β-Alanine is a non-essential amino acid that is shown to be metabolized into carnosine, which functions as an intracellular buffer.
同义名列表
40 个代谢物同义名
Omega-aminopropionic acid; omega-Aminopropanoic acid; beta-Aminopropionic acid; beta-Aminopropanoic acid; 3-Amino-propanoic acid; b-Aminopropionic acid; β-Aminopropanoic acid; ω-Aminopropanoic acid; b-Aminopropanoic acid; 3 Aminopropionic acid; 3-Aminopropanoic acid; Β-aminopropionic acid; Omega-aminopropionate; 3-Aminopropionic acid; ω-Aminopropionic acid; beta-Aminopropanoate; beta-Aminopropionate; 2-Carboxyethylamine; 3-Amino-propanoate; 3-Aminopropionate; 3-Aminopropanoate; b-Aminopropionate; Β-aminopropionate; b-Aminopropanoate; β-Alanine; H-beta-Ala-OH; beta Alanine; beta-alanine; H-Β-ala-OH; β-Ala; H-b-Ala-OH; β alanine; β-alanine; b-Alanine; Abufene; b-Ala; BAla; Beta-Alanine; beta-Alanine; beta-Alanine
数据库引用编号
40 个数据库交叉引用编号
- ChEBI: CHEBI:16958
- KEGG: C00099
- KEGGdrug: D07561
- PubChem: 239
- HMDB: HMDB0000056
- Metlin: METLIN36
- DrugBank: DB03107
- ChEMBL: CHEMBL297569
- Wikipedia: Beta-Alanine
- MeSH: beta-Alanine
- MetaCyc: B-ALANINE
- KNApSAcK: C00001333
- foodb: FDB002253
- chemspider: 234
- CAS: 107-95-9
- MoNA: PS038103
- MoNA: PS038102
- MoNA: KO000039
- MoNA: PR100216
- MoNA: KO002080
- MoNA: KO002082
- MoNA: KO002081
- MoNA: KO000041
- MoNA: KO002079
- MoNA: KO000040
- MoNA: PS038104
- MoNA: KO002078
- MoNA: PS038101
- PMhub: MS000008072
- PDB-CCD: BAL
- 3DMET: B00025
- NIKKAJI: J4.070C
- RefMet: beta-Alanine
- medchemexpress: HY-N0230
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-773
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-27
- PubChem: 3399
- KNApSAcK: 16958
- LOTUS: LTS0209241
- wikidata: Q310919
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
812 个相关的代谢反应过程信息。
Reactome(24)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
ATP + L-His + b-Ala ⟶ ADP + CARN + Pi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
Plant Reactome(711)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
ATP + L-pantoate + b-Ala ⟶ AMP + PPi + PanK
- Pantothenate biosynthesis II:
ATP + L-pantoate + b-Ala ⟶ AMP + PPi + PanK
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Beta-alanine betaine biosynthesis:
SAM + b-Ala ⟶ N-methyl-beta-alanine + SAH
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + UPROP ⟶ ammonia + b-Ala + carbon dioxide
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + UPROP ⟶ ammonia + b-Ala + carbon dioxide
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + UPROP ⟶ ammonia + b-Ala + carbon dioxide
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
INOH(4)
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
- 2-Oxo-glutaric acid + beta-Alanine = L-Glutamic acid + Malonate semialdehyde ( Pyrimidine Nucleotides and Nucleosides metabolism ):
L-Glutamic acid + Malonate semialdehyde ⟶ 2-Oxo-glutaric acid + beta-Alanine
- Histidine degradation ( Histidine degradation ):
H2O + L-Carnosine ⟶ L-Histidine + beta-Alanine
- Pyrimidine Nucleotides and Nucleosides metabolism ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Deoxy-cytidine + H2O ⟶ Deoxy-uridine + NH3
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(71)
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- beta-Alanine Metabolism:
(R)-pantoate + -Alanine + Adenosine triphosphate ⟶ Adenosine monophosphate + Hydrogen Ion + Pantothenic acid + Pyrophosphate
- beta-Alanine Metabolism:
(R)-pantoate + -Alanine + Adenosine triphosphate ⟶ Adenosine monophosphate + Hydrogen Ion + Pantothenic acid + Pyrophosphate
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Histidine Metabolism:
-Alanine + Adenosine triphosphate + L-Histidine ⟶ Adenosine diphosphate + Carnosine + Phosphate
- Histidinemia:
-Alanine + Adenosine triphosphate + L-Histidine ⟶ Adenosine diphosphate + Carnosine + Phosphate
- Histidine Metabolism:
Carnosine + Water ⟶ -Alanine + L-Histidine
- Histidinemia:
Carnosine + Water ⟶ -Alanine + L-Histidine
- Histidine Metabolism:
Carnosine + Water ⟶ -Alanine + L-Histidine
- Histidine Metabolism:
Carnosine + Water ⟶ -Alanine + L-Histidine
- Histidinemia:
Carnosine + Water ⟶ -Alanine + L-Histidine
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yi Jia, Xu Chen, Hui Guo, Biao Zhang, Bin Liu. Comprehensive characterization of β-alanine metabolism-related genes in HCC identified a novel prognostic signature related to clinical outcomes.
Aging.
2024 Apr; 16(8):7073-7100. doi:
10.18632/aging.205744
. [PMID: 38637116] - Elena Tafi, Simona Sagona, Valentina Meucci, Laura Bortolotti, Marta Galloni, Gherardo Bogo, Domenico Gatta, Lucia Casini, Marta Barberis, Massimo Nepi, Antonio Felicioli. Effect of amino acid enriched diets on hemolymph amino acid composition in honey bees.
Archives of insect biochemistry and physiology.
2024 Jan; 115(1):e22085. doi:
10.1002/arch.22085
. [PMID: 38288497] - Wojciech Wójcik, Olga Świder, Monika Łukasiewicz-Mierzejewska, Krzysztof Damaziak, Julia Riedel, Agata Marzec, Michał Wójcicki, Marek Roszko, Jan Niemiec. Content of amino acids and biogenic amines in stored meat as a result of a broiler diet supplemented with β-alanine and garlic extract.
Poultry science.
2023 Nov; 103(2):103319. doi:
10.1016/j.psj.2023.103319
. [PMID: 38141274] - Dheeraj Kumar Posa, Janice Miller, David Hoetker, Michael I Ramage, Hong Gao, Jingjing Zhao, Benjamin Doelling, Aruni Bhatnagar, Stephen J Wigmore, Richard J E Skipworth, Shahid P Baba. Skeletal muscle analysis of cancer patients reveals a potential role for carnosine in muscle wasting.
Journal of cachexia, sarcopenia and muscle.
2023 May; ?(?):. doi:
10.1002/jcsm.13258
. [PMID: 37199284] - Yan-Kun Zhang, Bing-Kun Yang, Chun-Nuan Zhang, Shi-Xiao Xu, Ping Sun. Effects of polystyrene microplastics acute exposure in the liver of swordtail fish (Xiphophorus helleri) revealed by LC-MS metabolomics.
The Science of the total environment.
2022 Dec; 850(?):157772. doi:
10.1016/j.scitotenv.2022.157772
. [PMID: 35934030] - Larissa Balabanova, Iuliia Pentekhina, Olga Nedashkovskaya, Anton Degtyarenko, Valeria Grigorchuk, Yulia Yugay, Elena Vasyutkina, Olesya Kudinova, Aleksandra Seitkalieva, Lubov Slepchenko, Oksana Son, Liudmila Tekutyeva, Yury Shkryl. Shift of Choline/Betaine Pathway in Recombinant Pseudomonas for Cobalamin Biosynthesis and Abiotic Stress Protection.
International journal of molecular sciences.
2022 Nov; 23(22):. doi:
10.3390/ijms232213934
. [PMID: 36430408] - Taixiang Gao, Rui Wang, Hongxiong Zhang, Feng Zhao. Network pharmacology combined with metabolomics reveals the mechanism of Fuzi decoction against chronic heart failure in rats.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2022 Nov; 1210(?):123435. doi:
10.1016/j.jchromb.2022.123435
. [PMID: 36063700] - Yuan Lu, Yan-Li Wang, Zhong-Jun Song, Xiao-Qing Zhu, Chun-Hua Liu, Ji-Yu Chen, Yong-Jun Li, Yan He. [Cell metabolomics study of ginkgo flavone aglycone combined with doxorubicin against liver cancer in synergy].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Sep; 47(18):5040-5051. doi:
10.19540/j.cnki.cjcmm.20220506.401
. [PMID: 36164914] - Doreen Dobritzsch, Judith Meijer, Rutger Meinsma, Dirk Maurer, Ardeshir A Monavari, Anders Gummesson, Annika Reims, Jorge A Cayuela, Natalia Kuklina, Jean-François Benoist, Laurence Perrin, Birgit Assmann, Georg F Hoffmann, Jörgen Bierau, Angela M Kaindl, André B P van Kuilenburg. β-Ureidopropionase deficiency due to novel and rare UPB1 mutations affecting pre-mRNA splicing and protein structural integrity and catalytic activity.
Molecular genetics and metabolism.
2022 07; 136(3):177-185. doi:
10.1016/j.ymgme.2022.01.102
. [PMID: 35151535] - Surendra Barpete, Priyanka Gupta, Debjyoti Sen Gupta, Jitendra Kumar, Arpan Bhowmik, Shiv Kumar. Neurotoxin (N-Oxalyl-L-α,β-Diamino Propionic Acid) Content in Different Plant Parts of Grass Pea (Lathyrus sativus L.) Spanning Seedling to Maturity Stage: Does It Increase over Time?.
Molecules (Basel, Switzerland).
2022 Jun; 27(12):. doi:
10.3390/molecules27123683
. [PMID: 35744809] - Hua Wu, Xinyue Zhang, Jihong Yang, Ting Feng, Yao Chen, Ruizhi Feng, Hui Wang, Yun Qian. Taurine and its transporter TAUT positively affect male reproduction and early embryo development.
Human reproduction (Oxford, England).
2022 05; 37(6):1229-1243. doi:
10.1093/humrep/deac089
. [PMID: 35526154] - Sofia Bouchebti, Levona Bodner, Maya Bergman, Tali Magory Cohen, Eran Levin. The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis).
Scientific reports.
2022 05; 12(1):7449. doi:
10.1038/s41598-022-11579-w
. [PMID: 35523992] - Chanadda Suwanvichanee, Panpradub Sinpru, Kasarat Promkhun, Satoshi Kubota, Cindy Riou, Wittawat Molee, Jirawat Yongsawatdigul, Kanjana Thumanu, Amonrat Molee. Effects of β-alanine and L-histidine supplementation on carnosine contents in and quality and secondary structure of proteins in slow-growing Korat chicken meat.
Poultry science.
2022 May; 101(5):101776. doi:
10.1016/j.psj.2022.101776
. [PMID: 35303689] - Anju Pandey, Asmita Devkota, Anil Sigdel, Zeinab Yadegari, Korsi Dumenyo, Ali Taheri. Citric acid/β-alanine carbon dots as a novel tool for delivery of plasmid DNA into E. coli cells.
Scientific reports.
2021 12; 11(1):23964. doi:
10.1038/s41598-021-03437-y
. [PMID: 34907242] - Rohit Arora, Kenny M Van Theemsche, Samuel Van Remoortel, Dirk J Snyders, Alain J Labro, Jean-Pierre Timmermans. Constitutive, Basal, and β-Alanine-Mediated Activation of the Human Mas-Related G Protein-Coupled Receptor D Induces Release of the Inflammatory Cytokine IL-6 and Is Dependent on NF-κB Signaling.
International journal of molecular sciences.
2021 Dec; 22(24):. doi:
10.3390/ijms222413254
. [PMID: 34948051] - Yi Zhang, Xing-Xing Wang, Zhu-Jun Feng, Hong-Gang Tian, Yi Feng, Tong-Xian Liu. Aspartate-β-alanine-NBAD pathway regulates pupal melanin pigmentation plasticity of ladybird Harmonia axyridis.
Insect science.
2021 Dec; 28(6):1651-1663. doi:
10.1111/1744-7917.12877
. [PMID: 33063466] - J Lackner, A Albrecht, M Mittler, A Marx, J Kreyenschmidt, V Hess, H Sauerwein. Effect of feeding histidine and β-alanine on carnosine concentration, growth performance, and meat quality of broiler chickens.
Poultry science.
2021 Nov; 100(11):101393. doi:
10.1016/j.psj.2021.101393
. [PMID: 34530228] - Laura Molenaar-Kuijsten, Bart Albertus Wilhelmus Jacobs, Sophie Alberdine Kurk, Anne Maria May, Thomas Petrus Catharina Dorlo, Jacob Hendrik Beijnen, Neeltje Steeghs, Alwin Dagmar Redmar Huitema. Worse capecitabine treatment outcome in patients with a low skeletal muscle mass is not explained by altered pharmacokinetics.
Cancer medicine.
2021 07; 10(14):4781-4789. doi:
10.1002/cam4.4038
. [PMID: 34121365] - Lirong Liu, Feng Liu, Yingjie Guan, Jianan Zou, Chunyun Zhang, Chongxiang Xiong, Ting C Zhao, George Bayliss, Xiaogang Li, Shougang Zhuang. Critical roles of SMYD2 lysine methyltransferase in mediating renal fibroblast activation and kidney fibrosis.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2021 07; 35(7):e21715. doi:
10.1096/fj.202000554rrr
. [PMID: 34143514] - Lisa Dominowski, Michael Kirsch. Synergistic Effect of β-alanine and Aprotinin on Mesenteric Ischemia.
The Journal of surgical research.
2021 07; 263(?):78-88. doi:
10.1016/j.jss.2021.01.026
. [PMID: 33639373] - Xin Chen, Mingli Gu, Tengda Li, Yi Sun. Metabolite reanalysis revealed potential biomarkers for COVID-19: a potential link with immune response.
Future microbiology.
2021 05; 16(?):577-588. doi:
10.2217/fmb-2021-0047
. [PMID: 33973485] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Kamil Łuczykowski, Natalia Warmuzińska, Sylwia Operacz, Iga Stryjak, Joanna Bogusiewicz, Julia Jacyna, Renata Wawrzyniak, Wiktoria Struck-Lewicka, Michał J Markuszewski, Barbara Bojko. Metabolic Evaluation of Urine from Patients Diagnosed with High Grade (HG) Bladder Cancer by SPME-LC-MS Method.
Molecules (Basel, Switzerland).
2021 Apr; 26(8):. doi:
10.3390/molecules26082194
. [PMID: 33920347] - Jan Stautemas, Natalia Jarzebska, Zhou Xiang Shan, Laura Blancquaert, Inge Everaert, Sarah de Jager, Siegrid De Baere, Arne Hautekiet, Anneke Volkaert, Filip B D Lefevere, Jens Martens-Lobenhoffer, Stefanie M Bode-Böger, Chang Keun Kim, James Leiper, Norbert Weiss, Siska Croubels, Roman N Rodionov, Wim Derave. The role of alanine glyoxylate transaminase-2 (agxt2) in β-alanine and carnosine metabolism of healthy mice and humans.
European journal of applied physiology.
2020 Dec; 120(12):2749-2759. doi:
10.1007/s00421-020-04501-7
. [PMID: 32948897] - Hongan Chen, Jake C McMillin, Benjamin J Frankfort, Zaina Al-Mohtaseb. Reticular Epithelial Edema: An Uncommon Side Effect of ROCK/NET Inhibitor Netarsudil.
Journal of glaucoma.
2020 11; 29(11):e124-e126. doi:
10.1097/ijg.0000000000001636
. [PMID: 32826765] - Jingjing Zhao, Daniel J Conklin, Yiru Guo, Xiang Zhang, Detlef Obal, Luping Guo, Ganapathy Jagatheesan, Kartik Katragadda, Liqing He, Xinmin Yin, Md Aminul Islam Prodhan, Jasmit Shah, David Hoetker, Amit Kumar, Vijay Kumar, Michael F Wempe, Aruni Bhatnagar, Shahid P Baba. Cardiospecific Overexpression of ATPGD1 (Carnosine Synthase) Increases Histidine Dipeptide Levels and Prevents Myocardial Ischemia Reperfusion Injury.
Journal of the American Heart Association.
2020 06; 9(12):e015222. doi:
10.1161/jaha.119.015222
. [PMID: 32515247] - Lívia de Souza Gonçalves, Caroline Kratz, Lívia Santos, Victor Henrique Carvalho, Lucas Peixoto Sales, Kleiner Nemezio, Igor Longobardi, Luiz Augusto Riani, Marcelo Miranda de Oliveira Lima, Tiemi Saito, Alan Lins Fernandes, Joice Rodrigues, Ruth Margaret James, Craig Sale, Bruno Gualano, Bruno Geloneze, Marisa Helena Gennari de Medeiros, Guilherme Giannini Artioli. Insulin does not stimulate β-alanine transport into human skeletal muscle.
American journal of physiology. Cell physiology.
2020 04; 318(4):C777-C786. doi:
10.1152/ajpcell.00550.2019
. [PMID: 32101455] - Paula Zaręba, Beata Gryzło, Katarzyna Malawska, Kinga Sałat, Georg C Höfner, Alicja Nowaczyk, Łukasz Fijałkowski, Anna Rapacz, Adrian Podkowa, Anna Furgała, Paweł Żmudzki, Klaus T Wanner, Barbara Malawska, Katarzyna Kulig. Novel mouse GABA uptake inhibitors with enhanced inhibitory activity toward mGAT3/4 and their effect on pain threshold in mice.
European journal of medicinal chemistry.
2020 Feb; 188(?):111920. doi:
10.1016/j.ejmech.2019.111920
. [PMID: 31901745] - Wim Wouter Oomen, Paloma Begines, Natali Rianika Mustafa, Erica G Wilson, Robert Verpoorte, Young Hae Choi. Natural Deep Eutectic Solvent Extraction of Flavonoids of Scutellaria baicalensis as a Replacement for Conventional Organic Solvents.
Molecules (Basel, Switzerland).
2020 Jan; 25(3):. doi:
10.3390/molecules25030617
. [PMID: 32023899] - Diego García-Ayuso, Johnny Di Pierdomenico, Francisco J Valiente-Soriano, Ana Martínez-Vacas, Marta Agudo-Barriuso, Manuel Vidal-Sanz, Serge Picaud, María P Villegas-Pérez. β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells.
Experimental eye research.
2019 11; 188(?):107781. doi:
10.1016/j.exer.2019.107781
. [PMID: 31473259] - Chih-Yung Chiu, Mei-Ling Cheng, Meng-Han Chiang, Yu-Lun Kuo, Ming-Han Tsai, Chun-Che Chiu, Gigin Lin. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma.
Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology.
2019 11; 30(7):689-697. doi:
10.1111/pai.13096
. [PMID: 31206804] - Guozhang Xu, Michael D Gaul, Fengbin Song, Fuyong Du, Yin Liang, Renee L DesJarlais, Karen DiLoreto, Brian Shook, Dennis Rentzeperis, Rosie Santulli, Annette Eckardt, Keith Demarest. Discovery of potent and orally bioavailable indazole-based glucagon receptor antagonists for the treatment of type 2 diabetes.
Bioorganic & medicinal chemistry letters.
2019 10; 29(20):126668. doi:
10.1016/j.bmcl.2019.126668
. [PMID: 31519374] - Jun Hata, Tomoyuki Ohara, Yoshinori Katakura, Kuniyoshi Shimizu, Shuntaro Yamashita, Daigo Yoshida, Takanori Honda, Yoichiro Hirakawa, Mao Shibata, Satoko Sakata, Takanari Kitazono, Satoru Kuhara, Toshiharu Ninomiya. Association Between Serum β-Alanine and Risk of Dementia.
American journal of epidemiology.
2019 09; 188(9):1637-1645. doi:
10.1093/aje/kwz116
. [PMID: 31127276] - R Fernando Martínez, Sarah F Jenkinson, Shinpei Nakagawa, Atsushi Kato, Mark R Wormald, George W J Fleet, Jackie Hollinshead, Robert J Nash. Isolation from Stevia rebaudiana of DMDP acetic acid, a novel iminosugar amino acid: synthesis and glycosidase inhibition profile of glycine and β-alanine pyrrolidine amino acids.
Amino acids.
2019 Jul; 51(7):991-998. doi:
10.1007/s00726-019-02730-5
. [PMID: 31079215] - Jie Li, Pengcheng Qiu, Siwang Wang, Junsheng Wu, Qiaoyan He, Kaifeng Li, Lu Xu. β-N-Oxalyl-L-α,β-diaminopropionic acid from Panax notoginseng plays a major role in the treatment of type 2 diabetic nephropathy.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2019 Jun; 114(?):108801. doi:
10.1016/j.biopha.2019.108801
. [PMID: 30928803] - Yusuke Yoshida, Hiroyuki Iguchi, Yasuyoshi Sakai, Hiroya Yurimoto. Pantothenate auxotrophy of Methylobacterium spp. isolated from living plants.
Bioscience, biotechnology, and biochemistry.
2019 Mar; 83(3):569-577. doi:
10.1080/09168451.2018.1549935
. [PMID: 30475153] - Yulian Fang, Chunquan Cai, Chao Wang, Bei Sun, Xinjie Zhang, Wenxuan Fan, Wenchao Hu, Yingtao Meng, Shuxiang Lin, Chunhua Zhang, Yuqin Zhang, Jianbo Shu. Clinical and genetic analysis of 7 Chinese patients with β-ureidopropionase deficiency.
Medicine.
2019 Jan; 98(1):e14021. doi:
10.1097/md.0000000000014021
. [PMID: 30608453] - Lívia de Souza Gonçalves, Mariana Franchi, Monica B Mathor, Ademar B Lugao, Victor H Carvalho, Marisa H G Medeiros, Guilherme Giannini Artioli, Gustavo H C Varca. The molecular structure of β-alanine is resistant to sterilising doses of gamma radiation.
PloS one.
2019; 14(1):e0210713. doi:
10.1371/journal.pone.0210713
. [PMID: 30645623] - Kuniko Kusama-Eguchi. [Research in Motor Neuron Diseases Caused by Natural Substances: Focus on Pathological Mechanisms of Neurolathyrism].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2019; 139(4):609-615. doi:
10.1248/yakushi.18-00202
. [PMID: 30930396] - Lisha Yu, Huanhuan Qi, Guohua An, Jun Bao, Bo Ma, Jianwei Zhu, Gang Ouyang, Pengling Zhang, Hongwei Fan, Qi Zhang. Association between metabolic profiles in urine and bone mineral density of pre- and postmenopausal Chinese women.
Menopause (New York, N.Y.).
2019 01; 26(1):94-102. doi:
10.1097/gme.0000000000001158
. [PMID: 29975282] - Libin Yan, Beichen Ding, Haoran Liu, Yangjun Zhang, Jin Zeng, Junhui Hu, Weimin Yao, Gan Yu, Ruihua An, Zhiqiang Chen, Zhangqun Ye, Jinchun Xing, Kefeng Xiao, Lily Wu, Hua Xu. Inhibition of SMYD2 suppresses tumor progression by down-regulating microRNA-125b and attenuates multi-drug resistance in renal cell carcinoma.
Theranostics.
2019; 9(26):8377-8391. doi:
10.7150/thno.37628
. [PMID: 31754403] - Changming Wang, Leying Gu, Yonglan Ruan, Xiao Geng, Miao Xu, Niuniu Yang, Lei Yu, Yucui Jiang, Chan Zhu, Yan Yang, Yuan Zhou, Xiaowei Guan, Wenqin Luo, Qin Liu, Xinzhong Dong, Guang Yu, Lei Lan, Zongxiang Tang. Facilitation of MrgprD by TRP-A1 promotes neuropathic pain.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2019 01; 33(1):1360-1373. doi:
10.1096/fj.201800615rr
. [PMID: 30148678] - Zhipeng Wang, Yang Yang, Feng Zhang, Mingming Li, Jing Chen, Huan Man, Wei Jiang, Rui Zhang, Shouhong Gao, Wansheng Chen. A direct, sensitive and efficient method for determination of alpha-fluoro-beta-alanine in urine: Evaluating the influence of magnesium isoglycyrrhizinate on excretion in rat model.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2018 Dec; 1102-1103(?):17-22. doi:
10.1016/j.jchromb.2018.10.016
. [PMID: 30366208] - Cristina Sottani, Elena Grignani, Laura Zaratin, Donatella Santorelli, Emanuele Studioso, Davide Lonati, Carlo A Locatelli, Ornella Pastoris, Sara Negri, Danilo Cottica. A new, sensitive and versatile assay for quantitative determination of α-fluoro-β-alanine (AFBA) in human urine by using the reversed-phase ultrahigh performance-tandem mass spectrometry (rp-UHPLC-MS/MS) system.
Toxicology letters.
2018 Dec; 298(?):164-170. doi:
10.1016/j.toxlet.2018.10.007
. [PMID: 30315949] - David J Kazierad, Kristin Chidsey, Veena R Somayaji, Arthur J Bergman, Roberto A Calle. Efficacy and safety of the glucagon receptor antagonist PF-06291874: A 12-week, randomized, dose-response study in patients with type 2 diabetes mellitus on background metformin therapy.
Diabetes, obesity & metabolism.
2018 11; 20(11):2608-2616. doi:
10.1111/dom.13440
. [PMID: 29923286] - A Felicioli, S Sagona, M Galloni, L Bortolotti, G Bogo, M Guarnieri, M Nepi. Effects of nonprotein amino acids on survival and locomotion of Osmia bicornis.
Insect molecular biology.
2018 10; 27(5):556-563. doi:
10.1111/imb.12496
. [PMID: 29663605] - Alice Dhersin, Benoît Atgé, Béatrice Martinez, Karine Titier, Marine Rousset, Mohamed Sidatt Cheikh El Moustaph, Catherine Verdun-Esquer, Mathieu Molimard, Antoine Villa, Mireille Canal-Raffin. Biomonitoring of occupational exposure to 5-FU by assaying α-fluoro-β-alanine in urine with a highly sensitive UHPLC-MS/MS method.
The Analyst.
2018 Aug; 143(17):4110-4117. doi:
10.1039/c8an00479j
. [PMID: 30058665] - Arjun L Khandare, R Hari Kumar, I I Meshram, N Arlappa, A Laxmaiah, K Venkaiah, P Amrutha Rao, Vakdevi Validandi, G S Toteja. Current scenario of consumption of Lathyrus sativus and lathyrism in three districts of Chhattisgarh State, India.
Toxicon : official journal of the International Society on Toxinology.
2018 Aug; 150(?):228-234. doi:
10.1016/j.toxicon.2018.06.069
. [PMID: 29908260] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Giuseppina Fanelli, Federica Gevi, Antonio Belardo, Lello Zolla. Metabolic patterns in insulin-sensitive male hypogonadism.
Cell death & disease.
2018 04; 9(6):653. doi:
10.1038/s41419-018-0588-8
. [PMID: 29844353] - Federica Gevi, Giuseppina Fanelli, Lello Zolla. Metabolic patterns in insulin-resistant male hypogonadism.
Cell death & disease.
2018 04; 9(6):671. doi:
10.1038/s41419-018-0587-9
. [PMID: 29867095] - Bo Qi, Jing Wang, You-Biao Ma, Shu-Geng Wu, Guang-Hai Qi, Hai-Jun Zhang. Effect of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, and gene expression of carnosine-related enzymes in broilers.
Poultry science.
2018 Apr; 97(4):1220-1228. doi:
10.3382/ps/pex410
. [PMID: 29325148] - Wen-Chung Liu, Ming-Chieh Yang, Ying-Ying Wu, Pei-Hsuan Chen, Ching-Mei Hsu, Lee-Wei Chen. Lactobacillus plantarum reverse diabetes-induced Fmo3 and ICAM expression in mice through enteric dysbiosis-related c-Jun NH2-terminal kinase pathways.
PloS one.
2018; 13(5):e0196511. doi:
10.1371/journal.pone.0196511
. [PMID: 29851956] - David D Church, Jay R Hoffman, Alyssa N Varanoske, Ran Wang, Kayla M Baker, Michael B La Monica, Kyle S Beyer, Sarah J Dodd, Leonardo P Oliveira, Roger C Harris, David H Fukuda, Jeffrey R Stout. Comparison of Two β-Alanine Dosing Protocols on Muscle Carnosine Elevations.
Journal of the American College of Nutrition.
2017 Nov; 36(8):608-616. doi:
10.1080/07315724.2017.1335250
. [PMID: 28910200] - Otto Savolainen, Mads Vendelbo Lind, Göran Bergström, Björn Fagerberg, Ann-Sofie Sandberg, Alastair Ross. Biomarkers of food intake and nutrient status are associated with glucose tolerance status and development of type 2 diabetes in older Swedish women.
The American journal of clinical nutrition.
2017 Nov; 106(5):1302-1310. doi:
10.3945/ajcn.117.152850
. [PMID: 28903960] - Ottiniel Chavani, Berit Packert Jensen, R Matthew Strother, Christopher M Florkowski, Peter M George. Development, validation and application of a novel liquid chromatography tandem mass spectrometry assay measuring uracil, 5,6-dihydrouracil, 5-fluorouracil, 5,6-dihydro-5-fluorouracil, α-fluoro-β-ureidopropionic acid and α-fluoro-β-alanine in human plasma.
Journal of pharmaceutical and biomedical analysis.
2017 Aug; 142(?):125-135. doi:
10.1016/j.jpba.2017.04.055
. [PMID: 28501750] - Muthuraman Pandurangan, Gansukh Enkhtaivan, Bhupendra Mistry, Rahul V Patel, Sohyun Moon, Doo Hwan Kim. β-Alanine intercede metabolic recovery for amelioration of human cervical and renal tumors.
Amino acids.
2017 08; 49(8):1373-1380. doi:
10.1007/s00726-017-2437-y
. [PMID: 28516269] - Céline Poupeau, Cynthia Tanguay, Caroline Plante, Sébastien Gagné, Nicolas Caron, Jean-François Bussières. Pilot study of biological monitoring of four antineoplastic drugs among Canadian healthcare workers.
Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners.
2017 Jul; 23(5):323-332. doi:
10.1177/1078155216643860
. [PMID: 27084515] - Michail Michailidis, Evangelos Karagiannis, Georgia Tanou, Katerina Karamanoli, Athina Lazaridou, Theodora Matsi, Athanassios Molassiotis. Metabolomic and physico-chemical approach unravel dynamic regulation of calcium in sweet cherry fruit physiology.
Plant physiology and biochemistry : PPB.
2017 Jul; 116(?):68-79. doi:
10.1016/j.plaphy.2017.05.005
. [PMID: 28551418] - Linda Xiaoyan Li, Lucy X Fan, Julie Xia Zhou, Jared J Grantham, James P Calvet, Julien Sage, Xiaogang Li. Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease.
The Journal of clinical investigation.
2017 Jun; 127(7):2751-2764. doi:
10.1172/jci90921
. [PMID: 28604386] - Peter X Shaw, Alan Sang, Yan Wang, Daisy Ho, Christopher Douglas, Lara Dia, Jeffrey L Goldberg. Topical administration of a Rock/Net inhibitor promotes retinal ganglion cell survival and axon regeneration after optic nerve injury.
Experimental eye research.
2017 05; 158(?):33-42. doi:
10.1016/j.exer.2016.07.006
. [PMID: 27443501] - Yoshitaka Nishikawa, Taro Funakoshi, Takahiro Horimatsu, Shin'ichi Miyamoto, Takeshi Matsubara, Motoko Yanagita, Shunsaku Nakagawa, Atsushi Yonezawa, Kazuo Matsubara, Manabu Muto. Accumulation of alpha-fluoro-beta-alanine and fluoro mono acetate in a patient with 5-fluorouracil-associated hyperammonemia.
Cancer chemotherapy and pharmacology.
2017 03; 79(3):629-633. doi:
10.1007/s00280-017-3249-1
. [PMID: 28204913] - Laura Blancquaert, Inge Everaert, Maarten Missinne, Audrey Baguet, Sanne Stegen, Anneke Volkaert, Mirko Petrovic, Chris Vervaet, Eric Achten, Mieke DE Maeyer, Stefaan DE Henauw, Wim Derave. Effects of Histidine and β-alanine Supplementation on Human Muscle Carnosine Storage.
Medicine and science in sports and exercise.
2017 03; 49(3):602-609. doi:
10.1249/mss.0000000000001213
. [PMID: 28106620] - Piotr Popławski, Takayuki Tohge, Joanna Bogusławska, Beata Rybicka, Zbigniew Tański, Victor Treviño, Alisdair R Fernie, Agnieszka Piekiełko-Witkowska. Integrated transcriptomic and metabolomic analysis shows that disturbances in metabolism of tumor cells contribute to poor survival of RCC patients.
Biochimica et biophysica acta. Molecular basis of disease.
2017 03; 1863(3):744-752. doi:
10.1016/j.bbadis.2016.12.011
. [PMID: 28012969] - Elena Dolgodilina, Stefan Imobersteg, Endre Laczko, Tobias Welt, Francois Verrey, Victoria Makrides. Brain interstitial fluid glutamine homeostasis is controlled by blood-brain barrier SLC7A5/LAT1 amino acid transporter.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
2016 11; 36(11):1929-1941. doi:
10.1177/0271678x15609331
. [PMID: 26661195] - Makiko Sasaki, Noriko Ishii, Yukiko Kikuchi, Yukiko Kudoh, Reiko Sugiyama, Makiko Hasebe. Occupational exposures among nurses caring for chemotherapy patients -Quantitative analysis of cyclophosphamide and α-fluoro-β-alanine in urine.
Sangyo eiseigaku zasshi = Journal of occupational health.
2016 10; 58(5):164-172. doi:
10.1539/sangyoeisei.2016-005-e
. [PMID: 27488511] - Laura Blancquaert, Shahid P Baba, Sebastian Kwiatkowski, Jan Stautemas, Sanne Stegen, Silvia Barbaresi, Weiliang Chung, Adjoa A Boakye, J David Hoetker, Aruni Bhatnagar, Joris Delanghe, Bert Vanheel, Maria Veiga-da-Cunha, Wim Derave, Inge Everaert. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β-alanine transamination.
The Journal of physiology.
2016 09; 594(17):4849-63. doi:
10.1113/jp272050
. [PMID: 27062388] - Helena Pelantová, Martina Bugáňová, Martina Holubová, Blanka Šedivá, Jana Zemenová, David Sýkora, Petra Kaválková, Martin Haluzík, Blanka Železná, Lenka Maletínská, Jaroslav Kuneš, Marek Kuzma. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination.
Molecular and cellular endocrinology.
2016 08; 431(?):88-100. doi:
10.1016/j.mce.2016.05.003
. [PMID: 27164444] - D J Kazierad, A Bergman, B Tan, D M Erion, V Somayaji, D S Lee, T Rolph. Effects of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus.
Diabetes, obesity & metabolism.
2016 08; 18(8):795-802. doi:
10.1111/dom.12672
. [PMID: 27059951] - Souhei Sakata, Yuka Jinno, Akira Kawanabe, Yasushi Okamura. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.
Proceedings of the National Academy of Sciences of the United States of America.
2016 07; 113(27):7521-6. doi:
10.1073/pnas.1604218113
. [PMID: 27330112] - Gang Yang, Hua Zhang, Tingmei Chen, Weiwen Zhu, Shijia Ding, Kaiming Xu, Zhongwei Xu, Yanlei Guo, Jian Zhang. Metabolic analysis of osteoarthritis subchondral bone based on UPLC/Q-TOF-MS.
Analytical and bioanalytical chemistry.
2016 Jun; 408(16):4275-86. doi:
10.1007/s00216-016-9524-x
. [PMID: 27074781] - Jill M Sturdivant, Susan M Royalty, Cheng-Wen Lin, Lori A Moore, Jeffrey D Yingling, Carmen L Laethem, Bryan Sherman, Geoffrey R Heintzelman, Casey C Kopczynski, Mitchell A deLong. Discovery of the ROCK inhibitor netarsudil for the treatment of open-angle glaucoma.
Bioorganic & medicinal chemistry letters.
2016 05; 26(10):2475-2480. doi:
10.1016/j.bmcl.2016.03.104
. [PMID: 27072905] - Ali Jazayeri, Andrew S Doré, Daniel Lamb, Harini Krishnamurthy, Stacey M Southall, Asma H Baig, Andrea Bortolato, Markus Koglin, Nathan J Robertson, James C Errey, Stephen P Andrews, Iryna Teobald, Alastair J H Brown, Robert M Cooke, Malcolm Weir, Fiona H Marshall. Extra-helical binding site of a glucagon receptor antagonist.
Nature.
2016 05; 533(7602):274-7. doi:
10.1038/nature17414
. [PMID: 27111510] - Aza Shetewy, Kayoko Shimada-Takaura, Danielle Warner, Chian Ju Jong, Abu-Bakr Al Mehdi, Mikhail Alexeyev, Kyoko Takahashi, Stephen W Schaffer. Mitochondrial defects associated with β-alanine toxicity: relevance to hyper-beta-alaninemia.
Molecular and cellular biochemistry.
2016 May; 416(1-2):11-22. doi:
10.1007/s11010-016-2688-z
. [PMID: 27023909] - Richard A Lewis, Brian Levy, Nancy Ramirez, Casey C Kopczynski, Dale W Usner, Gary D Novack. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension.
The British journal of ophthalmology.
2016 03; 100(3):339-44. doi:
10.1136/bjophthalmol-2015-306778
. [PMID: 26209587] - Kecheng Quan, Guofeng Li, Lei Tao, Qian Xie, Qipeng Yuan, Xing Wang. Diaminopropionic Acid Reinforced Graphene Sponge and Its Use for Hemostasis.
ACS applied materials & interfaces.
2016 Mar; 8(12):7666-73. doi:
10.1021/acsami.5b12715
. [PMID: 26978481] - Catherine O'Sullivan, Anna Schubart, Anis K Mir, Kumlesh K Dev. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures.
Journal of neuroinflammation.
2016 Feb; 13(?):31. doi:
10.1186/s12974-016-0494-x
. [PMID: 26856814] - Brandt D Pence, Trisha E Gibbons, Tushar K Bhattacharya, Houston Mach, Jessica M Ossyra, Geraldine Petr, Stephen A Martin, Lin Wang, Stanislav S Rubakhin, Jonathan V Sweedler, Robert H McCusker, Keith W Kelley, Justin S Rhodes, Rodney W Johnson, Jeffrey A Woods. Effects of exercise and dietary epigallocatechin gallate and β-alanine on skeletal muscle in aged mice.
Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme.
2016 Feb; 41(2):181-90. doi:
10.1139/apnm-2015-0372
. [PMID: 26761622] - Rune Nørgaard Rasmussen, Candela Lagunas, Jakob Plum, René Holm, Carsten Uhd Nielsen. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated Caco-2, LLC-PK1 and rat renal SKPT cells.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2016 Jan; 82(?):138-46. doi:
10.1016/j.ejps.2015.11.020
. [PMID: 26631583] - Alireza Naderi, Ahmad Hemat Far, Mark E T Willems, Mehdi Sadeghi. Effect of Four Weeks of β-alanine Supplementation on Muscle Carnosine and Blood Serum Lactate during Exercise in Male Rats.
Journal of dietary supplements.
2016; 13(5):487-94. doi:
10.3109/19390211.2015.1113223
. [PMID: 26745664] - Vince C Kreipke, Brittany R Allman, Amber W Kinsey, Robert J Moffatt, Robert C Hickner, Michael J Ormsbee. Impact of Four Weeks of a Multi-Ingredient Performance Supplement on Muscular Strength, Body Composition, and Anabolic Hormones in Resistance-Trained Young Men.
Journal of strength and conditioning research.
2015 Dec; 29(12):3453-65. doi:
10.1519/jsc.0000000000000995
. [PMID: 26595135] - Hong-Ping Guan, Xiaodong Yang, Ku Lu, Sheng-Ping Wang, Jose M Castro-Perez, Stephen Previs, Michael Wright, Vinit Shah, Kithsiri Herath, Dan Xie, Daphne Szeto, Gail Forrest, Jing Chen Xiao, Oksana Palyha, Li-Ping Sun, Paula J Andryuk, Samuel S Engel, Yusheng Xiong, Songnian Lin, David E Kelley, Mark D Erion, Harry R Davis, Liangsu Wang. Glucagon receptor antagonism induces increased cholesterol absorption.
Journal of lipid research.
2015 Nov; 56(11):2183-95. doi:
10.1194/jlr.m060897
. [PMID: 26373568] - Antonio Herbert Lancha Junior, Vitor de Salles Painelli, Bryan Saunders, Guilherme Giannini Artioli. Nutritional Strategies to Modulate Intracellular and Extracellular Buffering Capacity During High-Intensity Exercise.
Sports medicine (Auckland, N.Z.).
2015 Nov; 45 Suppl 1(?):S71-81. doi:
10.1007/s40279-015-0397-5
. [PMID: 26553493] - Alastair B Ross, Cecilia Svelander, Ingrid Undeland, Rui Pinto, Ann-Sofie Sandberg. Herring and Beef Meals Lead to Differences in Plasma 2-Aminoadipic Acid, β-Alanine, 4-Hydroxyproline, Cetoleic Acid, and Docosahexaenoic Acid Concentrations in Overweight Men.
The Journal of nutrition.
2015 Nov; 145(11):2456-63. doi:
10.3945/jn.115.214262
. [PMID: 26400963] - Yanbing Liu, Pengpu Wang, Fang Chen, Yuan Yuan, Yuchen Zhu, Haiyang Yan, Xiaosong Hu. Role of plant polyphenols in acrylamide formation and elimination.
Food chemistry.
2015 Nov; 186(?):46-53. doi:
10.1016/j.foodchem.2015.03.122
. [PMID: 25976790] - Adel Zarei, Christopher P Trobacher, Barry J Shelp. NAD(+)-aminoaldehyde dehydrogenase candidates for 4-aminobutyrate (GABA) and β-alanine production during terminal oxidation of polyamines in apple fruit.
FEBS letters.
2015 Sep; 589(19 Pt B):2695-700. doi:
10.1016/j.febslet.2015.08.005
. [PMID: 26296314] - Sanne Stegen, Bram Stegen, Giancarlo Aldini, Alessandra Altomare, Luca Cannizzaro, Marica Orioli, Sarah Gerlo, Louise Deldicque, Monique Ramaekers, Peter Hespel, Wim Derave. Plasma carnosine, but not muscle carnosine, attenuates high-fat diet-induced metabolic stress.
Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme.
2015 Sep; 40(9):868-76. doi:
10.1139/apnm-2015-0042
. [PMID: 26307517] - Jian-Jun Chen, Chan-Juan Zhou, Zhao Liu, Yu-Ying Fu, Peng Zheng, De-Yu Yang, Qi Li, Jun Mu, You-Dong Wei, Jing-Jing Zhou, Hua Huang, Peng Xie. Divergent Urinary Metabolic Phenotypes between Major Depressive Disorder and Bipolar Disorder Identified by a Combined GC-MS and NMR Spectroscopic Metabonomic Approach.
Journal of proteome research.
2015 Aug; 14(8):3382-9. doi:
10.1021/acs.jproteome.5b00434
. [PMID: 26168936] - Ya-Han Chih, Yen-Shan Lin, Bak-Sau Yip, Hsiu-Ju Wei, Hung-Lun Chu, Hui-Yuan Yu, Hsi-Tsung Cheng, Yu-Ting Chou, Jya-Wei Cheng. Ultrashort Antimicrobial Peptides with Antiendotoxin Properties.
Antimicrobial agents and chemotherapy.
2015 Aug; 59(8):5052-6. doi:
10.1128/aac.00519-15
. [PMID: 26033727] - Kenji Okubo, Taishi Kuwahara, Katsumasa Takagi, Masateru Takigawa, Jun Nakajima, Yuji Watari, Emiko Nakashima, Kazuya Yamao, Tadashi Fujino, Hiroyuki Tsutsui, Atsushi Takahashi. Relation between dabigatran concentration, as assessed using the direct thrombin inhibitor assay, and activated clotting time/activated partial thromboplastin time in patients with atrial fibrillation.
The American journal of cardiology.
2015 Jun; 115(12):1696-9. doi:
10.1016/j.amjcard.2015.03.013
. [PMID: 25918026] - Jee Hwan Yi, Haribalan Perumalsamy, Karuppasamy Sankarapandian, Byeoung-Ryeol Choi, Young-Joon Ahn. Fumigant Toxicity of Phenylpropanoids Identified in Asarum sieboldii Aerial Parts to Lycoriella ingenua (Diptera: Sciaridae) and Coboldia fuscipes (Diptera: Scatopsidae).
Journal of economic entomology.
2015 Jun; 108(3):1208-14. doi:
10.1093/jee/tov064
. [PMID: 26470247] - Deirdre A Lane, Kathryn Wood. Cardiology patient page. Patient guide for taking the non-vitamin K antagonist oral anticoagulants for atrial fibrillation.
Circulation.
2015 Apr; 131(16):e412-5. doi:
10.1161/circulationaha.114.012808
. [PMID: 25901074] - Eric M Liotta, Kimberly E Levasseur-Franklin, Andrew M Naidech. Reversal of the novel oral anticoagulants dabigatran, rivoraxaban, and apixaban.
Current opinion in critical care.
2015 Apr; 21(2):127-33. doi:
10.1097/mcc.0000000000000181
. [PMID: 25689124] - Jeffrey W Kiel, Casey C Kopczynski. Effect of AR-13324 on episcleral venous pressure in Dutch belted rabbits.
Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.
2015 Apr; 31(3):146-51. doi:
10.1089/jop.2014.0146
. [PMID: 25756366] - Kevin E Chan, Elazer R Edelman, Julia B Wenger, Ravi I Thadhani, Franklin W Maddux. Dabigatran and rivaroxaban use in atrial fibrillation patients on hemodialysis.
Circulation.
2015 Mar; 131(11):972-9. doi:
10.1161/circulationaha.114.014113
. [PMID: 25595139] - Soohyun Um, So Hyun Park, Jihye Kim, Hyen Joo Park, Keebeom Ko, Hea-Son Bang, Sang Kook Lee, Jongheon Shin, Dong-Chan Oh. Coprisamides A and B, new branched cyclic peptides from a gut bacterium of the dung beetle Copris tripartitus.
Organic letters.
2015 Mar; 17(5):1272-5. doi:
10.1021/acs.orglett.5b00249
. [PMID: 25686280] - Barbara Montaruli, Laura Erroi, Corrado Vitale, Silvia Berutti, Domenico Cosseddu, Piera Sivera, Raimondo Coglitore, Martino Marangella, Marco Migliardi. Dabigatran overdose: case report of laboratory coagulation parameters and hemodialysis of an 85-year-old man.
Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.
2015 Mar; 26(2):225-9. doi:
10.1097/mbc.0000000000000221
. [PMID: 25629417] - Ziv Harel, Manish M Sood, Jeffrey Perl. Comparison of novel oral anticoagulants versus vitamin K antagonists in patients with chronic kidney disease.
Current opinion in nephrology and hypertension.
2015 Mar; 24(2):183-92. doi:
10.1097/mnh.0000000000000098
. [PMID: 25636144] - Josée Bouchard, Marc Ghannoum, Amélie Bernier-Jean, David Williamson, Geoffrey Kershaw, Claire Weatherburn, Josette M Eris, Huyen Tran, Jignesh P Patel, Darren M Roberts. Comparison of intermittent and continuous extracorporeal treatments for the enhanced elimination of dabigatran.
Clinical toxicology (Philadelphia, Pa.).
2015 Mar; 53(3):156-63. doi:
10.3109/15563650.2015.1004580
. [PMID: 25661675]