O-acetylhomoserine (BioDeep_00000003543)
Secondary id: BioDeep_00000400306, BioDeep_00000897977, BioDeep_00001869590, BioDeep_00001891919
natural product human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C6H11NO4 (161.0688)
中文名称: 乙酰高丝氨酸
谱图信息:
最多检出来源 Homo sapiens(feces) 8.6%
Last reviewed on 2024-09-13.
Cite this Page
O-acetylhomoserine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/o-acetylhomoserine (retrieved
2024-12-23) (BioDeep RN: BioDeep_00000003543). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(=O)OCCC(C(=O)O)N
InChI: InChI=1S/C6H11NO4/c1-4(8)11-3-2-5(7)6(9)10/h5H,2-3,7H2,1H3,(H,9,10)
描述信息
Acetylhomoserine is found in pulses. Acetylhomoserine is found in Pisum sativum (peas)
Acquisition and generation of the data is financially supported in part by CREST/JST.
Found in green tissues of pea (Pisum sativum)
同义名列表
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:16288
- KEGG: C01077
- PubChem: 439389
- PubChem: 528
- HMDB: HMDB0029423
- Metlin: METLIN3282
- MetaCyc: CPD-667
- foodb: FDB000523
- chemspider: 513
- CAS: 7540-67-2
- MoNA: PS065902
- MoNA: PS065904
- MoNA: PS065901
- MoNA: PS065905
- MoNA: PR100306
- MoNA: PS065903
- PMhub: MS000009962
- PubChem: 4315
- KNApSAcK: C00019570
- 3DMET: B01374
- NIKKAJI: J37.499G
- KNApSAcK: 16288
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
279 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- methionine biosynthesis:
O-acetyl-L-homoserine + H2S ⟶ acetate + homocysteine
- homocysteine and cysteine interconversion:
O-acetyl-L-homoserine + cys ⟶ H+ + L-cystathionine + acetate
- cysteine and homocysteine interconversion:
H2O + cystathionine ⟶ 2-oxobutanoate + L-cysteine + ammonia
WikiPathways(0)
Plant Reactome(272)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Homocysteine biosynthesis:
H2S + O-acetyl-L-homoserine ⟶ CH3COO- + LHCYS
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(4)
- Cysteine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Methionine Metabolism and Salvage:
2-Oxo-4-methylthiobutanoic acid + L-Phenylalanine ⟶ 2-Ketobutyric acid + L-Methionine
- Selenocompound Metabolism:
Selenomethionine + Water ⟶ 2-Ketobutyric acid + Ammonia + methylselenol
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Hannah Birke, Florian H Haas, Luit J De Kok, Janneke Balk, Markus Wirtz, Rüdiger Hell. Cysteine biosynthesis, in concert with a novel mechanism, contributes to sulfide detoxification in mitochondria of Arabidopsis thaliana.
The Biochemical journal.
2012 Jul; 445(2):275-83. doi:
10.1042/bj20120038
. [PMID: 22551219] - Consolación Alvarez, Jorge Lozano-Juste, Luís C Romero, Irene García, Cecilia Gotor, José León. Inhibition of Arabidopsis O-acetylserine(thiol)lyase A1 by tyrosine nitration.
The Journal of biological chemistry.
2011 Jan; 286(1):578-86. doi:
10.1074/jbc.m110.147678
. [PMID: 21047785] - Stephan Krueger, Andrea Donath, M Carmen Lopez-Martin, Rainer Hoefgen, Cecilia Gotor, Holger Hesse. Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase.
Amino acids.
2010 Oct; 39(4):1029-42. doi:
10.1007/s00726-010-0580-9
. [PMID: 20379751] - Michimi Nakamura, Masato Kuramata, Isao Kasugai, Midori Abe, Shohab Youssefian. Increased thiol biosynthesis of transgenic poplar expressing a wheat O-acetylserine(thiol) lyase enhances resistance to hydrogen sulfide and sulfur dioxide toxicity.
Plant cell reports.
2009 Feb; 28(2):313-23. doi:
10.1007/s00299-008-0635-5
. [PMID: 19011861] - Chunhong Zhang, Qingchang Meng, Junyi Gai, Deyue Yu. Cloning and functional characterization of an O-acetylserine(thiol)lyase-encoding gene in wild soybean (Glycine soja).
Molecular biology reports.
2008 Dec; 35(4):527-34. doi:
10.1007/s11033-007-9118-y
. [PMID: 17611817] - M Carmen López-Martín, Manuel Becana, Luis C Romero, Cecilia Gotor. Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis.
Plant physiology.
2008 Jun; 147(2):562-72. doi:
10.1104/pp.108.117408
. [PMID: 18441224] - E Pajuelo, J A Carrasco, L C Romero, M A Chamber, C Gotor. Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress.
Plant biology (Stuttgart, Germany).
2007 Sep; 9(5):672-81. doi:
10.1055/s-2007-965439
. [PMID: 17853367] - Christopher L Schardl, Robert B Grossman, Padmaja Nagabhyru, Jerome R Faulkner, Uma P Mallik. Loline alkaloids: Currencies of mutualism.
Phytochemistry.
2007 Apr; 68(7):980-96. doi:
10.1016/j.phytochem.2007.01.010
. [PMID: 17346759] - Markus Wirtz, Rüdiger Hell. Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco.
The Plant cell.
2007 Feb; 19(2):625-39. doi:
10.1105/tpc.106.043125
. [PMID: 17293569] - Atsushi Ishihara, Yohei Asada, Yoshitaka Takahashi, Naoto Yabe, Yoshibumi Komeda, Takaaki Nishioka, Hisashi Miyagawa, Kyo Wakasa. Metabolic changes in Arabidopsis thaliana expressing the feedback-resistant anthranilate synthase alpha subunit gene OASA1D.
Phytochemistry.
2006 Nov; 67(21):2349-62. doi:
10.1016/j.phytochem.2006.08.008
. [PMID: 16989878] - Erika Fediuc, S Herman Lips, László Erdei. O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response.
Journal of plant physiology.
2005 Aug; 162(8):865-72. doi:
10.1016/j.jplph.2004.11.015
. [PMID: 16146312] - Anja Riemenschneider, Victoria Nikiforova, Rainer Hoefgen, Luit J De Kok, Jutta Papenbrock. Impact of elevated H(2)S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism.
Plant physiology and biochemistry : PPB.
2005 May; 43(5):473-83. doi:
10.1016/j.plaphy.2005.04.001
. [PMID: 15914014] - Anja Riemenschneider, Kerstin Riedel, Rainer Hoefgen, Jutta Papenbrock, Holger Hesse. Impact of reduced O-acetylserine(thiol)lyase isoform contents on potato plant metabolism.
Plant physiology.
2005 Mar; 137(3):892-900. doi:
10.1104/pp.104.057125
. [PMID: 15728339] - Frantz Liszewska, Dali Gaganidze, Agnieszka Sirko. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.
Acta biochimica Polonica.
2005; 52(1):117-28. doi:
055201117
. [PMID: 15827611] - Markus Wirtz, Michel Droux, Rüdiger Hell. O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana.
Journal of experimental botany.
2004 Aug; 55(404):1785-98. doi:
10.1093/jxb/erh201
. [PMID: 15258168] - Y Hacham, U Gophna, R Amir. In vivo analysis of various substrates utilized by cystathionine gamma-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis.
Molecular biology and evolution.
2003 Sep; 20(9):1513-20. doi:
10.1093/molbev/msg169
. [PMID: 12832650] - Holger Hesse, Nadine Trachsel, Marianne Suter, Stanislav Kopriva, Peter von Ballmoos, Heinz Rennenberg, Christian Brunold. Effect of glucose on assimilatory sulphate reduction in Arabidopsis thaliana roots.
Journal of experimental botany.
2003 Jul; 54(388):1701-9. doi:
10.1093/jxb/erg177
. [PMID: 12754263] - Cristina G Ravina, Chwenn-In Chang, George P Tsakraklides, Jeffery P McDermott, Jose M Vega, Thomas Leustek, Cecilia Gotor, John P Davies. The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis.
Plant physiology.
2002 Dec; 130(4):2076-84. doi:
10.1104/pp.012484
. [PMID: 12481091] - R Hell, R Jost, O Berkowitz, M Wirtz. Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana.
Amino acids.
2002; 22(3):245-57. doi:
10.1007/s007260200012
. [PMID: 12083068] - S Youssefian, M Nakamura, E Orudgev, N Kondo. Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine(thiol) lyase modifies plant responses to oxidative stress.
Plant physiology.
2001 Jul; 126(3):1001-11. doi:
10.1104/pp.126.3.1001
. [PMID: 11457951] - J R Dominguez-Solís, G Gutierrez-Alcalá, J M Vega, L C Romero, C Gotor. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance.
The Journal of biological chemistry.
2001 Mar; 276(12):9297-302. doi:
10.1074/jbc.m009574200
. [PMID: 11121418] - F Liszewska, A Blaszczyk, A Sirko. Modification of non-protein thiols contents in transgenic tobacco plants producing bacterial enzymes of cysteine biosynthesis pathway.
Acta biochimica Polonica.
2001; 48(3):647-56. doi:
10.18388/abp.2001_3899
. [PMID: 11833773] - . .
.
. doi:
. [PMID: 15042590]
- . .
.
. doi:
. [PMID: 19955263]
- . .
.
. doi:
. [PMID: 20699647]
- . .
.
. doi:
. [PMID: 21988475]