3-ureidopropionate (BioDeep_00000001244)
Secondary id: BioDeep_00000399974, BioDeep_00000415778
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C4H8N2O3 (132.0535)
中文名称: 3-酰脲丙酸
谱图信息:
最多检出来源 Homo sapiens(blood) 19.61%
Last reviewed on 2024-09-13.
Cite this Page
3-ureidopropionate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/3-ureidopropionate (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001244). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CNC(=O)N)C(=O)O
InChI: InChI=1S/C4H8N2O3/c5-4(9)6-2-1-3(7)8/h1-2H2,(H,7,8)(H3,5,6,9)
描述信息
Ureidopropionic acid, also known as 3-ureidopropanoate or N-carbamoyl-beta-alanine, belongs to the class of organic compounds known as ureas. Ureas are compounds containing two amine groups joined by a carbonyl (C=O) functional group. Ureidopropionic acid is an intermediate in the metabolism of uracil. More specifically, it is a breakdown product of dihydrouracil and is produced by the enzyme dihydropyrimidase. It is further decomposed into beta-alanine via the enzyme beta-ureidopropionase. Ureidopropionic acid is essentially a urea derivative of beta-alanine. High levels of ureidopropionic acid are found in individuals with beta-ureidopropionase (UP) deficiency (PMID: 11675655). Enzyme deficiencies in pyrimidine metabolism are associated with a risk for severe toxicity against the antineoplastic agent 5-fluorouracil. Ureidopropionic acid has been detected, but not quantified in, several different foods, such as gram beans, broccoli, climbing beans, oriental wheat, and mandarin orange (clementine, tangerine). This could make ureidopropionic acid a potential biomarker for the consumption of these foods.
N-Carbamoyl-β-alanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=462-88-4 (retrieved 2024-07-01) (CAS RN: 462-88-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Ureidopropionic acid (3-Ureidopropionic acid) is an intermediate in the metabolism of uracil.
同义名列表
42 个代谢物同义名
3-[(Aminocarbonyl)amino]propanoic acid; Ion(-1) OF N-carbamoyl-beta-alanine; 3-[(Aminocarbonyl)amino]propanoate; 3-(carbamoylamino)Propanoic acid; N-(AMINOCARBONYL)-BETA-alanine; 3-(carbamoylamino)Propanoate; N-(AMINOCARBONYL)-b-alanine; N-(AMINOCARBONYL)-β-alanine; N-(Aminocarbonyl)-b-alanine; N-Carbamoyl-β-alanine; beta-Ureidopropanoic acid; beta-Ureidopropionic acid; Carbamoyl-β-alanine; N-Carbamoyl-beta-alanine; N-Carbamyl-beta-alanine; Β-ureidopropionic acid; b-Ureidopropionic acid; 3-Ureidopropionic acid; Carbamoyl-beta-alanine; β-Ureidopropanoic acid; 3-Ureidopropanoic acid; beta-Ureidopropionate; Carbamyl beta-alanine; N-Carbamoyl-β-alanine; Carbamoyl-beta-ala-OH; N-Carbamoyl-b-alanine; Ureidopropanoic acid; Ureidopropionic acid; N-Carbamyl-b-alanine; 3-ureido-Propionate; Carbamoyl-β-alanine; Carbamoyl-b-ala-OH; b-Ureidopropionate; 3-Ureidopropanoate; Β-ureidopropionate; 3-Ureidopropionate; Carbamyl β-alanine; Ureidopropanoate; Ureidopropionate; Ureidopropionic acid; 3-Ureidopropionic acid; 3-Ureidopropionate
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:18261
- KEGG: C02642
- PubChem: 111
- HMDB: HMDB0000026
- Metlin: METLIN294
- ChEMBL: CHEMBL20962
- Wikipedia: 3-Ureidopropionic_acid
- MetaCyc: 3-UREIDO-PROPIONATE
- foodb: FDB021879
- chemspider: 109
- CAS: 462-88-4
- MoNA: PS030603
- MoNA: PS030605
- MoNA: PS030601
- PMhub: MS000000197
- PDB-CCD: URP
- 3DMET: B00472
- NIKKAJI: J39.569B
- RefMet: Ureidopropionic acid
- medchemexpress: HY-113285
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-305
- PubChem: 5621
- KNApSAcK: 18261
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
347 个相关的代谢反应过程信息。
Reactome(13)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
BioCyc(0)
WikiPathways(0)
Plant Reactome(300)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + UPROP ⟶ ammonia + b-Ala + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + UPROP ⟶ ammonia + b-Ala + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + UPROP ⟶ ammonia + b-Ala + carbon dioxide
INOH(2)
- Pyrimidine Nucleotides and Nucleosides metabolism ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Deoxy-cytidine + H2O ⟶ Deoxy-uridine + NH3
- 5,6-Dihydro-uracil + H2O = Ureido-propanoic acid ( Pyrimidine Nucleotides and Nucleosides metabolism ):
5,6-Dihydro-uracil + H2O ⟶ Ureido-propanoic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(32)
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
PharmGKB(0)
6 个相关的物种来源信息
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Helena Pelantová, Martina Bugáňová, Martina Holubová, Blanka Šedivá, Jana Zemenová, David Sýkora, Petra Kaválková, Martin Haluzík, Blanka Železná, Lenka Maletínská, Jaroslav Kuneš, Marek Kuzma. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination.
Molecular and cellular endocrinology.
2016 08; 431(?):88-100. doi:
10.1016/j.mce.2016.05.003
. [PMID: 27164444] - Ching-Wan Lam, Chun-Yiu Law, Ka-Fei Leung, Chi-Kong Lai, Sammy Pak-lam Chen, Bosco Chan, Kwok-Yin Chan, Yuet-ping Yuen, Chloe Miu Mak, Albert Yan-wo Chan. NMR-based urinalysis for rapid diagnosis of β-ureidopropionase deficiency in a patient with Dravet syndrome.
Clinica chimica acta; international journal of clinical chemistry.
2015 Feb; 440(?):201-4. doi:
10.1016/j.cca.2014.10.030
. [PMID: 25445412] - Hongde Li, Hong Wei, Yong Wang, Huiru Tang, Yulan Wang. Enhanced green fluorescent protein transgenic expression in vivo is not biologically inert.
Journal of proteome research.
2013 Aug; 12(8):3801-8. doi:
10.1021/pr400567g
. [PMID: 23827011] - Jia V Li, Jasmina Saric, Yulan Wang, Jennifer Keiser, Jürg Utzinger, Elaine Holmes. Chemometric analysis of biofluids from mice experimentally infected with Schistosoma mansoni.
Parasites & vectors.
2011 Sep; 4(?):179. doi:
10.1186/1756-3305-4-179
. [PMID: 21929782] - Hye-Ji Yang, Myung-Joo Choi, He Wen, Hyuk Nam Kwon, Kyung Hee Jung, Sang-Won Hong, Joon Mee Kim, Soon-Sun Hong, Sunghyouk Park. An effective assessment of simvastatin-induced toxicity with NMR-based metabonomics approach.
PloS one.
2011 Feb; 6(2):e16641. doi:
10.1371/journal.pone.0016641
. [PMID: 21364936] - Junfang Wu, Wenxin Xu, Zhenping Ming, Huifen Dong, Huiru Tang, Yulan Wang. Metabolic changes reveal the development of schistosomiasis in mice.
PLoS neglected tropical diseases.
2010 Aug; 4(8):. doi:
10.1371/journal.pntd.0000807
. [PMID: 20824219] - Jasmina Saric, Jia V Li, Jonathan R Swann, Jürg Utzinger, Gail Calvert, Jeremy K Nicholson, Stephan Dirnhofer, Maggie J Dallman, Magda Bictash, Elaine Holmes. Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents.
Journal of proteome research.
2010 May; 9(5):2255-64. doi:
10.1021/pr901019z
. [PMID: 20092362] - Angika Basant, Mayuri Rege, Shobhona Sharma, Haripalsingh M Sonawat. Alterations in urine, serum and brain metabolomic profiles exhibit sexual dimorphism during malaria disease progression.
Malaria journal.
2010 Apr; 9(?):110. doi:
10.1186/1475-2875-9-110
. [PMID: 20412601] - Bhowmik Salil Kumar, Young-Joo Lee, Hong Jae Yi, Bong Chul Chung, Byung Hwa Jung. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach.
Analytica chimica acta.
2010 Feb; 661(1):47-59. doi:
10.1016/j.aca.2009.11.063
. [PMID: 20113715] - I Garcia-Perez, A Couto Alves, S Angulo, J V Li, J Utzinger, T M D Ebbels, C Legido-Quigley, J K Nicholson, E Holmes, C Barbas. Bidirectional correlation of NMR and capillary electrophoresis fingerprints: a new approach to investigating Schistosoma mansoni infection in a mouse model.
Analytical chemistry.
2010 Jan; 82(1):203-10. doi:
10.1021/ac901728w
. [PMID: 19961175] - T Kuhara, M Ohse, Y Inoue, T Shinka. Five cases of beta-ureidopropionase deficiency detected by GC/MS analysis of urine metabolome.
Journal of mass spectrometry : JMS.
2009 Feb; 44(2):214-21. doi:
10.1002/jms.1500
. [PMID: 18853477] - Jasmina Saric, Jia V Li, Yulan Wang, Jennifer Keiser, Jake G Bundy, Elaine Holmes, Jürg Utzinger. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery.
PLoS neglected tropical diseases.
2008 Jul; 2(7):e254. doi:
10.1371/journal.pntd.0000254
. [PMID: 18596973] - J Yaplito-Lee, J Pitt, J Meijer, L Zoetekouw, R Meinsma, A B P van Kuilenburg. Beta-ureidopropionase deficiency presenting with congenital anomalies of the urogenital and colorectal systems.
Molecular genetics and metabolism.
2008 Feb; 93(2):190-4. doi:
10.1016/j.ymgme.2007.09.009
. [PMID: 17964839] - André B P van Kuilenburg, Judith Meijer, Doreen Dobritzsch, Rutger Meinsma, Marinus Duran, Bernhard Lohkamp, Lida Zoetekouw, Nico G G M Abeling, Herman L G van Tinteren, Annet M Bosch. Clinical, biochemical and genetic findings in two siblings with a dihydropyrimidinase deficiency.
Molecular genetics and metabolism.
2007 Jun; 91(2):157-64. doi:
10.1016/j.ymgme.2007.02.008
. [PMID: 17383919] - Rolf W Sparidans, T M Bosch, M Jörger, Jan H M Schellens, Jos H Beijnen. Liquid chromatography-tandem mass spectrometric assay for the analysis of uracil, 5,6-dihydrouracil and beta-ureidopropionic acid in urine for the measurement of the activities of the pyrimidine catabolic enzymes.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2006 Jul; 839(1-2):45-53. doi:
10.1016/j.jchromb.2006.02.016
. [PMID: 16513432] - Suminobu Ito, Takeshi Kawamura, Makoto Inada, Yoshiharu Inoue, Yukihiro Hirao, Toshihisa Koga, Jun-ichi Kunizaki, Takefumi Shimizu, Hitoshi Sato. Physiologically based pharmacokinetic modelling of the three-step metabolism of pyrimidine using C-uracil as an in vivo probe.
British journal of clinical pharmacology.
2005 Dec; 60(6):584-93. doi:
10.1111/j.1365-2125.2005.02472.x
. [PMID: 16305582] - C Schmidt, U Hofmann, D Kohlmüller, T Mürdter, U M Zanger, M Schwab, G F Hoffmann. Comprehensive analysis of pyrimidine metabolism in 450 children with unspecific neurological symptoms using high-pressure liquid chromatography-electrospray ionization tandem mass spectrometry.
Journal of inherited metabolic disease.
2005; 28(6):1109-22. doi:
10.1007/s10545-005-0133-7
. [PMID: 16435204] - André B P van Kuilenburg, Rutger Meinsma, Eva Beke, Birgit Assmann, Antonia Ribes, Isabel Lorente, Rebekka Busch, Ertan Mayatepek, Nico G G M Abeling, Arno van Cruchten, Alida E M Stroomer, Henk van Lenthe, Lida Zoetekouw, Willem Kulik, Georg F Hoffmann, Thomas Voit, Ron A Wevers, Frank Rutsch, Albert H van Gennip. beta-Ureidopropionase deficiency: an inborn error of pyrimidine degradation associated with neurological abnormalities.
Human molecular genetics.
2004 Nov; 13(22):2793-801. doi:
10.1093/hmg/ddh303
. [PMID: 15385443] - Ute Hofmann, Matthias Schwab, Sonja Seefried, Claudia Marx, Ulrich M Zanger, Michel Eichelbaum, Thomas E Mürdter. Sensitive method for the quantification of urinary pyrimidine metabolites in healthy adults by gas chromatography-tandem mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2003 Jul; 791(1-2):371-80. doi:
10.1016/s1570-0232(03)00251-4
. [PMID: 12798197] - Morimasa Ohse, Masafumi Matsuo, Akihito Ishida, Tomiko Kuhara. Screening and diagnosis of beta-ureidopropionase deficiency by gas chromatographic/mass spectrometric analysis of urine.
Journal of mass spectrometry : JMS.
2002 Sep; 37(9):954-62. doi:
10.1002/jms.354
. [PMID: 12271438] - Riko Katahira, Hiroshi Ashihara. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
Planta.
2002 Sep; 215(5):821-8. doi:
10.1007/s00425-002-0806-5
. [PMID: 12244448] - Teruko Honda, Hiroyuki Inagawa, Masakazu Fukushima, Akira Moriyama, Gen-Ichiro Soma. Development and characterization of a monoclonal antibody with cross-reactivity towards uracil and thymine, and its potential use in screening patients treated with 5-fluorouracil for possible risks.
Clinica chimica acta; international journal of clinical chemistry.
2002 Aug; 322(1-2):59-66. doi:
10.1016/s0009-8981(02)00132-8
. [PMID: 12104082] - S Kölker, J G Okun, F Hörster, B Assmann, B Ahlemeyer, D Kohlmüller, S Exner-Camps, E Mayatepek, J Krieglstein, G F Hoffmann. 3-Ureidopropionate contributes to the neuropathology of 3-ureidopropionase deficiency and severe propionic aciduria: a hypothesis.
Journal of neuroscience research.
2001 Nov; 66(4):666-73. doi:
10.1002/jnr.10012
. [PMID: 11746386] - S H Moolenaar, G Göhlich-Ratmann, U F Engelke, M Spraul, E Humpfer, P Dvortsak, T Voit, G F Hoffmann, C Bräutigam, A B van Kuilenburg, A van Gennip, P Vreken, R A Wevers. beta-Ureidopropionase deficiency: a novel inborn error of metabolism discovered using NMR spectroscopy on urine.
Magnetic resonance in medicine.
2001 Nov; 46(5):1014-7. doi:
10.1002/mrm.1289
. [PMID: 11675655] - T A Walsh, S B Green, I M Larrinua, P R Schmitzer. Characterization of plant beta-ureidopropionase and functional overexpression in Escherichia coli.
Plant physiology.
2001 Feb; 125(2):1001-11. doi:
10.1104/pp.125.2.1001
. [PMID: 11161056] - Y Inoue, T Ohkura, I Matsumoto, P J Rudewicz. Fast atom bombardment tandem mass spectrometric analysis of N-carbamoylamino acids.
Biological mass spectrometry.
1991 Oct; 20(10):593-601. doi:
10.1002/bms.1200201004
. [PMID: 1793737] - A H van Gennip, S Busch, E G Scholten, L E Stroomer, N G Abeling. Simple method for the quantitative analysis of dihydropyrimidines and N-carbamyl-beta-amino acids in urine.
Advances in experimental medicine and biology.
1991; 309B(?):15-9. doi:
10.1007/978-1-4615-7703-4_4
. [PMID: 1781359] - M M Matthews, T W Traut. Regulation of N-carbamoyl-beta-alanine amidohydrolase, the terminal enzyme in pyrimidine catabolism, by ligand-induced change in polymerization.
The Journal of biological chemistry.
1987 May; 262(15):7232-7. doi:
. [PMID: 3108250]