Diclofop methyl (BioDeep_00000008448)

   


代谢物信息卡片


DICLOFOP-METHYL

化学式: C16H14Cl2O4 (340.0269)
中文名称: 禾草灵
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C(=O)OC)OC1=CC=C(C=C1)OC2=C(C=C(C=C2)Cl)Cl
InChI: InChI=1S/C16H14Cl2O4/c1-10(16(19)20-2)21-12-4-6-13(7-5-12)22-15-8-3-11(17)9-14(15)18/h3-10H,1-2H3

描述信息

同义名列表

3 个代谢物同义名

DICLOFOP-METHYL; Diclofop methyl; Diclofop methyl



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ALB, ARHGAP45, CAT, HPGDS, MMP12, NR3C1, NR3C2, PPARG, TUBB4B
Peripheral membrane protein 2 ACHE, CYP1B1
Endoplasmic reticulum membrane 2 CYP1B1, NR3C2
Nucleus 9 ACHE, ALB, CS, MMP12, NR3C1, NR3C2, PPARA, PPARG, TUBB4B
cytosol 8 ALB, ARHGAP45, CAT, HPGDS, NR3C1, NR3C2, PPARG, TUBB4B
centrosome 2 ALB, NR3C1
nucleoplasm 5 HPGDS, NR3C1, NR3C2, PPARA, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 1 ACHE
ruffle membrane 1 ARHGAP45
Synapse 2 ACHE, NR3C1
cell surface 1 ACHE
Golgi apparatus 2 ACHE, ALB
neuromuscular junction 1 ACHE
plasma membrane 2 ACHE, ARHGAP45
Membrane 6 ACHE, ARHGAP45, CAT, CS, CYP1B1, NR3C1
extracellular exosome 4 ALB, CAT, CS, TUBB4B
endoplasmic reticulum 1 ALB
extracellular space 3 ACHE, ALB, MMP12
perinuclear region of cytoplasm 2 ACHE, PPARG
mitochondrion 4 CAT, CS, CYP1B1, NR3C1
protein-containing complex 3 ALB, CAT, NR3C1
intracellular membrane-bounded organelle 4 CAT, CYP1B1, HPGDS, PPARG
Microsome membrane 1 CYP1B1
Secreted 2 ACHE, ALB
extracellular region 6 ACHE, ALB, ARHGAP45, CAT, MMP12, TUBB4B
Mitochondrion matrix 1 CS
mitochondrial matrix 3 CAT, CS, NR3C1
Extracellular side 1 ACHE
anchoring junction 1 ALB
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NR3C1
Extracellular vesicle 1 TUBB4B
Secreted, extracellular space, extracellular matrix 1 MMP12
microtubule cytoskeleton 1 TUBB4B
Cell projection, ruffle membrane 1 ARHGAP45
Cytoplasm, cytoskeleton 1 TUBB4B
Cytoplasm, cytoskeleton, spindle 1 NR3C1
focal adhesion 1 CAT
microtubule 1 TUBB4B
spindle 1 NR3C1
extracellular matrix 1 MMP12
Peroxisome 1 CAT
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
nuclear speck 1 NR3C1
receptor complex 2 NR3C2, PPARG
ciliary basal body 1 ALB
chromatin 4 NR3C1, NR3C2, PPARA, PPARG
mitotic spindle 1 TUBB4B
Chromosome 1 NR3C1
cytoskeleton 1 TUBB4B
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 1 ALB
Lipid-anchor, GPI-anchor 1 ACHE
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
axonemal microtubule 1 TUBB4B
Nucleus, nucleoplasm 1 NR3C1
side of membrane 1 ACHE
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 ARHGAP45, CAT
endoplasmic reticulum lumen 1 ALB
platelet alpha granule lumen 1 ALB
azurophil granule lumen 2 ARHGAP45, TUBB4B
synaptic cleft 1 ACHE
[Isoform Alpha]: Cytoplasm 1 NR3C1
catalase complex 1 CAT
[Isoform Beta]: Nucleus 1 NR3C1
[Isoform Alpha-B]: Nucleus 1 NR3C1
[Isoform H]: Cell membrane 1 ACHE
ciliary transition fiber 1 ALB


文献列表

  • Andrea C Ueno, Martin M Vila-Aiub, Pedro E Gundel. Intergenerational consequences of an auxin-like herbicide on plant sensitivity to a graminicide mediated by a fungal endophyte. The Science of the total environment. 2023 Nov; ?(?):168522. doi: 10.1016/j.scitotenv.2023.168522. [PMID: 37956837]
  • Hiroe Suda, Tomomi Kubo, Yusuke Yoshimoto, Keisuke Tanaka, Satoru Tanaka, Akira Uchino, Satoshi Azuma, Makoto Hattori, Takuya Yamaguchi, Masahiro Miyashita, Tohru Tominaga, Satoshi Iwakami. Transcriptionally linked simultaneous overexpression of P450 genes for broad-spectrum herbicide resistance. Plant physiology. 2023 May; ?(?):. doi: 10.1093/plphys/kiad286. [PMID: 37195199]
  • Heping Han, Qin Yu, Roland Beffa, Susana González, Frank Maiwald, Jian Wang, Stephen B Powles. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. The Plant journal : for cell and molecular biology. 2021 01; 105(1):79-92. doi: 10.1111/tpj.15040. [PMID: 33098711]
  • Fei Ding, Wei Peng, Yu-Kui Peng, Bing-Qi Liu. Estimating the potential toxicity of chiral diclofop-methyl: Mechanistic insight into the enantioselective behavior. Toxicology. 2020 05; 438(?):152446. doi: 10.1016/j.tox.2020.152446. [PMID: 32278049]
  • Haifeng Qian, Youchao Zhu, Si Chen, Yujian Jin, Michel Lavoie, Mingjing Ke, Zhengwei Fu. Interacting effect of diclofop-methyl on the rice rhizosphere microbiome and denitrification. Pesticide biochemistry and physiology. 2018 Apr; 146(?):90-96. doi: 10.1016/j.pestbp.2018.03.002. [PMID: 29626997]
  • Xingxing Li, Mingjing Ke, Meng Zhang, W J G M Peijnenburg, Xiaoji Fan, Jiahui Xu, Zhenyan Zhang, Tao Lu, Zhengwei Fu, Haifeng Qian. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system. Environmental pollution (Barking, Essex : 1987). 2018 Jan; 232(?):212-219. doi: 10.1016/j.envpol.2017.09.034. [PMID: 28931464]
  • Si Chen, Xingxing Li, Michel Lavoie, Yujian Jin, Jiahui Xu, Zhengwei Fu, Haifeng Qian. Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. Journal of environmental sciences (China). 2017 Jan; 51(?):352-360. doi: 10.1016/j.jes.2016.06.027. [PMID: 28115148]
  • Maor Matzrafi, Bettina Seiwert, Thorsten Reemtsma, Baruch Rubin, Zvi Peleg. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification. Planta. 2016 Dec; 244(6):1217-1227. doi: 10.1007/s00425-016-2577-4. [PMID: 27507240]
  • Roberto Busi, Marcelo Girotto, Stephen B Powles. Response to low-dose herbicide selection in self-pollinated Avena fatua. Pest management science. 2016 Mar; 72(3):603-8. doi: 10.1002/ps.4032. [PMID: 25988941]
  • Heping Han, Qin Yu, Mechelle J Owen, Gregory R Cawthray, Stephen B Powles. Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations. Pest management science. 2016 Feb; 72(2):255-63. doi: 10.1002/ps.3995. [PMID: 25703739]
  • Hugo Cruz-Hipolito, Pablo Fernandez, Ricardo Alcantara, Javid Gherekhloo, Maria Dolores Osuna, Rafael De Prado. Ile-1781-Leu and Asp-2078-Gly Mutations in ACCase Gene, Endow Cross-resistance to APP, CHD, and PPZ in Phalaris minor from Mexico. International journal of molecular sciences. 2015 Sep; 16(9):21363-77. doi: 10.3390/ijms160921363. [PMID: 26370967]
  • Maor Matzrafi, Yaron Gadri, Eyal Frenkel, Baruch Rubin, Zvi Peleg. Evolution of herbicide resistance mechanisms in grass weeds. Plant science : an international journal of experimental plant biology. 2014 Dec; 229(?):43-52. doi: 10.1016/j.plantsci.2014.08.013. [PMID: 25443832]
  • Haiyan Ding, Haiping Lu, Michel Lavoie, Jun Xie, Yali Li, Xiaolu Lv, Zhengwei Fu, Haifeng Qian. Unraveling the toxicity mechanisms of the herbicide diclofop-methyl in rice: modulation of the activity of key enzymes involved in citrate metabolism and induction of cell membrane anion channels. Journal of agricultural and food chemistry. 2014 Nov; 62(44):10654-60. doi: 10.1021/jf503974t. [PMID: 25307187]
  • Todd A Gaines, Lothar Lorentz, Andrea Figge, Johannes Herrmann, Frank Maiwald, Mark-Christoph Ott, Heping Han, Roberto Busi, Qin Yu, Stephen B Powles, Roland Beffa. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. The Plant journal : for cell and molecular biology. 2014 Jun; 78(5):865-76. doi: 10.1111/tpj.12514. [PMID: 24654891]
  • Sherif H Abd-Alrahman, Manal Ea Elhalwagy, Gamila Ahmed Kotb, Hoda Farid, Ahmed Ag Farag, Hossam M Draz, Ahmed M Isa, S Sabico. Exposure to difenoconazole, diclofop-methyl alone and combination alters oxidative stress and biochemical parameters in albino rats. International journal of clinical and experimental medicine. 2014; 7(10):3637-46. doi: . [PMID: 25419412]
  • Heping Han, Qin Yu, Gregory R Cawthray, Stephen B Powles. Enhanced herbicide metabolism induced by 2,4-D in herbicide susceptible Lolium rigidum provides protection against diclofop-methyl. Pest management science. 2013 Sep; 69(9):996-1000. doi: 10.1002/ps.3552. [PMID: 23785039]
  • Q Yu, H Han, G R Cawthray, S F Wang, S B Powles. Enhanced rates of herbicide metabolism in low herbicide-dose selected resistant Lolium rigidum. Plant, cell & environment. 2013 Apr; 36(4):818-27. doi: 10.1111/pce.12017. [PMID: 23046181]
  • Haifeng Qian, Ruiqin Wang, Jun Chen, Haiyan Ding, Wei Yong, Ruan Songlin, Zhengwei Fu. Analysis of enantioselective biochemical, physiological, and transcriptional effects of the chiral herbicide diclofop methyl on rice seedlings. Journal of agricultural and food chemistry. 2012 Jun; 60(22):5515-23. doi: 10.1021/jf301688a. [PMID: 22612386]
  • Shiv Shankhar Kaundun, Sarah-Jane Hutchings, Richard Paul Dale, Eddie McIndoe. Broad resistance to ACCase inhibiting herbicides in a ryegrass population is due only to a cysteine to arginine mutation in the target enzyme. PloS one. 2012; 7(6):e39759. doi: 10.1371/journal.pone.0039759. [PMID: 22768118]
  • R Busi, M M Vila-Aiub, S B Powles. Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum. Heredity. 2011 May; 106(5):817-24. doi: 10.1038/hdy.2010.124. [PMID: 20877397]
  • Shiv Shankhar Kaundun. An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non-target-site mechanism(s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population. Pest management science. 2010 Nov; 66(11):1249-56. doi: 10.1002/ps.2003. [PMID: 20648527]
  • Qin Yu, Ibrahim Abdallah, Heping Han, Mechelle Owen, Stephen Powles. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum. Planta. 2009 Sep; 230(4):713-23. doi: 10.1007/s00425-009-0981-8. [PMID: 19603180]
  • Shinji Takeuchi, Tadashi Matsuda, Satoshi Kobayashi, Tetsuo Takahashi, Hiroyuki Kojima. In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma and quantitative analysis of in vivo induction pathway. Toxicology and applied pharmacology. 2006 Dec; 217(3):235-44. doi: 10.1016/j.taap.2006.08.011. [PMID: 17084873]
  • P Neve, S Powles. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity. 2005 Dec; 95(6):485-92. doi: 10.1038/sj.hdy.6800751. [PMID: 16175194]
  • Xiyun Cai, Weiping Liu, Shengwen Chen. Environmental effects of inclusion complexation between methylated beta-cyclodextrin and diclofop-methyl. Journal of agricultural and food chemistry. 2005 Aug; 53(17):6744-9. doi: 10.1021/jf050922r. [PMID: 16104794]
  • Paul Neve, Stephen Powles. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2005 Apr; 110(6):1154-66. doi: 10.1007/s00122-005-1947-2. [PMID: 15756534]
  • M Alejandra Martínez-Ghersa, Martín M Vila Aiub, Claudio M Ghersa, Pedro Gundel, Emilio H Satorre. Herbicide selection of Italian ryegrass under different levels of UVB radiation. Journal of environmental quality. 2004 Jul; 33(4):1376-86. doi: 10.2134/jeq2004.1376. [PMID: 15254120]
  • Stephen R Moss, Kay M Cocker, Amanda C Brown, Linda Hall, Linda M Field. Characterisation of target-site resistance to ACCase-inhibiting herbicides in the weed Alopecurus myosuroides (black-grass). Pest management science. 2003 Feb; 59(2):190-201. doi: 10.1002/ps.623. [PMID: 12587873]
  • P Michitte, N Espinoza, R De Prado. Cross-resistance to ACCase inhibitors of Lolium multiflorum, Lolium perenne and Lolium rigidum found in Chile. Communications in agricultural and applied biological sciences. 2003; 68(4 Pt A):397-402. doi: . [PMID: 15149135]
  • E Ovidi, G Gambellini, A R Taddei, G Cai, C Del Casino, M Ceci, S Rondini, A Tiezzi. Herbicides and the microtubular apparatus of Nicotiana tabacum pollen tube: immunofluorescence and immunogold labelling studies. Toxicology in vitro : an international journal published in association with BIBRA. 2001 Apr; 15(2):143-51. doi: 10.1016/s0887-2333(00)00064-3. [PMID: 11287173]
  • J V Headley, K M Peru, M T Arts. Tandem mass spectrometry of herbicide residues in lipid-rich tissue. Analytical chemistry. 1995 Dec; 67(23):4349-53. doi: 10.1021/ac00119a023. [PMID: 8633778]
  • A J Cessna, R Grover. Determination of the herbicide diclofop in human urine. Journal of chromatography. 1992 May; 600(2):327-32. doi: 10.1016/0021-9673(92)85567-d. [PMID: 1400852]
  • A R Rendina, J M Felts, J D Beaudoin, A C Craig-Kennard, L L Look, S L Paraskos, J A Hagenah. Kinetic characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid grass herbicides. Archives of biochemistry and biophysics. 1988 Aug; 265(1):219-25. doi: 10.1016/0003-9861(88)90387-6. [PMID: 2901248]