secologanin (BioDeep_00000000682)
Secondary id: BioDeep_00000017440, BioDeep_00000404134
human metabolite PANOMIX_OTCML-2023 natural product Volatile Flavor Compounds
代谢物信息卡片
化学式: C17H24O10 (388.13694039999996)
中文名称: 裂番木鳖苷, 断马钱子苷
谱图信息:
最多检出来源 Viridiplantae(plant) 0.18%
分子结构信息
SMILES: C=CC1C(OC2OC(CO)C(O)C(O)C2O)OC=C(C(=O)OC)C1CC=O
InChI: InChI=1S/C17H24O10/c1-3-8-9(4-5-18)10(15(23)24-2)7-25-16(8)27-17-14(22)13(21)12(20)11(6-19)26-17/h3,5,7-9,11-14,16-17,19-22H,1,4,6H2,2H3/t8-,9+,11-,12-,13+,14-,16+,17+/m1/s1
描述信息
Secologanin is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Thus, secologanin is considered to be an isoprenoid lipid molecule. Secologanin is soluble (in water) and a very weakly acidic compound (based on its pKa). Secologanin can be found in a number of food items such as oyster mushroom, flaxseed, nectarine, and cereals and cereal products, which makes secologanin a potential biomarker for the consumption of these food products. Secologanin is a secoiridoid monoterpene synthesized from geranyl pyrophosphate in the mevalonate pathway. Secologanin then proceeds with dopamine or tryptamine to form ipecac and terpene indole alkaloids, respectively .
Secologanin, a secoiridoid glucoside, is a pivotal terpenoid intermediate in the biosynthesis of biologically active monoterpenoid indole alkaloids such as reserpine, ajmaline, and vinblastine. Secologanin synthase (cytochrome P450 isoform CYP72A1) catalyzes the oxidative cleavage of loganin into Secologanin[1][2].
Secologanin, a secoiridoid glucoside, is a pivotal terpenoid intermediate in the biosynthesis of biologically active monoterpenoid indole alkaloids such as reserpine, ajmaline, and vinblastine. Secologanin synthase (cytochrome P450 isoform CYP72A1) catalyzes the oxidative cleavage of loganin into Secologanin[1][2].
同义名列表
23 个代谢物同义名
methyl (2S,3R,4S)-3-ethenyl-4-(2-oxoethyl)-2-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-pyran-5-carboxylate; Methyl (2S,3R,4S)-4-(formylmethyl)-2-(beta-D-glucopyranosyloxy)-3,4-dihydro-3-vinyl-2H-pyran-5-carboxylic acid; METHYL (2S,3R,4S)-2-(beta-D-glucopyranosyloxy)-4-(2-oxoethyl)-3-vinyl-3,4-dihydro-2H-pyran-5-carboxylic acid; Methyl (2S,3R,4S)-4-(formylmethyl)-2-(b-D-glucopyranosyloxy)-3,4-dihydro-3-vinyl-2H-pyran-5-carboxylic acid; Methyl (2S,3R,4S)-4-(formylmethyl)-2-(β-D-glucopyranosyloxy)-3,4-dihydro-3-vinyl-2H-pyran-5-carboxylic acid; 3-Ethenyl-2-(beta-D-glucopyranosyloxy)-3,4-dihydro-4-(2-oxoethyl)-2H-pyran-5-carboxylic acid, methyl ester; methyl (2S,3R,4S)-4-(formylmethyl)-2-(beta-D-glucopyranosyloxy)-3,4-dihydro-3-vinyl-2H-pyran-5-carboxylate; METHYL (2S,3R,4S)-2-(β-D-glucopyranosyloxy)-4-(2-oxoethyl)-3-vinyl-3,4-dihydro-2H-pyran-5-carboxylic acid; METHYL (2S,3R,4S)-2-(b-D-glucopyranosyloxy)-4-(2-oxoethyl)-3-vinyl-3,4-dihydro-2H-pyran-5-carboxylic acid; METHYL (2S,3R,4S)-2-(BETA-D-GLUCOPYRANOSYLOXY)-4-(2-OXOETHYL)-3-VINYL-3,4-DIHYDRO-2H-PYRAN-5-CARBOXYLATE; 3-Ethenyl-2-(β-D-glucopyranosyloxy)-3,4-dihydro-4-(2-oxoethyl)-2H-pyran-5-carboxylic acid, methyl ester; Methyl (2S,3R,4S)-4-(formylmethyl)-2-(b-D-glucopyranosyloxy)-3,4-dihydro-3-vinyl-2H-pyran-5-carboxylate; 3-Ethenyl-2-(b-D-glucopyranosyloxy)-3,4-dihydro-4-(2-oxoethyl)-2H-pyran-5-carboxylic acid, methyl ester; Methyl (2S,3R,4S)-4-(formylmethyl)-2-(β-D-glucopyranosyloxy)-3,4-dihydro-3-vinyl-2H-pyran-5-carboxylate; 3-Ethenyl-2-(beta-D-glucopyranosyloxy)-3,4-dihydro-4-(2-oxoethyl)-2H-pyran-5-carboxylate, methyl ester; METHYL (2S,3R,4S)-2-(β-D-glucopyranosyloxy)-4-(2-oxoethyl)-3-vinyl-3,4-dihydro-2H-pyran-5-carboxylate; METHYL (2S,3R,4S)-2-(b-D-glucopyranosyloxy)-4-(2-oxoethyl)-3-vinyl-3,4-dihydro-2H-pyran-5-carboxylate; 3-Ethenyl-2-(b-D-glucopyranosyloxy)-3,4-dihydro-4-(2-oxoethyl)-2H-pyran-5-carboxylate, methyl ester; 3-Ethenyl-2-(β-D-glucopyranosyloxy)-3,4-dihydro-4-(2-oxoethyl)-2H-pyran-5-carboxylate, methyl ester; (-)-Secologanin; Secologanin; NSC640525; Secologanin
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:18002
- KEGG: C01852
- PubChem: 369002
- PubChem: 161276
- HMDB: HMDB0304482
- Metlin: METLIN41147
- ChEMBL: CHEMBL1235867
- Wikipedia: Secologanin
- MetaCyc: SECOLOGANIN-CPD
- KNApSAcK: C00003098
- foodb: FDB031168
- chemspider: 141670
- CAS: 19351-63-4
- PMhub: MS000014816
- PubChem: 4969
- LipidMAPS: LMPR0102070002
- PDB-CCD: SCG
- 3DMET: B01508
- NIKKAJI: J15.538A
- RefMet: Secologanin
- medchemexpress: HY-125598
- LOTUS: LTS0235060
- KNApSAcK: 18002
- LOTUS: LTS0199033
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
代谢反应
240 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- secologanin and strictosidine biosynthesis:
(6E)-8-oxogeranial + H+ + NAD(P)H ⟶ (+)-cis,trans-nepetalactol + NAD(P)+
- emetine biosynthesis:
SAM + cephaeline ⟶ H+ + SAH + emetine
- camptothecin biosynthesis:
H+ + NADPH + O2 + loganin ⟶ H2O + NADP+ + secologanin
WikiPathways(0)
Plant Reactome(231)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Secologanin and strictosidine biosynthesis:
GPP + H2O ⟶ PPi + geraniol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
secologanin + tryptamine ⟶ H2O + strictosidine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
secologanin + tryptamine ⟶ H2O + strictosidine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
INOH(0)
PlantCyc(5)
- secologanin and strictosidine biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- secologanin and strictosidine biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- secologanin and strictosidine biosynthesis:
(6E)-8-oxogeranial + H+ + NAD(P)H ⟶ (+)-cis,trans-nepetalactol + NAD(P)+
- secologanin and strictosidine biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + geraniol ⟶ (6E)-8-hydroxygeraniol + H2O + an oxidized [NADPH-hemoprotein reductase]
- emetine biosynthesis:
SAM + cephaeline ⟶ H+ + SAH + emetine
COVID-19 Disease Map(0)
PathBank(1)
- Indole Alkaloid Biosynthesis:
17-O-Acetylnorajmaline + Water ⟶ Acetic acid + Norajmaline
PharmGKB(0)
156 个相关的物种来源信息
- 49580 - Acicarpha: LTS0199033
- 49581 - Acicarpha tribuloides: 10.1076/PHBI.34.4.255.13230
- 49581 - Acicarpha tribuloides: LTS0199033
- 170034 - Adina: LTS0199033
- 170035 - Adina pilulifera: 10.1248/CPB.29.981
- 170035 - Adina pilulifera: LTS0199033
- 16896 - Alangium: LTS0235060
- 4056 - Apocynaceae: LTS0199033
- 4056 - Apocynaceae: LTS0235060
- 41860 - Calyceraceae: LTS0199033
- 4200 - Caprifoliaceae: LTS0199033
- 4200 - Caprifoliaceae: LTS0235060
- 77880 - Carapichea ipecacuanha: 10.21577/0103-5053.20160219
- 4057 - Catharanthus: LTS0199033
- 4057 - Catharanthus: LTS0235060
- 4058 - Catharanthus roseus:
- 4058 - Catharanthus roseus: 10.1007/BF00172730
- 4058 - Catharanthus roseus: 10.1016/0300-9084(94)90117-1
- 4058 - Catharanthus roseus: 10.1016/S0014-5793(98)01022-9
- 4058 - Catharanthus roseus: 10.1016/S0168-9452(99)00115-6
- 4058 - Catharanthus roseus: 10.1021/JA00829A041
- 4058 - Catharanthus roseus: 10.1055/S-2006-957879
- 4058 - Catharanthus roseus: 10.1186/S12864-015-1678-Y
- 4058 - Catharanthus roseus: 10.1248/CPB.32.1671
- 4058 - Catharanthus roseus: LTS0199033
- 4058 - Catharanthus roseus: LTS0235060
- 43462 - Cinchona: LTS0199033
- 153742 - Cinchona calisaya: 10.1016/0031-9422(91)80068-C
- 153742 - Cinchona calisaya: LTS0199033
- 57710 - Columelliaceae: LTS0199033
- 42219 - Cornaceae: LTS0235060
- 83584 - Cruckshanksia: LTS0199033
- 2559971 - Cruckshanksia pumila: 10.1016/S0305-1978(03)00070-X
- 2559971 - Cruckshanksia pumila: LTS0199033
- 2559972 - Cruckshanksia verticillata: 10.1016/0305-1978(89)90101-4
- 2559972 - Cruckshanksia verticillata: LTS0199033
- 94428 - Curtia: LTS0199033
- 94429 - Curtia tenuifolia: 10.1055/S-2006-957820
- 94429 - Curtia tenuifolia: LTS0199033
- 26474 - Desfontainia: LTS0199033
- 3060456 - Desfontainia fulgens: LTS0199033
- 34247 - Desfontainia spinosa: 10.1016/S0031-9422(00)81172-3
- 34247 - Desfontainia spinosa: LTS0199033
- 91884 - Diervillaceae: LTS0199033
- 40573 - Dipsacus: LTS0199033
- 516548 - Dipsacus asper: 10.1016/0031-9422(90)89068-K
- 516548 - Dipsacus asper: LTS0199033
- 1113480 - Dipsacus inermis: 10.1016/0031-9422(90)89068-K
- 1113480 - Dipsacus inermis: LTS0199033
- 2759 - Eukaryota: LTS0199033
- 2759 - Eukaryota: LTS0235060
- 21496 - Gentiana: LTS0199033
- 38855 - Gentiana verna: 10.1055/S-2006-960905
- 38855 - Gentiana verna: LTS0199033
- 21472 - Gentianaceae: LTS0199033
- 21472 - Gentianaceae: LTS0235060
- 49959 - Gentianella: LTS0235060
- 2576744 - Gentianella nitida: LTS0235060
- 43488 - Guettarda: LTS0199033
- 128314 - Guettarda speciosa: 10.1016/0031-9422(88)87030-4
- 128314 - Guettarda speciosa: LTS0199033
- 9606 - Homo sapiens: -
- 23109 - Hydrangea: LTS0199033
- 23110 - Hydrangea macrophylla:
- 23110 - Hydrangea macrophylla: 10.1002/HLCA.19840670812
- 23110 - Hydrangea macrophylla: 10.1016/S0031-9422(00)84941-9
- 23110 - Hydrangea macrophylla: 10.1055/S-2007-971697
- 23110 - Hydrangea macrophylla: LTS0199033
- 23097 - Hydrangeaceae: LTS0199033
- 320344 - Lippia: LTS0199033
- 320344 - Lippia: LTS0235060
- 1986359 - Lippia graveolens: 10.1016/S0031-9422(98)00196-4
- 1986359 - Lippia graveolens: LTS0199033
- 1986359 - Lippia graveolens: LTS0235060
- 542673 - Lippia origanoides: 10.1016/S0031-9422(98)00196-4
- 542673 - Lippia origanoides: LTS0199033
- 542673 - Lippia origanoides: LTS0235060
- 37822 - Loasaceae: LTS0235060
- 26468 - Loganiaceae: LTS0199033
- 26468 - Loganiaceae: LTS0235060
- 49606 - Lonicera: LTS0199033
- 49606 - Lonicera: LTS0235060
- 134520 - Lonicera caerulea:
- 134520 - Lonicera caerulea: 10.1016/0031-9422(94)00853-L
- 134520 - Lonicera caerulea: 10.1021/NP50037A019
- 134520 - Lonicera caerulea: LTS0199033
- 134520 - Lonicera caerulea: LTS0235060
- 486665 - Lonicera dioica: 10.1016/S0031-9422(00)84941-9
- 486665 - Lonicera dioica: LTS0199033
- 105884 - Lonicera japonica:
- 105884 - Lonicera japonica: 10.1016/S0031-9422(00)00279-X
- 105884 - Lonicera japonica: 10.1016/S0031-9422(02)00057-2
- 105884 - Lonicera japonica: 10.1016/S0031-9422(99)00471-9
- 105884 - Lonicera japonica: 10.1016/S0040-4039(01)97672-5
- 105884 - Lonicera japonica: 10.1021/NP50125A020
- 105884 - Lonicera japonica: 10.1021/NP800040K
- 105884 - Lonicera japonica: 10.1039/P19830001949
- 105884 - Lonicera japonica: LTS0199033
- 105884 - Lonicera japonica: LTS0235060
- 566145 - Lonicera korolkowii: 10.1016/S0031-9422(00)84941-9
- 566145 - Lonicera korolkowii: LTS0199033
- 213829 - Lonicera periclymenum: 10.1016/S0031-9422(00)84094-7
- 213829 - Lonicera periclymenum: LTS0199033
- 213829 - Lonicera periclymenum: LTS0235060
- 447676 - Lonicera tatarica:
- 447676 - Lonicera tatarica: 10.1016/0031-9422(86)80012-7
- 447676 - Lonicera tatarica: 10.1016/S0031-9422(00)84941-9
- 447676 - Lonicera tatarica: 10.1055/S-2006-962808
- 447676 - Lonicera tatarica: LTS0199033
- 3398 - Magnoliopsida: LTS0199033
- 3398 - Magnoliopsida: LTS0235060
- 37833 - Mentzelia: LTS0235060
- 228039 - Mentzelia albescens: 10.1016/0031-9422(81)85221-1
- 228039 - Mentzelia albescens: LTS0235060
- 33090 - Plants: -
- 1571642 - Polygala fallax: 10.1016/S0031-9422(02)00184-X
- 59175 - Pterocephalus: LTS0199033
- 183569 - Pterocephalus perennis: 10.1515/ZNC-2002-1-217
- 183569 - Pterocephalus perennis: LTS0199033
- 24966 - Rubiaceae: LTS0199033
- 24966 - Rubiaceae: LTS0235060
- 3792 - Saxifragaceae: LTS0199033
- 170184 - Sinoadina: LTS0199033
- 170184 - Sinoadina: LTS0235060
- 170185 - Sinoadina racemosa:
- 170185 - Sinoadina racemosa: 10.1021/NP030217H
- 170185 - Sinoadina racemosa: 10.1021/NP030440E
- 170185 - Sinoadina racemosa: 10.1248/CPB.45.367
- 170185 - Sinoadina racemosa: LTS0199033
- 170185 - Sinoadina racemosa: LTS0235060
- 35493 - Streptophyta: LTS0199033
- 35493 - Streptophyta: LTS0235060
- 26496 - Strychnos: LTS0199033
- 26496 - Strychnos: LTS0235060
- 28545 - Strychnos nux-vomica: 10.1016/S0031-9422(00)91306-2
- 28545 - Strychnos nux-vomica: LTS0199033
- 99302 - Strychnos spinosa: 10.1016/S0031-9422(00)91306-2
- 99302 - Strychnos spinosa: 10.1021/NP058062W
- 99302 - Strychnos spinosa: LTS0199033
- 99302 - Strychnos spinosa: LTS0235060
- 13701 - Symphoricarpos: LTS0199033
- 105885 - Symphoricarpos orbiculatus: 10.1016/S0031-9422(00)84941-9
- 105885 - Symphoricarpos orbiculatus: LTS0199033
- 58023 - Tracheophyta: LTS0199033
- 58023 - Tracheophyta: LTS0235060
- 21910 - Verbenaceae: LTS0199033
- 21910 - Verbenaceae: LTS0235060
- 33090 - Viridiplantae: LTS0199033
- 33090 - Viridiplantae: LTS0235060
- 79609 - Weigela: LTS0199033
- 79610 - Weigela coraeensis: 10.1016/S0031-9422(00)84941-9
- 79610 - Weigela coraeensis: LTS0199033
- 79612 - Weigela florida: 10.1016/S0031-9422(00)84941-9
- 79612 - Weigela florida: LTS0199033
- 79615 - Weigela japonica: 10.1016/S0031-9422(00)84941-9
- 79615 - Weigela japonica: LTS0199033
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Justin C Miller, Mary A Schuler. Single mutations toggle the substrate selectivity of multifunctional Camptotheca secologanic acid synthases.
The Journal of biological chemistry.
2022 09; 298(9):102237. doi:
10.1016/j.jbc.2022.102237
. [PMID: 35809640] - Yang Yu, Mei-Fen Bao, Jing Wu, Jing Chen, Yu-Rong Yang, Johann Schinnerl, Xiang-Hai Cai. Tabernabovines A-C: Three Monoterpenoid Indole Alkaloids from the Leaves of Tabernaemontana bovina.
Organic letters.
2019 08; 21(15):5938-5942. doi:
10.1021/acs.orglett.9b02060
. [PMID: 31294995] - Trevor Kidd, Michael Lae Easson, Yang Qu, Vincenzo De Luca. Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant.
Phytochemistry.
2019 Mar; 159(?):119-126. doi:
10.1016/j.phytochem.2018.12.017
. [PMID: 30611871] - Chunyan Jiao, Cheng Song, Siyan Zheng, Yingpeng Zhu, Qing Jin, Yongping Cai, Yi Lin. Metabolic Profiling of Dendrobium officinale in Response to Precursors and Methyl Jasmonate.
International journal of molecular sciences.
2018 Mar; 19(3):. doi:
10.3390/ijms19030728
. [PMID: 29510516] - Jonathan J Powell, Jason Carere, Gaurav Sablok, Timothy L Fitzgerald, Jiri Stiller, Michelle L Colgrave, Donald M Gardiner, John M Manners, John P Vogel, Robert J Henry, Kemal Kazan. Transcriptome analysis of Brachypodium during fungal pathogen infection reveals both shared and distinct defense responses with wheat.
Scientific reports.
2017 12; 7(1):17212. doi:
10.1038/s41598-017-17454-3
. [PMID: 29222453] - Jin-qian Yu, Zhao-ping Wang, Heng Zhu, Gang Li, Xiao Wang. [Chemical constituents of Lonicera japonica roots and their anti-inflammatory effects].
Yao xue xue bao = Acta pharmaceutica Sinica.
2016 07; 51(7):1110-6. doi:
. [PMID: 29897205]
- Thomas Dugé de Bernonville, Emilien Foureau, Claire Parage, Arnaud Lanoue, Marc Clastre, Monica Arias Londono, Audrey Oudin, Benjamin Houillé, Nicolas Papon, Sébastien Besseau, Gaëlle Glévarec, Lucia Atehortùa, Nathalie Giglioli-Guivarc'h, Benoit St-Pierre, Vincenzo De Luca, Sarah E O'Connor, Vincent Courdavault. Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome.
BMC genomics.
2015 Aug; 16(?):619. doi:
10.1186/s12864-015-1678-y
. [PMID: 26285573] - Vonny Salim, Brent Wiens, Sayaka Masada-Atsumi, Fang Yu, Vincenzo De Luca. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.
Phytochemistry.
2014 May; 101(?):23-31. doi:
10.1016/j.phytochem.2014.02.009
. [PMID: 24594312] - Keisuke Asada, Vonny Salim, Sayaka Masada-Atsumi, Elizabeth Edmunds, Mai Nagatoshi, Kazuyoshi Terasaka, Hajime Mizukami, Vincenzo De Luca. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle.
The Plant cell.
2013 Oct; 25(10):4123-34. doi:
10.1105/tpc.113.115154
. [PMID: 24104568] - Liqun Xia, Martin Ruppert, Meitian Wang, Santosh Panjikar, Haili Lin, Chitra Rajendran, Leif Barleben, Joachim Stöckigt. Structures of alkaloid biosynthetic glucosidases decode substrate specificity.
ACS chemical biology.
2012 Jan; 7(1):226-34. doi:
10.1021/cb200267w
. [PMID: 22004291] - Md Sarfaraj Hussain, Sheeba Fareed, Saba Ansari, Md Akhlaquer Rahman, Iffat Zareen Ahmad, Mohd Saeed. Current approaches toward production of secondary plant metabolites.
Journal of pharmacy & bioallied sciences.
2012 Jan; 4(1):10-20. doi:
10.4103/0975-7406.92725
. [PMID: 22368394] - Sarah E O'Connor. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.
Methods in enzymology.
2012; 515(?):189-206. doi:
10.1016/b978-0-12-394290-6.00009-4
. [PMID: 22999175] - Yongzhen Sun, Hongmei Luo, Ying Li, Chao Sun, Jingyuan Song, Yunyun Niu, Yingjie Zhu, Liang Dong, Aiping Lv, Enzo Tramontano, Shilin Chen. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport.
BMC genomics.
2011 Oct; 12(?):533. doi:
10.1186/1471-2164-12-533
. [PMID: 22035094] - Xiang-Hai Cai, Mei-Fen Bao, Yu Zhang, Chun-Xia Zeng, Ya-Ping Liu, Xiao-Dong Luo. A new type of monoterpenoid indole alkaloid precursor from Alstonia rostrata.
Organic letters.
2011 Jul; 13(14):3568-71. doi:
10.1021/ol200996a
. [PMID: 21688858] - Souvik Kusari, Sebastian Zühlke, Michael Spiteller. Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis.
Journal of natural products.
2011 Apr; 74(4):764-75. doi:
10.1021/np1008398
. [PMID: 21348469] - Grégory Guirimand, Anthony Guihur, Olivia Ginis, Pierre Poutrain, François Héricourt, Audrey Oudin, Arnaud Lanoue, Benoit St-Pierre, Vincent Burlat, Vincent Courdavault. The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites.
The FEBS journal.
2011 Mar; 278(5):749-63. doi:
10.1111/j.1742-4658.2010.07994.x
. [PMID: 21205206] - Lifang Hu, Wanqi Liang, Changsong Yin, Xiao Cui, Jie Zong, Xing Wang, Jianping Hu, Dabing Zhang. Rice MADS3 regulates ROS homeostasis during late anther development.
The Plant cell.
2011 Feb; 23(2):515-33. doi:
10.1105/tpc.110.074369
. [PMID: 21297036] - Hongmei Luo, Ying Li, Chao Sun, Qiong Wu, Jingyuan Song, Yongzhen Sun, André Steinmetz, Shilin Chen. Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation.
BMC plant biology.
2010 Sep; 10(?):209. doi:
10.1186/1471-2229-10-209
. [PMID: 20854695] - Grégory Guirimand, Vincent Courdavault, Arnaud Lanoue, Samira Mahroug, Anthony Guihur, Nathalie Blanc, Nathalie Giglioli-Guivarc'h, Benoit St-Pierre, Vincent Burlat. Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"?.
BMC plant biology.
2010 Aug; 10(?):182. doi:
10.1186/1471-2229-10-182
. [PMID: 20723215] - Taiji Nomura, Toni M Kutchan. Is a metabolic enzyme complex involved in the efficient and accurate control of Ipecac alkaloid biosynthesis in Psychotria ipecacuanha?.
Plant signaling & behavior.
2010 Jul; 5(7):875-7. doi:
10.4161/psb.5.7.11901
. [PMID: 20495341] - Joachim Stockigt, Bodo Hammes, Martin Ruppert. Construction and expression of a dual vector for chemo-enzymatic synthesis of plant indole alkaloids in Escherichia coli.
Natural product research.
2010 May; 24(8):759-66. doi:
10.1080/14786410903247304
. [PMID: 20432158] - Alessio Valletta, Livio Trainotti, Anna Rita Santamaria, Gabriella Pasqua. Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae).
BMC plant biology.
2010 Apr; 10(?):69. doi:
10.1186/1471-2229-10-69
. [PMID: 20403175] - Liuqing Yang, Hongbin Zou, Huajian Zhu, Martin Ruppert, Jingxu Gong, Joachim Stöckigt. Improved expression of His(6)-tagged strictosidine synthase cDNA for chemo-enzymatic alkaloid diversification.
Chemistry & biodiversity.
2010 Apr; 7(4):860-70. doi:
10.1002/cbdv.201000052
. [PMID: 20397221] - Nikku L Raju, Belaghihalli N Gnanesh, Pazhamala Lekha, Balaji Jayashree, Suresh Pande, Pavana J Hiremath, Munishamappa Byregowda, Nagendra K Singh, Rajeev K Varshney. The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.).
BMC plant biology.
2010 Mar; 10(?):45. doi:
10.1186/1471-2229-10-45
. [PMID: 20222972] - Sheba Goklany, Ralph H Loring, James Glick, Carolyn W T Lee-Parsons. Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding.
Biotechnology progress.
2009 Sep; 25(5):1289-96. doi:
10.1002/btpr.204
. [PMID: 19722248] - Fiammetta Alagna, Nunzio D'Agostino, Laura Torchia, Maurizio Servili, Rosa Rao, Marco Pietrella, Giovanni Giuliano, Maria Luisa Chiusano, Luciana Baldoni, Gaetano Perrotta. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development.
BMC genomics.
2009 Aug; 10(?):399. doi:
10.1186/1471-2164-10-399
. [PMID: 19709400] - Weerawat Runguphan, Sarah E O'Connor. Metabolic reprogramming of periwinkle plant culture.
Nature chemical biology.
2009 Mar; 5(3):151-3. doi:
10.1038/nchembio.141
. [PMID: 19151732] - Vincent Courdavault, Vincent Burlat, Benoit St-Pierre, Nathalie Giglioli-Guivarc'h. Proteins prenylated by type I protein geranylgeranyltransferase act positively on the jasmonate signalling pathway triggering the biosynthesis of monoterpene indole alkaloids in Catharanthus roseus.
Plant cell reports.
2009 Jan; 28(1):83-93. doi:
10.1007/s00299-008-0610-1
. [PMID: 18813931] - Taiji Nomura, Alfonso Lara Quesada, Toni M Kutchan. The new beta-D-glucosidase in terpenoid-isoquinoline alkaloid biosynthesis in Psychotria ipecacuanha.
The Journal of biological chemistry.
2008 Dec; 283(50):34650-9. doi:
10.1074/jbc.m806953200
. [PMID: 18927081] - László F Szabó. Rigorous biogenetic network for a group of indole alkaloids derived from strictosidine.
Molecules (Basel, Switzerland).
2008 Aug; 13(8):1875-96. doi:
10.3390/molecules13081875
. [PMID: 18794791] - Joachim Stöckigt, Leif Barleben, Santosh Panjikar, Elke A Loris. 3D-Structure and function of strictosidine synthase--the key enzyme of monoterpenoid indole alkaloid biosynthesis.
Plant physiology and biochemistry : PPB.
2008 Mar; 46(3):340-55. doi:
10.1016/j.plaphy.2007.12.011
. [PMID: 18280746] - Jun Murata, Jonathon Roepke, Heather Gordon, Vincenzo De Luca. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization.
The Plant cell.
2008 Mar; 20(3):524-42. doi:
10.1105/tpc.107.056630
. [PMID: 18326827] - Shilpa Ramani, Jayabaskaran Chelliah. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures.
BMC plant biology.
2007 Nov; 7(?):61. doi:
10.1186/1471-2229-7-61
. [PMID: 17988378] - Audrey Oudin, Samira Mahroug, Vincent Courdavault, Nadège Hervouet, Charles Zelwer, Manuel Rodríguez-Concepción, Benoit St-Pierre, Vincent Burlat. Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus.
Plant molecular biology.
2007 Sep; 65(1-2):13-30. doi:
10.1007/s11103-007-9190-7
. [PMID: 17611800] - Elke A Loris, Santosh Panjikar, Martin Ruppert, Leif Barleben, Matthias Unger, Helmut Schübel, Joachim Stöckigt. Structure-based engineering of strictosidine synthase: auxiliary for alkaloid libraries.
Chemistry & biology.
2007 Sep; 14(9):979-85. doi:
10.1016/j.chembiol.2007.08.009
. [PMID: 17884630] - M Carmen Galan, Elizabeth McCoy, Sarah E O'Connor. Chemoselective derivatization of alkaloids in periwinkle.
Chemical communications (Cambridge, England).
2007 Aug; ?(31):3249-51. doi:
10.1039/b708919h
. [PMID: 17668090] - Shi Chen, M Carmen Galan, Carla Coltharp, Sarah E O'Connor. Redesign of a central enzyme in alkaloid biosynthesis.
Chemistry & biology.
2006 Nov; 13(11):1137-41. doi:
10.1016/j.chembiol.2006.10.009
. [PMID: 17113995] - Toshinori Kagata, Shizuka Saito, Hideyuki Shigemori, Ayumi Ohsaki, Haruaki Ishiyama, Takaaki Kubota, Jun'ichi Kobayashi. Paratunamides A-D, oxindole alkaloids from Cinnamodendron axillare.
Journal of natural products.
2006 Oct; 69(10):1517-21. doi:
10.1021/np0602968
. [PMID: 17067176] - Xueyan Ma, Santosh Panjikar, Juergen Koepke, Elke Loris, Joachim Stöckigt. The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed beta-propeller fold in plant proteins.
The Plant cell.
2006 Apr; 18(4):907-20. doi:
10.1105/tpc.105.038018
. [PMID: 16531499] - M Leduc, C Tikhomiroff, M Cloutier, M Perrier, M Jolicoeur. Development of a kinetic metabolic model: application to Catharanthus roseus hairy root.
Bioprocess and biosystems engineering.
2006 Apr; 28(5):295-313. doi:
10.1007/s00449-005-0034-z
. [PMID: 16453114] - Christie A M Peebles, Seung-Beom Hong, Susan I Gibson, Jacqueline V Shanks, Ka-Yiu San. Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase.
Biotechnology and bioengineering.
2006 Feb; 93(3):534-40. doi:
10.1002/bit.20739
. [PMID: 16240438] - F László Szabó. [Molecular mechanisms and chemotaxonomy in the indole alkaloids derived from secologanin. (One drop in the sea, the sea in one drop)].
Acta pharmaceutica Hungarica.
2006; 76(2):67-80. doi:
"
. [PMID: 17094665] - Jun Murata, Vincenzo De Luca. Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus.
The Plant journal : for cell and molecular biology.
2005 Nov; 44(4):581-94. doi:
10.1111/j.1365-313x.2005.02557.x
. [PMID: 16262708] - Kenichiro Inoue. [Cytochrome P450 enzymes in biosyntheses of some plant secondary metabolites].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2005 Jan; 125(1):31-49. doi:
10.1248/yakushi.125.31
. [PMID: 15635280] - Young Hae Choi, Elisabet Casas Tapias, Hye Kyong Kim, Alfons W M Lefeber, Cornelis Erkelens, Jacobus Th J Verhoeven, Jernej Brzin, Jana Zel, Robert Verpoorte. Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis.
Plant physiology.
2004 Aug; 135(4):2398-410. doi:
10.1104/pp.104.041012
. [PMID: 15286294] - Yasuyo Yamazaki, Mariko Kitajima, Masanori Arita, Hiromitsu Takayama, Hiroshi Sudo, Mami Yamazaki, Norio Aimi, Kazuki Saito. Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C]glucose.
Plant physiology.
2004 Jan; 134(1):161-70. doi:
10.1104/pp.103.029389
. [PMID: 14657405] - Atsuko Itoh, Takao Tanahashi, Naotaka Nagakura, Toyoyuki Nishi. Two chromone-secoiridoid glycosides and three indole alkaloid glycosides from Neonauclea sessilifolia.
Phytochemistry.
2003 Feb; 62(3):359-69. doi:
10.1016/s0031-9422(02)00541-1
. [PMID: 12620349] - Miao Wang, Qiu-Rong Li. Transient expression of strictosidine synthase in tobacco leaves by vacuum infiltration.
Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica.
2002 Nov; 34(6):703-6. doi:
"
. [PMID: 12417910] - Mariko Kitajima, Masashi Yokoya, Hiromitsu Takayama, Norio Aimi. Synthesis and absolute configuration of a new 3,4-dihydro-beta-carboline-type alkaloid, 3,4-dehydro-5(S)-5-carboxystrictosidine, isolated from Peruvian Uña de Gato (Uncaria tomentosa).
Chemical & pharmaceutical bulletin.
2002 Oct; 50(10):1376-8. doi:
10.1248/cpb.50.1376
. [PMID: 12372867] - Konstantia Graikou, Nektarios Aligiannis, Ioanna B Chinou, Catherine Harvala. Cantleyoside-dimethyl-acetal and other iridoid glucosides from Pterocephalus perennis--antimicrobial activities.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2002 Jan; 57(1-2):95-9. doi:
10.1515/znc-2002-1-217
. [PMID: 11926551] - L F Szabó. [Diversity and selectivity in biomolecules].
Acta pharmaceutica Hungarica.
2001 Dec; 71(4):392-404. doi:
"
. [PMID: 12113180] - A Geerlings, F J Redondo, A Contin, J Memelink, R van der Heijden, R Verpoorte. Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast.
Applied microbiology and biotechnology.
2001 Aug; 56(3-4):420-4. doi:
10.1007/s002530100663
. [PMID: 11549013] - S Irmler, G Schröder, B St-Pierre, N P Crouch, M Hotze, J Schmidt, D Strack, U Matern, J Schröder. Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase.
The Plant journal : for cell and molecular biology.
2000 Dec; 24(6):797-804. doi:
10.1046/j.1365-313x.2000.00922.x
. [PMID: 11135113] - . .
.
. doi:
. [PMID: 20061395]