NCBI Taxonomy: 41860

Calyceraceae (ncbi_taxid: 41860)

found 23 associated metabolites at family taxonomy rank level.

Ancestor: Asterales

Child Taxonomies: Boopis, Acicarpha, Moschopsis, Calycera, Nastanthus, Gamocarpha

secologanin

methyl (2S,3R,4S)-3-ethenyl-4-(2-oxoethyl)-2-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-pyran-5-carboxylate

C17H24O10 (388.1369)


Secologanin is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Thus, secologanin is considered to be an isoprenoid lipid molecule. Secologanin is soluble (in water) and a very weakly acidic compound (based on its pKa). Secologanin can be found in a number of food items such as oyster mushroom, flaxseed, nectarine, and cereals and cereal products, which makes secologanin a potential biomarker for the consumption of these food products. Secologanin is a secoiridoid monoterpene synthesized from geranyl pyrophosphate in the mevalonate pathway. Secologanin then proceeds with dopamine or tryptamine to form ipecac and terpene indole alkaloids, respectively . Secologanin, a secoiridoid glucoside, is a pivotal terpenoid intermediate in the biosynthesis of biologically active monoterpenoid indole alkaloids such as reserpine, ajmaline, and vinblastine. Secologanin synthase (cytochrome P450 isoform CYP72A1) catalyzes the oxidative cleavage of loganin into Secologanin[1][2]. Secologanin, a secoiridoid glucoside, is a pivotal terpenoid intermediate in the biosynthesis of biologically active monoterpenoid indole alkaloids such as reserpine, ajmaline, and vinblastine. Secologanin synthase (cytochrome P450 isoform CYP72A1) catalyzes the oxidative cleavage of loganin into Secologanin[1][2].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Secologanate

(4S,5R,6S)-4-(2-oxoethyl)-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-5-vinyl-5,6-dihydro-4H-pyran-3-carboxylic acid

C16H22O10 (374.1213)


   

Patuletin

2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one, 9ci

C16H12O8 (332.0532)


Pigment from flowers of French marigold Tagetes patula. Patuletin is found in german camomile, herbs and spices, and spinach. Patuletin is found in german camomile. Patuletin is a pigment from flowers of French marigold Tagetes patul D004791 - Enzyme Inhibitors

   

Kaempferol 3-rhamno-glucoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O15 (594.1585)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

secologanate

5-ethenyl-4-(2-oxoethyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4H-pyran-3-carboxylic acid

C16H22O10 (374.1213)


Secologanate, also known as secologanic acid, is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Secologanate is soluble (in water) and a weakly acidic compound (based on its pKa). Secologanate can be found in a number of food items such as komatsuna, french plantain, shallot, and japanese persimmon, which makes secologanate a potential biomarker for the consumption of these food products.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

6-methoxykaempferol

3,5,7-Trihydroxy-2- (4-hydroxyphenyl) -6-methoxy-4H-1-benzopyran-4-one

C16H12O7 (316.0583)


   

Patuletin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one

C16H12O8 (332.0532)


A trimethoxyflavone that is quercetagetin methylated at position 6. D004791 - Enzyme Inhibitors

   

6,7-dimethoxychromen-4-one

6,7-dimethoxychromen-4-one

C11H10O4 (206.0579)


   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.0955)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.0955)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

(6s)-5-ethenyl-4-(2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

(6s)-5-ethenyl-4-(2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C16H22O10 (374.1213)


   

methyl (3r,4r,5z)-5-ethylidene-4-(2-methoxy-2-oxoethyl)-6-oxooxane-3-carboxylate

methyl (3r,4r,5z)-5-ethylidene-4-(2-methoxy-2-oxoethyl)-6-oxooxane-3-carboxylate

C12H16O6 (256.0947)


   

methyl 5-ethylidene-4-(2-methoxy-2-oxoethyl)-6-oxooxane-3-carboxylate

methyl 5-ethylidene-4-(2-methoxy-2-oxoethyl)-6-oxooxane-3-carboxylate

C12H16O6 (256.0947)


   

(4r,5r,6s)-5-ethenyl-4-(2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

(4r,5r,6s)-5-ethenyl-4-(2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C16H22O10 (374.1213)


   

5-ethenyl-3-methoxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,4h,4ah,5h,6h-pyrano[3,4-c]pyran-1-one

5-ethenyl-3-methoxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,4h,4ah,5h,6h-pyrano[3,4-c]pyran-1-one

C17H24O10 (388.1369)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.0955)


   

(3s,4ar,5r,6s)-5-ethenyl-3-methoxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,4h,4ah,5h,6h-pyrano[3,4-c]pyran-1-one

(3s,4ar,5r,6s)-5-ethenyl-3-methoxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,4h,4ah,5h,6h-pyrano[3,4-c]pyran-1-one

C17H24O10 (388.1369)


   

[(2s,3r,4s)-3-ethenyl-5-(methoxycarbonyl)-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]acetic acid

[(2s,3r,4s)-3-ethenyl-5-(methoxycarbonyl)-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]acetic acid

C17H24O11 (404.1319)


   

(1r,4as,6s,7r,7as)-1-hydroxy-4-(methoxycarbonyl)-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-6-yl (4s,5r,6s)-5-ethenyl-4-(2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

(1r,4as,6s,7r,7as)-1-hydroxy-4-(methoxycarbonyl)-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-6-yl (4s,5r,6s)-5-ethenyl-4-(2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

C27H36O14 (584.2105)


   

(3r,4as,5s,6s)-5-ethenyl-3-methoxy-6-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,4h,4ah,5h,6h-pyrano[3,4-c]pyran-1-one

(3r,4as,5s,6s)-5-ethenyl-3-methoxy-6-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,4h,4ah,5h,6h-pyrano[3,4-c]pyran-1-one

C17H24O10 (388.1369)


   

7-hydroxy-6-methoxychromen-4-one

7-hydroxy-6-methoxychromen-4-one

C10H8O4 (192.0423)