Gene Association: INPP1
UniProt Search:
INPP1 (PROTEIN_CODING)
Function Description: inositol polyphosphate-1-phosphatase
found 21 associated metabolites with current gene based on the text mining result from the pubmed database.
3-Indoleacetonitrile
3-Indoleacetonitrile is a phytoalexin. Phytoalexins are antibiotics produced by plants that are under attack. Phytoalexins tend to fall into several classes including terpenoids, glycosteroids, and alkaloids; however, researchers often find it convenient to extend the definition to include all phytochemicals that are part of the plants defensive arsenal. Phytoalexins produced in plants act as toxins to the attacking organism. They may puncture the cell wall, delay maturation, disrupt metabolism, or prevent the reproduction of the pathogen in question. However, phytoalexins are often targeted to specific predators; a plant that has anti-insect phytoalexins may not have the ability to repel a fungal attack. 3-Indoleacetonitrile is common in cruciferous vegetables such as cabbage, cauliflower, broccoli, and Brussels sprouts. Dietary indoles in cruciferous vegetables induce cytochrome P450 enzymes and have prevented tumours in various animal models. Consumption of Brassica vegetables is associated with a reduced risk of cancer of the alimentary tract in animal models and human populations (PMID:15612779, 15884814, 2342128, 3014947, 3880668, 6334634, 6419397, 6426808, 6584878, 6725517, 6838646, 7123561). Myrosinase-induced hydrolysis product of indole glucosinolates, found in cabbage and other crucifers Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID I022 3-Indoleacetonitrile is an endogenous metabolite. 3-Indoleacetonitrile is an endogenous metabolite.
D-myo-Inositol 1,4-bisphosphate
D-myo-Inositol 1,4-bisphosphate belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,4-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). D-myo-Inositol 1,4-bisphosphate is a substrate for several proteins including inositol polyphosphate 1-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, skeletal muscle and kidney enriched inositol phosphatase, and type I inositol-1,4,5-trisphosphate 5-phosphatase. 1D-Myo-inositol 1,4-bisphosphate is a substrate for Inositol polyphosphate 1-phosphatase, Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, Skeletal muscle and kidney enriched inositol phosphatase and Type I inositol-1,4,5-trisphosphate 5-phosphatase. [HMDB]
Succinic acid semialdehyde
Succinic acid semialdehyde (or succinate semialdehyde) is an intermediate in the catabolism of gamma-aminobutyrate or GABA (PMID:16435183). It is formed from GABA by the action of GABA transaminase, which leads to the production of succinate semialdehyde and alanine. The resulting succinate semialdehyde is further oxidized by succinate semialdehyde dehydrogenase to become succinic acid, which also yields NADPH. Under certain situations, high levels of succinate semialdehyde can function as a neurotoxin and a metabotoxin. A neurotoxin is a compound that causes damage to the brain and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Elevated serum levels of succinate semialdehyde are found in succinic semialdehyde dehydrogenase (SSADH) deficiency (gamma-hydroxybutyric aciduria), a rare neurometabolic disorder of gamma-aminobutyric acid (GABA) degradation. Symptoms include motor delay, hypotonia, speech delay, autistic features, seizures, and ataxia. Patients also exhibit behavioural problems such as attention deficit, hyperactivity, anxiety, or aggression (PMID:18622364). Succinate semialdehyde is considered a reactive carbonyl and may lead to increased oxidative stress. This stress is believed to contribute to the formation of free radicals in the brain tissue of animal models induced with SSADH deficiency, which further leads to secondary cell damage and death. Additionally, oxidative stress may be responsible for the loss of striatal dopamine, which may contribute to the neuropathology of SSADH deficiency. Succinic acid semialdehyde is an intermediate in the catabolism of gamma-aminobutyrate (PMID 16435183). Succinate semialdehyde dehydrogenase is an enzyme that catalyses the reaction of succinate semialdehyde and NAD+ to form succinate and NADH. Succinic semialdehyde dehydrogenase (SSADH) deficiency (gamma-hydroxybutyric aciduria) is a rare neurometabolic disorder of gamma-aminobutyric acid degradation. Symptoms include motor delay, hypotonia, speech delay, autistic features, seizures, and ataxia. Patients also exhibit behavioral problems, such as attention deficit, hyperactivity, anxiety, or aggression. (PMID: 18622364) [HMDB]. Succinic acid semialdehyde is found in many foods, some of which are yellow zucchini, japanese chestnut, banana, and pineappple sage.
3'-AMP
Adenylic acid. Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2-, 3-, or 5-position. 3-AMP has been identified in the human placenta (PMID: 32033212). Adenylic acid. Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2-, 3-, or 5-position. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 11
myo-Inositol 1-phosphate
myo-Inositol 1-phosphate, also known as I1P or ins(1)p, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. myo-Inositol 1-phosphate is a metabolite of inositol phosphate metabolism and the phosphatidylinositol signalling system. Inositol phosphatases (EC:3.1.3.25) play a crucial role in the phosphatidylinositol signalling pathway. Expression is substantially higher in the subcortical regions of the brain, most prominently in the caudate. The phosphatidylinositol pathway is thought to be modified by lithium, a commonly prescribed medication in treating bipolar disorder (OMIM: 605922). Myo-inositol 1-phosphate is a metabolite of the Inositol phosphate metabolism and the Phosphatidylinositol signaling system. Inositol phosphatases [EC:3.1.3.25] play a crucial role in the phosphatidylinositol signaling pathway; in brain, the expression is substantially higher in the subcortical regions, most prominently in the caudate. The phosphatidylinositol pathway is thought to be modified by lithium, a commonly prescribed medication in treating bipolar disorder. (OMIM 605922) [HMDB]
Inositol 1,3,4-trisphosphate
Inositol 1,3,4-trisphosphate (CAS: 98102-63-7), also known as Ins(1,3,4)P3 or I3S, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. Within humans, inositol 1,3,4-trisphosphate participates in several enzymatic reactions. In particular, inositol 1,3,4-trisphosphate can be converted into 1D-myo-inositol 1,3,4,6-tetrakisphosphate through the action of the enzyme inositol-tetrakisphosphate 1-kinase. In addition, inositol 1,3,4-trisphosphate can be converted into inositol 1,3,4,5-tetraphosphate through its interaction with the enzyme inositol-tetrakisphosphate 1-kinase. In humans, inositol 1,3,4-trisphosphate is involved in inositol metabolism. Inositol 1,3,4-trisphosphate is a specific regulator of cellular signalling. A specific regulator of cellular signaling [HMDB]
myo-Inositol 1,3,4,5-tetrakisphosphate
myo-Inositol 1,3,4,5-tetrakisphosphate (CAS: 102850-29-3), also known as IP4, is a second messenger responsible for mediating Ca2+ entry through the plasma membrane and mobilizing intracellular Ca2+ by acting synergistically with inositol 1,4,5-trisphosphate (IP3). Inositol 1,4,5-trisphosphate 3-kinase (IP3K, EC 2.7.1.127) phosphorylates IP3 into IP4. Evidence shows that IP4 can activate a protein with ras- and rap-GAP activity and finally inactivate the G protein. This indicates that IP4 regulates Ca2+ influx in a GTP-dependent way, which potentially links the IP3 signalling pathway to GTP-regulated signalling mechanisms. IP4 is demonstrated to be a common regulator in Ca2+ homeostasis. IP4 can bind with a high affinity to several intracellular proteins: synaptotagmin (I and II), Gap1, Btk, and centaurin-alpha and may interact with synaptotagmin to inhibit synaptic transmission. IP4 also acts as a mediator in neuronal death in the ischemic hippocampus. IP4 production is not always associated with a modification in calcium concentration, and control of calcium mobilization is not the sole function proposed for IP4. IP4 defines an essential signalling pathway for T cell precursor responsiveness and development. In the thymus, IP4 is essential during the positive and negative selection of double-positive thymocytes, and in the control of thymocyte reactivity to antigens. IP4 is also a substrate for type I inositol-1,4,5-trisphosphate 5-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, and skeletal muscle and kidney enriched inositol phosphatase (PMID: 15740635, 14517551).
D-myo-Inositol 1,3-bisphosphate
D-myo-Inositol 1,3-bisphosphate, also known as inositol 1,3-diphosphate, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,3-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). D-myo-Inositol 1,3-bisphosphate can be biosynthesized from inositol 1,3,4-trisphosphate through the action of the enzyme type II inositol 3,4-bisphosphate 4-phosphatase. The enzyme phosphatidylinositol 3-kinase (EC 2.7.1.137) catalyzes the production of this metabolite from 1-phosphatidyl-D-myo-inositol. D-myo-Inositol 1,3-bisphosphate is an intermediate in inositol phosphate metabolism. 1D-Myo-inositol 1,3-bisphosphate is an intermediate in inositol phosphate metabolism. The enzyme phosphatidylinositol 3-kinase [EC:2.7.1.137] catalyzes the production of this metabolite from 1-Phosphatidyl-D-myo-inositol. [HMDB]
D-myo-Inositol 3,4-bisphosphate
D-myo-Inositol 3,4-bisphosphate belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 3,4-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). In humans, D-myo-inositol 3,4-bisphosphate participates in a number of enzymatic reactions. In particular, D-myo-inositol 3,4-bisphosphate can be biosynthesized from inositol 1,3,4-trisphosphate through the action of the enzyme inositol polyphosphate 1-phosphatase. D-myo-Inositol 3,4-bisphosphate is an intermediate in inositol phosphate metabolism. D-myo-Inositol 3,4-bisphosphate is converted from D-myo-inositol-3-phosphate via inositol polyphosphate-4-phosphatase (EC 3.1.3.66). 1D-myo-Inositol 3,4-bisphosphate is an intermediate in inositol phosphate metabolism. 1D-myo-Inositol 3,4-bisphosphate is converted from 1D-myo-inositol-3-phosphate via inositol polyphosphate-4-phosphatase [EC:3.1.3.66]. [HMDB]
Lithium
Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). Lithium is found in many foods, some of which are endive, yellow zucchini, romaine lettuce, and common bean. Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AN - Lithium Same as: D08133
3-Adenylic acid
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056
3-Indoleacetonitrile
3-Indoleacetonitrile is an endogenous metabolite. 3-Indoleacetonitrile is an endogenous metabolite.