Gluconapin (BioDeep_00000003269)
natural product human metabolite PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C11H19NO9S2 (373.0501)
中文名称:
谱图信息:
最多检出来源 Chinese Herbal Medicine(otcml) 78.7%
分子结构信息
SMILES: C=CCC/C(=N/OS(=O)(=O)O)/S[C@H]1O[C@H]([C@@H]([C@H]([C@@H]1O)O)O)CO
InChI: InChI=1S/C11H19NO9S2/c1-2-3-4-7(12-21-23(17,18)19)22-11-10(16)9(15)8(14)6(5-13)20-11/h2,6,8-11,13-16H,1,3-5H2,(H,17,18,19)/b12-7+
描述信息
Gluconapin, also known as 3-butenyl glucosinolate, belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Gluconapin is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, gluconapin has been detected, but not quantified in, several different foods, such as horseradish, swedes, cabbages, and Chinese mustards. This could make gluconapin a potential biomarker for the consumption of these foods. Gluconapin is isolated from rapeseeds and many other Brassica species.
Isolated from rape seeds and many other Brassica subspecies Gluconapin is found in many foods, some of which are chinese mustard, white cabbage, horseradish, and brassicas.
Acquisition and generation of the data is financially supported in part by CREST/JST.
同义名列表
12 个代谢物同义名
{[(E)-(1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}pent-4-en-1-ylidene)amino]oxy}sulfonic acid; [(E)-(1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}pent-4-en-1-ylidene)amino]oxysulfonic acid; 4-Isothiocyanato-1-butene glucosinolate; 3-Butenyl isothiocyanate glucosinolate; But-3-enylglucosinolic acid; 3-Butenyl glucosinolate; But-3-enylglucosinolate; 3-Butenylglucosinolate; 3-Butyl glucosinolate; Butenyl glucosinolate; Gluconapin; Gluconapin
数据库引用编号
21 个数据库交叉引用编号
- KEGG: C08415
- PubChem: 3034765
- PubChem: 9548620
- PubChem: 4479905
- HMDB: HMDB0038427
- Metlin: METLIN66956
- MetaCyc: CPDQT-273
- KNApSAcK: C00007586
- foodb: FDB017785
- chemspider: 7827543
- CAS: 19041-09-9
- MoNA: PS051001
- MoNA: PS107002
- MoNA: PR100426
- MoNA: PR100883
- PMhub: MS000008663
- ChEBI: CHEBI:5411
- PubChem: 10611
- NIKKAJI: J640.783H
- KNApSAcK: 5411
- LOTUS: LTS0089188
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
81 个相关的物种来源信息
- 3701 - Arabidopsis: LTS0089188
- 3702 - Arabidopsis thaliana: 10.1093/CHROMSCI/26.11.551
- 3702 - Arabidopsis thaliana: LTS0089188
- 3705 - Brassica: 10.1016/S0031-9422(00)81740-9
- 3705 - Brassica: LTS0089188
- 69181 - Brassica cretica: 10.1016/S0031-9422(00)81740-9
- 69181 - Brassica cretica: LTS0089188
- 129365 - Brassica incana: 10.1016/S0031-9422(00)81740-9
- 129365 - Brassica incana: LTS0089188
- 69183 - Brassica insularis: 10.1016/S0031-9422(00)81740-9
- 69183 - Brassica insularis: LTS0089188
- 3707 - Brassica juncea:
- 3707 - Brassica juncea: 10.1021/JF00074A024
- 3707 - Brassica juncea: 10.1111/J.1365-2621.1990.TB05233.X
- 3707 - Brassica juncea: LTS0089188
- 69184 - Brassica macrocarpa: 10.1016/S0031-9422(00)81740-9
- 69184 - Brassica macrocarpa: LTS0089188
- 69185 - Brassica montana: 10.1016/S0031-9422(00)81740-9
- 69185 - Brassica montana: LTS0089188
- 3708 - Brassica napus:
- 3708 - Brassica napus: 10.1002/JSFA.2740340308
- 3708 - Brassica napus: 10.1016/0031-9422(90)85177-H
- 3708 - Brassica napus: 10.1016/S0021-9673(01)82214-7
- 3708 - Brassica napus: 10.1080/00015126809435015
- 3708 - Brassica napus: LTS0089188
- 3710 - Brassica nigra:
- 3712 - Brassica oleracea:
- 3712 - Brassica oleracea: 10.1016/S0031-9422(00)81740-9
- 3712 - Brassica oleracea: LTS0089188
- 3711 - Brassica rapa:
- 3711 - Brassica rapa: 10.1080/00015126809435015
- 3711 - Brassica rapa: LTS0089188
- 145471 - Brassica rapa subsp. oleifera: 10.1080/00015126809435015
- 145471 - Brassica rapa subsp. oleifera: LTS0089188
- 51351 - Brassica rapa subsp. pekinensis: 10.1016/S0031-9422(00)81740-9
- 51351 - Brassica rapa subsp. pekinensis: LTS0089188
- 69186 - Brassica rupestris: 10.1016/S0031-9422(00)81740-9
- 69186 - Brassica rupestris: LTS0089188
- 3700 - Brassicaceae: LTS0089188
- 127602 - Carrichtera: LTS0089188
- 127603 - Carrichtera annua: 10.1016/0305-1978(87)90106-2
- 127603 - Carrichtera annua: LTS0089188
- 308270 - Coincya longirostra: 10.1111/J.1095-8339.1994.TB00438.X
- 368997 - Eremobium: LTS0089188
- 368998 - Eremobium aegyptiacum: 10.1016/0305-1978(87)90106-2
- 368998 - Eremobium aegyptiacum: LTS0089188
- 308316 - Erucaria: LTS0089188
- 1078592 - Erucaria cakiloidea: 10.1016/0305-1978(87)90106-2
- 1078592 - Erucaria cakiloidea: LTS0089188
- 2759 - Eukaryota: LTS0089188
- 2340886 - Farsetia jacquemontii: 10.1016/S0031-9422(00)81966-4
- 358667 - Fibigia: LTS0089188
- 358668 - Fibigia clypeata: 10.1016/S0031-9422(00)81966-4
- 457799 - Fibigia macrocarpa: 10.1016/0305-1978(87)90106-2
- 457799 - Fibigia macrocarpa: LTS0089188
- 71353 - Hirschfeldia: LTS0089188
- 71354 - Hirschfeldia incana:
- 71354 - Hirschfeldia incana: 10.1016/0305-1978(87)90106-2
- 71354 - Hirschfeldia incana: 10.1016/S0031-9422(00)81740-9
- 71354 - Hirschfeldia incana: LTS0089188
- 9606 - Homo sapiens: -
- 161755 - Isatis: LTS0089188
- 651631 - Isatis cappadocica: 10.1016/0305-1978(87)90106-2
- 651631 - Isatis cappadocica: LTS0089188
- 161756 - Isatis tinctoria: 10.1016/S0040-4039(01)02015-9
- 161756 - Isatis tinctoria: LTS0089188
- 153317 - Lepidium draba: 10.1016/S0031-9422(00)82081-6
- 537167 - Lepidium subulatum: 10.1016/S0031-9422(00)82081-6
- 3398 - Magnoliopsida: LTS0089188
- 664057 - Schimpera: LTS0089188
- 664058 - Schimpera arabica: 10.1016/0305-1978(87)90106-2
- 664058 - Schimpera arabica: LTS0089188
- 3729 - Sisymbrium: LTS0089188
- 203590 - Sisymbrium septulatum: 10.1016/0305-1978(87)90106-2
- 203590 - Sisymbrium septulatum: LTS0089188
- 72661 - Stanleya: LTS0089188
- 72662 - Stanleya pinnata: 10.1016/0031-9422(88)83010-3
- 72662 - Stanleya pinnata: LTS0089188
- 35493 - Streptophyta: LTS0089188
- 58023 - Tracheophyta: LTS0089188
- 33090 - Viridiplantae: LTS0089188
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Hao Zheng, Wenli Huang, Xiangxiang Li, Huanhuan Huang, Qiao Yuan, Ruobin Liu, Hongmei Di, Sha Liang, Mengyu Wang, Mengyao Li, Zhi Huang, Yi Tang, Yangxia Zheng, Huiying Miao, Jie Ma, Huanxiu Li, Qiaomei Wang, Bo Sun, Fen Zhang. CRISPR/Cas9-mediated BoaAOP2s editing alters aliphatic glucosinolate side-chain metabolic flux and increases the glucoraphanin content in Chinese kale.
Food research international (Ottawa, Ont.).
2023 08; 170(?):112995. doi:
10.1016/j.foodres.2023.112995
. [PMID: 37316021] - James M W Ryalls, Lisa M Bromfield, Luke Bell, Jake Jasper, Neil J Mullinger, James D Blande, Robbie D Girling. Concurrent anthropogenic air pollutants enhance recruitment of a specialist parasitoid.
Proceedings. Biological sciences.
2022 Nov; 289(1986):20221692. doi:
10.1098/rspb.2022.1692
. [PMID: 36350222] - Yijiao Zhao, Zeyuan Chen, Jiaxuan Chen, Bingxing Chen, Weiling Tang, Xiaodong Chen, Zhongxiong Lai, Rongfang Guo. Comparative transcriptomic analyses of glucosinolate metabolic genes during the formation of Chinese kale seeds.
BMC plant biology.
2021 Aug; 21(1):394. doi:
10.1186/s12870-021-03168-2
. [PMID: 34418959] - Hera Nadeem, Pieter Malan, Amir Khan, Mohd Asif, Mansoor Ahmad Siddiqui, Simon Tuhafeni Angombe, Faheem Ahmad. New insights on the utilization of ultrasonicated mustard seed cake: chemical composition and antagonistic potential for root-knot nematode, Meloidogyne javanica.
Journal of Zhejiang University. Science. B.
2021 Jul; 22(7):563-574. doi:
10.1631/jzus.b2000746
. [PMID: 34269009] - Prabhakaran Soundararajan, Sin-Gi Park, So Youn Won, Mi-Sun Moon, Hyun Woo Park, Kang-Mo Ku, Jung Sun Kim. Influence of Genotype on High Glucosinolate Synthesis Lines of Brassica rapa.
International journal of molecular sciences.
2021 Jul; 22(14):. doi:
10.3390/ijms22147301
. [PMID: 34298919] - Adji Baskoro Dwi Nugroho, Narae Han, Aditya Nurmalita Pervitasari, Dong-Hwan Kim, Jongkee Kim. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development.
Plant molecular biology.
2020 Jan; 102(1-2):171-184. doi:
10.1007/s11103-019-00939-2
. [PMID: 31792713] - Diana L Zuluaga, Neil S Graham, Annett Klinder, A E Elaine van Ommen Kloeke, Angelo R Marcotrigiano, Carol Wagstaff, Ruud Verkerk, Gabriella Sonnante, Mark G M Aarts. Overexpression of the MYB29 transcription factor affects aliphatic glucosinolate synthesis in Brassica oleracea.
Plant molecular biology.
2019 Sep; 101(1-2):65-79. doi:
10.1007/s11103-019-00890-2
. [PMID: 31190320] - Christelle A M Robert, Loïc Pellissier, Xoaquín Moreira, Emmanuel Defossez, Marc Pfander, Anouk Guyer, Nicole M van Dam, Sergio Rasmann. Correlated Induction of Phytohormones and Glucosinolates Shapes Insect Herbivore Resistance of Cardamine Species Along Elevational Gradients.
Journal of chemical ecology.
2019 Jul; 45(7):638-648. doi:
10.1007/s10886-019-01084-2
. [PMID: 31227972] - Jose L Landero, Li Fang Wang, Eduardo Beltranena, Clover J Bench, Ruurd T Zijlstra. Feed preference of weaned pigs fed diets containing soybean meal, Brassica napus canola meal, or Brassica juncea canola meal.
Journal of animal science.
2018 Mar; 96(2):600-611. doi:
10.1093/jas/skx052
. [PMID: 29385601] - Probo Y Nugrahedi, Teresa Oliviero, Jenneke K Heising, Matthijs Dekker, Ruud Verkerk. Stir-Frying of Chinese Cabbage and Pakchoi Retains Health-Promoting Glucosinolates.
Plant foods for human nutrition (Dordrecht, Netherlands).
2017 Dec; 72(4):439-444. doi:
10.1007/s11130-017-0646-x
. [PMID: 29134463] - Arif Hasan Khan Robin, Go-Eun Yi, Rawnak Laila, Kiwoung Yang, Jong-In Park, Hye Ran Kim, Ill-Sup Nou. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content.
Molecules (Basel, Switzerland).
2016 Jun; 21(6):. doi:
10.3390/molecules21060787
. [PMID: 27322230] - Catherine E Sansom, Veronika S Jones, Nigel I Joyce, Bruce M Smallfield, Nigel B Perry, John W van Klink. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.
Journal of agricultural and food chemistry.
2015 Feb; 63(6):1833-8. doi:
10.1021/jf505859u
. [PMID: 25625566] - Pablo Velasco, Margarita Lema, Marta Francisco, Pilar Soengas, María Elena Cartea. In vivo and in vitro effects of secondary metabolites against Xanthomonas campestris pv. campestris.
Molecules (Basel, Switzerland).
2013 Sep; 18(9):11131-43. doi:
10.3390/molecules180911131
. [PMID: 24029746] - María Elena Cartea, Antonio de Haro, Sara Obregón, Pilar Soengas, Pablo Velasco. Glucosinolate variation in leaves of Brassica rapa crops.
Plant foods for human nutrition (Dordrecht, Netherlands).
2012 Sep; 67(3):283-8. doi:
10.1007/s11130-012-0300-6
. [PMID: 23001436] - Mariateresa Maldini, Simona Baima, Giorgio Morelli, Cristina Scaccini, Fausta Natella. A liquid chromatography-mass spectrometry approach to study "glucosinoloma" in broccoli sprouts.
Journal of mass spectrometry : JMS.
2012 Sep; 47(9):1198-206. doi:
10.1002/jms.3028
. [PMID: 22972788] - Rosa Agneta, Anna Rita Rivelli, Emanuela Ventrella, Filomena Lelario, Giulio Sarli, Sabino Aurelio Bufo. Investigation of glucosinolate profile and qualitative aspects in sprouts and roots of horseradish (Armoracia rusticana) using LC-ESI-hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation.
Journal of agricultural and food chemistry.
2012 Aug; 60(30):7474-82. doi:
10.1021/jf301294h
. [PMID: 22779710] - Yan-Hong Shi, Zhi-Yong Xie, Rui Wang, Shan-Jun Huang, Yi-Ming Li, Zheng-Tao Wang. Quantitative and chemical fingerprint analysis for the quality evaluation of Isatis indigotica based on ultra-performance liquid chromatography with photodiode array detector combined with chemometric methods.
International journal of molecular sciences.
2012; 13(7):9035-9050. doi:
10.3390/ijms13079035
. [PMID: 22942750] - Ivica Blažević, Ani Radonić, Mirjana Skočibušić, Gina R De Nicola, Sabine Montaut, Renato Iori, Patrick Rollin, Josip Mastelić, Marina Zekić, Ana Maravić. Glucosinolate profiling and antimicrobial screening of Aurinia leucadea (Brassicaceae).
Chemistry & biodiversity.
2011 Dec; 8(12):2310-21. doi:
10.1002/cbdv.201100169
. [PMID: 22162169] - Jeffrey A Harvey, Nicole M van Dam, Ciska E Raaijmakers, James M Bullock, Rieta Gols. Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea).
Oecologia.
2011 Jun; 166(2):421-31. doi:
10.1007/s00442-010-1861-4
. [PMID: 21140168] - Marzena Szczygłowska, Anna Piekarska, Piotr Konieczka, Jacek Namieśnik. Use of brassica plants in the phytoremediation and biofumigation processes.
International journal of molecular sciences.
2011; 12(11):7760-71. doi:
10.3390/ijms12117760
. [PMID: 22174630] - Birgit Hafeld Borgen, Ole Petter Thangstad, Ishita Ahuja, John Trevor Rossiter, Atle Magnar Bones. Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds.
Journal of experimental botany.
2010 Jun; 61(6):1683-97. doi:
10.1093/jxb/erq039
. [PMID: 20219777] - Nancy Frank, Mathieu Dubois, Till Goldmann, Adrienne Tarres, Elke Schuster, Fabien Robert. Semiquantitative analysis of 3-butenyl isothiocyanate to monitor an off-flavor in mustard seeds and glycosinolates screening for origin identification.
Journal of agricultural and food chemistry.
2010 Mar; 58(6):3700-7. doi:
10.1021/jf903513k
. [PMID: 20180576] - Kazuto Washida, Mitsuyoshi Miyata, Tomoyuki Koyama, Kazunaga Yazawa, Kyosuke Nomoto. Suppressive effect of Yamato-mana (Brassica rapa L. Oleifera Group) constituent 3-butenyl glucosinolate (gluconapin) on postprandial hypertriglyceridemia in mice.
Bioscience, biotechnology, and biochemistry.
2010; 74(6):1286-9. doi:
10.1271/bbb.100018
. [PMID: 20530888] - Jeroen J Jansen, Nicole M van Dam, Huub C J Hoefsloot, Age K Smilde. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses.
BMC bioinformatics.
2009 Dec; 10(?):425. doi:
10.1186/1471-2105-10-425
. [PMID: 20015363] - Marta Francisco, Diego A Moreno, María Elena Cartea, Federico Ferreres, Cristina García-Viguera, Pablo Velasco. Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa.
Journal of chromatography. A.
2009 Sep; 1216(38):6611-9. doi:
10.1016/j.chroma.2009.07.055
. [PMID: 19683241] - Ralph Kissen, Tom W Pope, Murray Grant, John A Pickett, John T Rossiter, Glen Powell. Modifying the alkylglucosinolate profile in Arabidopsis thaliana alters the tritrophic interaction with the herbivore Brevicoryne brassicae and parasitoid Diaeretiella rapae.
Journal of chemical ecology.
2009 Aug; 35(8):958-69. doi:
10.1007/s10886-009-9677-6
. [PMID: 19701726] - Tom W Pope, Ralph Kissen, Murray Grant, John A Pickett, John T Rossiter, Glen Powell. Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alkenyl glucosinolate derived isothiocyanates, nitriles, and epithionitriles.
Journal of chemical ecology.
2008 Oct; 34(10):1302-10. doi:
10.1007/s10886-008-9531-2
. [PMID: 18712443] - Yun-Xiang Zang, Jong-Hoon Kim, Young-Doo Park, Doo-Hwan Kim, Seung-Beom Hong. Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1.
BMB reports.
2008 Jun; 41(6):472-8. doi:
10.5483/bmbrep.2008.41.6.472
. [PMID: 18593532] - Rieta Gols, R Wagenaar, Tibor Bukovinszky, Nicole M van Dam, Marcel Dicke, James M Bullock, Jeffrey A Harvey. Genetic variation in defense chemistry in wild cabbages affects herbivores and their endoparasitoids.
Ecology.
2008 Jun; 89(6):1616-26. doi:
10.1890/07-0873.1
. [PMID: 18589526] - Rieta Gols, Tibor Bukovinszky, Nicole M van Dam, Marcel Dicke, James M Bullock, Jeffrey A Harvey. Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations.
Journal of chemical ecology.
2008 Feb; 34(2):132-43. doi:
10.1007/s10886-008-9429-z
. [PMID: 18231835] - Dean A Kopsell, T Casey Barickman, Carl E Sams, J Scott McElroy. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.).
Journal of agricultural and food chemistry.
2007 Dec; 55(26):10628-34. doi:
10.1021/jf072793f
. [PMID: 18052091] - Guillermo Padilla, María Elena Cartea, Pablo Velasco, Antonio de Haro, Amando Ordás. Variation of glucosinolates in vegetable crops of Brassica rapa.
Phytochemistry.
2007 Feb; 68(4):536-45. doi:
10.1016/j.phytochem.2006.11.017
. [PMID: 17187832] - Kim-Chung Lee, Man-Wai Cheuk, Wan Chan, Albert Wai-Ming Lee, Zhong-Zhen Zhao, Zhi-Hong Jiang, Zongwei Cai. Determination of glucosinolates in traditional Chinese herbs by high-performance liquid chromatography and electrospray ionization mass spectrometry.
Analytical and bioanalytical chemistry.
2006 Dec; 386(7-8):2225-32. doi:
10.1007/s00216-006-0882-7
. [PMID: 17086388] - Lijiang Song, John J Morrison, Nigel P Botting, Paul J Thornalley. Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC-MS/MS.
Analytical biochemistry.
2005 Dec; 347(2):234-43. doi:
10.1016/j.ab.2005.09.040
. [PMID: 16289008] - Jessica Barillari, Renato Iori, Patrick Rollin, Françoise Hennion. Glucosinolates in the subantarctic crucifer Kerguelen cabbage (Pringlea antiscorbutica).
Journal of natural products.
2005 Feb; 68(2):234-6. doi:
10.1021/np049822q
. [PMID: 15730250] - Rafael Font, Mercedes del Río-Celestino, Elena Cartea, Antonio de Haro-Bailón. Quantification of glucosinolates in leaves of leaf rape (Brassica napus ssp. pabularia) by near-infrared spectroscopy.
Phytochemistry.
2005 Jan; 66(2):175-85. doi:
10.1016/j.phytochem.2004.11.011
. [PMID: 15652574] - E Lionneton, G Aubert, S Ochatt, O Merah. Genetic analysis of agronomic and quality traits in mustard (Brassica juncea).
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2004 Aug; 109(4):792-9. doi:
10.1007/s00122-004-1682-0
. [PMID: 15340689] - Rafael Font, Mercedes Del Río, José M Fernández-Martínez, Antonio De Haro-Bailón. Use of near-infrared spectroscopy for screening the individual and total glucosinolate contents in Indian mustard seed (Brassica juncea L. Czern. & Coss.).
Journal of agricultural and food chemistry.
2004 Jun; 52(11):3563-9. doi:
10.1021/jf0307649
. [PMID: 15161231] - C L Moyes, A F Raybould. The role of spatial scale and intraspecific variation in secondary chemistry in host-plant location by Ceutorhynchus assimilis (Coleoptera: Curculionidae).
Proceedings. Biological sciences.
2001 Aug; 268(1476):1567-73. doi:
10.1098/rspb.2001.1685
. [PMID: 11487403]