Flutriafol (BioDeep_00000002435)

   


代谢物信息卡片


Flutriafol

化学式: C16H13F2N3O (301.1027)
中文名称: 粉唑醇, 氟替拉福
谱图信息: 最多检出来源 Homo sapiens(plant) 14.67%

分子结构信息

SMILES: C1=CC=C(C(=C1)C(CN2C=NC=N2)(C3=CC=C(C=C3)F)O)F
InChI: InChI=1S/C16H13F2N3O/c17-13-7-5-12(6-8-13)16(22,9-21-11-19-10-20-21)14-3-1-2-4-15(14)18/h1-8,10-11,22H,9H2

描述信息

D016573 - Agrochemicals
D010575 - Pesticides
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8532; ORIGINAL_PRECURSOR_SCAN_NO 8531
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4219; ORIGINAL_PRECURSOR_SCAN_NO 4218
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4261; ORIGINAL_PRECURSOR_SCAN_NO 4256
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8445; ORIGINAL_PRECURSOR_SCAN_NO 8442
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4231; ORIGINAL_PRECURSOR_SCAN_NO 4226
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8537; ORIGINAL_PRECURSOR_SCAN_NO 8535
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8471; ORIGINAL_PRECURSOR_SCAN_NO 8469
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8524; ORIGINAL_PRECURSOR_SCAN_NO 8522
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8497; ORIGINAL_PRECURSOR_SCAN_NO 8495
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4247; ORIGINAL_PRECURSOR_SCAN_NO 4243
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4238; ORIGINAL_PRECURSOR_SCAN_NO 4235
CONFIDENCE standard compound; INTERNAL_ID 709; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4246; ORIGINAL_PRECURSOR_SCAN_NO 4244
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3710

同义名列表

3 个代谢物同义名

Flutriafol; Flutriafol; Flutriafol



数据库引用编号

31 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ABCB1, ARHGAP45, CHIA, GAPDH, HPGDS, SLC6A3
Peripheral membrane protein 1 CYP1B1
Endoplasmic reticulum membrane 4 ABCA1, CYP1B1, DHCR7, HSD17B7
Nucleus 1 GAPDH
cytosol 6 ARHGAP45, GAPDH, GPT, HPGDS, LIPE, PMVK
phagocytic vesicle 1 ABCA1
nucleoplasm 1 HPGDS
Cell membrane 5 ABCA1, ABCB1, KCNH2, LIPE, SLC6A3
ruffle membrane 1 ARHGAP45
Cell projection, axon 1 SLC6A3
Multi-pass membrane protein 5 ABCA1, ABCB1, DHCR7, KCNH2, SLC6A3
cell surface 3 ABCB1, KCNH2, SLC6A3
Golgi apparatus 1 ABCA1
neuronal cell body 1 SLC6A3
presynaptic membrane 1 SLC6A3
Cytoplasm, cytosol 3 GAPDH, LIPE, PMVK
endosome 1 ABCA1
plasma membrane 6 ABCA1, ABCB1, ARHGAP45, GAPDH, KCNH2, SLC6A3
Membrane 10 ABCA1, ABCB1, ARHGAP45, CYP1B1, DHCR7, GAPDH, KCNH2, LIPE, PMVK, SLC6A3
apical plasma membrane 1 ABCB1
axon 1 SLC6A3
basolateral plasma membrane 1 ABCA1
caveola 1 LIPE
extracellular exosome 4 ABCB1, GAPDH, GPT, PMVK
endoplasmic reticulum 1 DHCR7
extracellular space 1 CHIA
perinuclear region of cytoplasm 3 ABCA1, GAPDH, KCNH2
mitochondrion 2 CYP1B1, HSD17B7
intracellular membrane-bounded organelle 4 ABCA1, CYP1B1, GAPDH, HPGDS
Microsome membrane 1 CYP1B1
extracellular region 2 ARHGAP45, CHIA
Single-pass membrane protein 1 HSD17B7
neuronal cell body membrane 1 SLC6A3
nuclear membrane 1 GAPDH
external side of plasma membrane 1 ABCA1
microtubule cytoskeleton 1 GAPDH
vesicle 1 GAPDH
postsynaptic membrane 1 SLC6A3
Apical cell membrane 1 ABCB1
Cell projection, ruffle membrane 1 ARHGAP45
Cytoplasm, perinuclear region 1 GAPDH
Membrane raft 2 ABCA1, SLC6A3
Cytoplasm, cytoskeleton 1 GAPDH
flotillin complex 1 SLC6A3
Peroxisome 1 PMVK
intracellular vesicle 1 ABCA1
nuclear outer membrane 1 DHCR7
Cell projection, neuron projection 1 SLC6A3
neuron projection 1 SLC6A3
cytoskeleton 1 GAPDH
Lipid droplet 2 GAPDH, LIPE
Membrane, caveola 1 LIPE
monoatomic ion channel complex 1 KCNH2
inward rectifier potassium channel complex 1 KCNH2
voltage-gated potassium channel complex 1 KCNH2
secretory granule lumen 1 ARHGAP45
axon terminus 1 SLC6A3
endocytic vesicle 1 ABCA1
azurophil granule lumen 1 ARHGAP45
ribonucleoprotein complex 1 GAPDH
external side of apical plasma membrane 1 ABCB1
dopaminergic synapse 1 SLC6A3
GAIT complex 1 GAPDH


文献列表

  • Jowenna X F Sim, Barbara Drigo, Casey L Doolette, Sotirios Vasileiadis, Erica Donner, Dimitrios G Karpouzas, Enzo Lombi. Repeated applications of fipronil, propyzamide and flutriafol affect soil microbial functions and community composition: A laboratory-to-field assessment. Chemosphere. 2023 May; 331(?):138850. doi: 10.1016/j.chemosphere.2023.138850. [PMID: 37146771]
  • Chaofeng Li, Shuai Fan, Yan Wen, Zhenchao Tan, Chenglan Liu. Enantioselective Effect of Flutriafol on Growth, Deoxynivalenol Production, and TRI Gene Transcript Levels in Fusarium graminearum. Journal of agricultural and food chemistry. 2021 Feb; 69(5):1684-1692. doi: 10.1021/acs.jafc.0c06800. [PMID: 33522237]
  • Nattapatphon Kongcharoen, Nipon Kaewsalong, Tida Dethoup. Efficacy of fungicides in controlling rice blast and dirty panicle diseases in Thailand. Scientific reports. 2020 10; 10(1):16233. doi: 10.1038/s41598-020-73222-w. [PMID: 33004846]
  • Zhaoxian Zhang, Beibei Gao, Zongzhe He, Lianshan Li, Haiyan Shi, Minghua Wang. Enantioselective metabolism of four chiral triazole fungicides in rat liver microsomes. Chemosphere. 2019 Jun; 224(?):77-84. doi: 10.1016/j.chemosphere.2019.02.119. [PMID: 30818197]
  • Tanja Vasić, Uroš Vojinović, Suzana Žujović, Vesna Krnjaja, Sanja Živković, Jordan Marković, Milan Stević. In vitro toxicity of fungicides with different modes of action to alfalfa anthracnose fungus, Colletotrichum destructivum. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2019; 54(12):964-971. doi: 10.1080/03601234.2019.1653735. [PMID: 31429367]
  • Ana Lopez-Antia, Manuel E Ortiz-Santaliestra, François Mougeot, Pablo R Camarero, Rafael Mateo. Brood size is reduced by half in birds feeding on flutriafol-treated seeds below the recommended application rate. Environmental pollution (Barking, Essex : 1987). 2018 Dec; 243(Pt A):418-426. doi: 10.1016/j.envpol.2018.08.078. [PMID: 30216876]
  • Qing Zhang, Liangliang Zhou, Yu Yang, Xiude Hua, Haiyan Shi, Minghua Wang. Study on the stereoselective degradation of three triazole fungicides in sediment. Ecotoxicology and environmental safety. 2015 Jul; 117(?):1-6. doi: 10.1016/j.ecoenv.2015.03.014. [PMID: 25814463]
  • Qing Zhang, Xiu-de Hua, Hai-yan Shi, Ji-song Liu, Ming-ming Tian, Ming-hua Wang. Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol. Journal of hazardous materials. 2015 Mar; 284(?):65-72. doi: 10.1016/j.jhazmat.2014.10.033. [PMID: 25463219]
  • Qing Zhang, Xiude Hua, Yu Yang, Wei Yin, Mingming Tian, Haiyan Shi, Minghua Wang. Stereoselective degradation of flutriafol and tebuconazole in grape. Environmental science and pollution research international. 2015 Mar; 22(6):4350-8. doi: 10.1007/s11356-014-3673-2. [PMID: 25300182]
  • Yan Tao, Fengshou Dong, Jun Xu, Xingang Liu, Youpu Cheng, Na Liu, Zenglong Chen, Yongquan Zheng. Green and sensitive supercritical fluid chromatographic-tandem mass spectrometric method for the separation and determination of flutriafol enantiomers in vegetables, fruits, and soil. Journal of agricultural and food chemistry. 2014 Nov; 62(47):11457-64. doi: 10.1021/jf504324t. [PMID: 25376483]
  • Qing Zhang, Mingming Tian, Meiyun Wang, Haiyan Shi, Minghua Wang. Simultaneous enantioselective determination of triazole fungicide flutriafol in vegetables, fruits, wheat, soil, and water by reversed-phase high-performance liquid chromatography. Journal of agricultural and food chemistry. 2014 Apr; 62(13):2809-15. doi: 10.1021/jf405689n. [PMID: 24611465]
  • Pingzhong Yu, Chunhong Jia, Wencheng Song, Fengmao Liu. Dissipation and residues of flutriafol in wheat and soil under field conditions. Bulletin of environmental contamination and toxicology. 2012 Nov; 89(5):1040-5. doi: 10.1007/s00128-012-0810-9. [PMID: 22983725]
  • Yingting Song, Zheng Zou, Yong Gong, Weili Shan, Wenxi Li, Lijun Han. Dissipation and residues of flutriafol in wheat and soil under field conditions. Bulletin of environmental contamination and toxicology. 2012 Sep; 89(3):611-4. doi: 10.1007/s00128-012-0749-x. [PMID: 22885544]
  • Zhigang Shen, Ping Zhang, Xinyuan Xu, Xinru Wang, Zhiqiang Zhou, Donghui Liu. Gender-related differences in stereoselective degradation of flutriafol in rabbits. Journal of agricultural and food chemistry. 2011 Sep; 59(18):10071-7. doi: 10.1021/jf201784r. [PMID: 21740052]
  • Mutimura C Gatarayiha, Mark D Laing, Ray M Miller. In vitro effects of flutriafol and azoxystrobin on Beauvaria bassiana and its efficacy against Tetranychus urticae. Pest management science. 2010 Jul; 66(7):773-8. doi: 10.1002/ps.1941. [PMID: 20533452]
  • Maria R Eckert, Stephen Rossall, Andrew Selley, Bruce D L Fitt. Effects of fungicides on in vitro spore germination and mycelial growth of the phytopathogens Leptosphaeria maculans and L. biglobosa (phoma stem canker of oilseed rape). Pest management science. 2010 Apr; 66(4):396-405. doi: 10.1002/ps.1890. [PMID: 20013877]
  • Paul M White, Thomas L Potter, Albert K Culbreath. Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics. The Science of the total environment. 2010 Feb; 408(6):1393-402. doi: 10.1016/j.scitotenv.2009.11.012. [PMID: 20015538]
  • M B Santana, K J A Rodrigues, R Durán, M Alfonso, L Vidal, F Campos, I M De Oliveira, L R F Faro. Evaluation of the effects and mechanisms of action of flutriafol, a triazole fungicide, on striatal dopamine release by using in vivo microdialysis in freely moving rats. Ecotoxicology and environmental safety. 2009 Jul; 72(5):1565-71. doi: 10.1016/j.ecoenv.2009.01.004. [PMID: 19232726]