Fomesafen (BioDeep_00000001791)

 

Secondary id: BioDeep_00000408795

human metabolite blood metabolite


代谢物信息卡片


5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-methanesulfonyl-2-nitrobenzene-1-carboximidic acid

化学式: C15H10ClF3N2O6S (437.99)
中文名称: 甲醇中氟磺胺草醚溶液
谱图信息: 最多检出来源 not specific(not specific) 0%

分子结构信息

SMILES: CS(=O)(=O)N=C(O)C1=C(C=CC(OC2=C(Cl)C=C(C=C2)C(F)(F)F)=C1)N(=O)=O
InChI: InChI=1S/C15H10ClF3N2O6S/c1-28(25,26)20-14(22)10-7-9(3-4-12(10)21(23)24)27-13-5-2-8(6-11(13)16)15(17,18)19/h2-7H,1H3,(H,20,22)

描述信息

CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4841; ORIGINAL_PRECURSOR_SCAN_NO 4840
CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4864; ORIGINAL_PRECURSOR_SCAN_NO 4860
CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4866; ORIGINAL_PRECURSOR_SCAN_NO 4861
CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4858; ORIGINAL_PRECURSOR_SCAN_NO 4857
CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4860; ORIGINAL_PRECURSOR_SCAN_NO 4858
CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4876; ORIGINAL_PRECURSOR_SCAN_NO 4874
DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 670; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4860; ORIGINAL_PRECURSOR_SCAN_NO 4858

同义名列表

14 个代谢物同义名

5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-methanesulfonyl-2-nitrobenzene-1-carboximidic acid; 5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-methanesulfonyl-2-nitrobenzenecarboximidic acid; 5-[2-Chloro-4-(trifluoromethyl)phenoxy]-N-(methanesulphonyl)-2-nitrobenzamide; 5-(2-Chloro-4-(trifluoromethyl)-phenoxy)-N-(methylsulfonyl)-2-nitrobenzamide; 5-(2-Chloro-alpha,alpha,alpha-trifluoro-p-tolyloxy)-N-mesyl-2-nitrobenzamide; 5-[2-Chloro-4-(trifluoromethyl)phenoxy]-N-(methanesulfonyl)-2-nitrobenzamide; 5-(2-Chloro-a,a,a-trifluoro-p-tolyloxy)-N-mesyl-2-nitrobenzamide; 5-[2-Chloro-4-(trifluoromethyl)phenoxy]-N-mesyl-2-nitrobenzamide; 5-(2-Chloro-α,α,α-trifluoro-p-tolyloxy)-N-mesyl-2-nitrobenzamide; Fomesafen potassium; Fomesafen sodium; Fomesafene; Fomesafen; Fomesafen



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ARHGAP45, CAT, CYP1A1, ELANE, GLUL, HPGDS, IGF2BP3, PGR
Peripheral membrane protein 4 ACHE, CYP1A1, CYP1B1, PPOX
Endoplasmic reticulum membrane 3 CYP1A1, CYP1A2, CYP1B1
Nucleus 5 ACHE, GABPA, GLUL, IGF2BP3, PGR
cytosol 9 ARHGAP45, CAT, ELANE, GLUL, HPGDS, IGF2BP3, PGR, PHYH, UROD
mitochondrial membrane 1 PPOX
phagocytic vesicle 1 ELANE
nucleoplasm 4 GABPA, HPGDS, PGR, UROD
Cell membrane 2 ACHE, GLUL
Lipid-anchor 1 GLUL
ruffle membrane 1 ARHGAP45
Synapse 2 ACHE, PPOX
cell surface 2 ACHE, ELANE
Golgi apparatus 1 ACHE
mitochondrial inner membrane 2 CYP1A1, PPOX
neuromuscular junction 1 ACHE
postsynapse 1 PPOX
synaptic vesicle 1 PPOX
Cytoplasm, cytosol 1 GLUL
plasma membrane 4 ACHE, ARHGAP45, GLUL, PGR
Membrane 4 ACHE, ARHGAP45, CAT, CYP1B1
extracellular exosome 3 CAT, ELANE, GLUL
endoplasmic reticulum 1 GLUL
extracellular space 2 ACHE, ELANE
perinuclear region of cytoplasm 2 ACHE, PPOX
mitochondrion 5 CAT, CYP1A1, CYP1B1, GLUL, PPOX
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 5 CAT, CYP1A1, CYP1A2, CYP1B1, HPGDS
Microsome membrane 3 CYP1A1, CYP1A2, CYP1B1
Secreted 1 ACHE
extracellular region 5 ACHE, ARHGAP45, CAT, ELANE, PPOX
mitochondrial outer membrane 1 PGR
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
neuronal dense core vesicle lumen 1 PPOX
cytoplasmic vesicle 1 PPOX
Cytoplasm, P-body 1 IGF2BP3
P-body 1 IGF2BP3
Cell projection, ruffle membrane 1 ARHGAP45
Mitochondrion inner membrane 2 CYP1A1, PPOX
focal adhesion 1 CAT
Peroxisome 2 CAT, PHYH
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, PHYH
peroxisomal membrane 1 CAT
mitochondrial intermembrane space 1 PPOX
collagen-containing extracellular matrix 1 ELANE
secretory granule 1 ELANE
chromatin 2 GABPA, PGR
Lipid-anchor, GPI-anchor 1 ACHE
Cytoplasm, Stress granule 1 IGF2BP3
cytoplasmic stress granule 1 IGF2BP3
cell body 1 GLUL
side of membrane 1 ACHE
Microsome 1 GLUL
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 ARHGAP45, CAT
transcription repressor complex 1 ELANE
specific granule lumen 1 ELANE
azurophil granule lumen 2 ARHGAP45, ELANE
9+0 non-motile cilium 1 PHYH
synaptic cleft 1 ACHE
Rough endoplasmic reticulum 1 PPOX
Intermembrane side 1 PPOX
Cytoplasmic vesicle, phagosome 1 ELANE
glial cell projection 1 GLUL
catalase complex 1 CAT
[Isoform 4]: Mitochondrion outer membrane 1 PGR
[Isoform H]: Cell membrane 1 ACHE


文献列表

  • Qingqing Gao, Lai Chen, Zexiu An, Yasen Wang, Dongchen Yang, Zhengzhong Wang, Jia Kang, Bogdan Barnych, Bruce D Hammock, Jingqian Huo, Jinlin Zhang. Development of an immunoassay based on a specific antibody for the detection of diphenyl ether herbicide fomesafen. The Science of the total environment. 2024 Mar; 914(?):169858. doi: 10.1016/j.scitotenv.2023.169858. [PMID: 38190900]
  • Shihan Cao, Yize Zou, Shuai Zhang, Hongtao Zhang, Yidi Guan, Liru Liu, Mingshan Ji. Investigation of resistance mechanisms to fomesafen in Ipomoea nil from China. Pesticide biochemistry and physiology. 2023 Aug; 194(?):105487. doi: 10.1016/j.pestbp.2023.105487. [PMID: 37532349]
  • Yulian Guo, Yu Wang, Xiangyun Zang, Chan Luo, Chunyan Huang, Keqiang Cong, Xiaotong Guo. Transcriptomic analysis of Amaranthus retroflex resistant to PPO-inhibitory herbicides. PloS one. 2023; 18(8):e0288775. doi: 10.1371/journal.pone.0288775. [PMID: 37616256]
  • Zhao Jie Chen, Xiao Yan Zhai, Jintong Liu, Nan Zhang, Hong Yang. Detoxification and catabolism of mesotrione and fomesafen facilitated by a Phase II reaction acetyltransferase in rice. Journal of advanced research. 2022 Dec; ?(?):. doi: 10.1016/j.jare.2022.12.002. [PMID: 36494064]
  • Yi Cao, Hongjuan Huang, Shouhui Wei, Yuning Lan, Wenyu Li, Ying Sun, Ruolin Wang, Zhaofeng Huang. Target gene mutation and enhanced metabolism confer fomesafen resistance in an Amaranthus retroflexus L. population from China. Pesticide biochemistry and physiology. 2022 Nov; 188(?):105256. doi: 10.1016/j.pestbp.2022.105256. [PMID: 36464361]
  • Zengfei Cai, Yangyang Cao, Xiaohua Du. Synthesis of Novel α-Trifluoroanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. International journal of molecular sciences. 2022 Sep; 23(19):. doi: 10.3390/ijms231911083. [PMID: 36232394]
  • Xingfan Li, Muhammad Riaz, Baiquan Song, Huajun Liu. Phytotoxicity response of sugar beet (Beta vulgaris L.) seedlings to herbicide fomesafen in soil. Ecotoxicology and environmental safety. 2022 Jul; 239(?):113628. doi: 10.1016/j.ecoenv.2022.113628. [PMID: 35576801]
  • Xingfan Li, Muhammad Riaz, Baiquan Song, Xilong Liang, Huajun Liu. Exogenous salicylic acid alleviates fomesafen toxicity by improving photosynthetic characteristics and antioxidant defense system in sugar beet. Ecotoxicology and environmental safety. 2022 Jun; 238(?):113587. doi: 10.1016/j.ecoenv.2022.113587. [PMID: 35512468]
  • Zhao Jie Chen, Jintong Liu, Nan Zhang, Hong Yang. Identification, characterization and expression of rice (Oryza sativa) acetyltransferase genes exposed to realistic environmental contamination of mesotrione and fomesafen. Ecotoxicology and environmental safety. 2022 Mar; 233(?):113349. doi: 10.1016/j.ecoenv.2022.113349. [PMID: 35219957]
  • Xingfan Li, Jiyu Du, Baiquan Song, Xi Zhang, Muhammad Riaz. Fomesafen drift affects morphophysiology of sugar beet. Chemosphere. 2022 Jan; 287(Pt 1):132073. doi: 10.1016/j.chemosphere.2021.132073. [PMID: 34478964]
  • Clebson G Gonçalves, Ricardo F Marques, Sidnei R de Marchi, Dagoberto Martins. Effect of different soil water managements on the selectivity of fomesafen in conventional and RR soybean. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2022; 57(10):786-795. doi: 10.1080/03601234.2022.2116237. [PMID: 36039634]
  • Michelangelo Muzell Trezzi, Ricardo Alcántara-de la Cruz, Antonia M Rojano-Delgado, Estéban Alcántara, Fortunato De Bortoli Pagnoncelli, Matheus Viecelli, Francielli Diesel, Vacilania Pacheco, Rafael De Prado. Influence of temperature on the retention, absorption and translocation of fomesafen and imazamox in Euphorbia heterophylla. Pesticide biochemistry and physiology. 2021 Mar; 173(?):104794. doi: 10.1016/j.pestbp.2021.104794. [PMID: 33771265]
  • Zhaofeng Huang, Hailan Cui, Chunyu Wang, Tong Wu, Chaoxian Zhang, Hongjuan Huang, Shouhui Wei. Investigation of resistance mechanism to fomesafen in Amaranthus retroflexus L. Pesticide biochemistry and physiology. 2020 May; 165(?):104560. doi: 10.1016/j.pestbp.2020.104560. [PMID: 32359536]
  • Zhuona Li, Francesco Di Gioia, Jeong-In Hwang, Jason Hong, Monica Ozores-Hampton, Xin Zhao, Cristina Pisani, Erin Rosskopf, Patrick Christopher Wilson. Dissipation of fomesafen in fumigated, anaerobic soil disinfestation-treated, and organic-amended soil in Florida tomato production systems. Pest management science. 2020 Feb; 76(2):628-635. doi: 10.1002/ps.5558. [PMID: 31318139]
  • Pragya Adhikari, Emma Goodrich, Samuel B Fernandes, Alexander E Lipka, Patrick Tranel, Patrick Brown, Tiffany M Jamann. Genetic variation associated with PPO-inhibiting herbicide tolerance in sorghum. PloS one. 2020; 15(10):e0233254. doi: 10.1371/journal.pone.0233254. [PMID: 33052910]
  • Haozhen Nie, Brent C Mansfield, Nick T Harre, Julie M Young, Nicholas R Steppig, Bryan G Young. Investigating target-site resistance mechanism to the PPO-inhibiting herbicide fomesafen in waterhemp and interspecific hybridization of Amaranthus species using next generation sequencing. Pest management science. 2019 Dec; 75(12):3235-3244. doi: 10.1002/ps.5445. [PMID: 30983048]
  • Haiyan Hu, Hao Zhou, Shixiong Zhou, Zhaojun Li, Chaojun Wei, Yong Yu, Anthony G Hay. Fomesafen impacts bacterial communities and enzyme activities in the rhizosphere. Environmental pollution (Barking, Essex : 1987). 2019 Oct; 253(?):302-311. doi: 10.1016/j.envpol.2019.07.018. [PMID: 31323613]
  • Li-Xia Zhao, Min-Lei Yin, Qing-Rui Wang, Yue-Li Zou, Tao Ren, Shuang Gao, Ying Fu, Fei Ye. Novel Thiazole Phenoxypyridine Derivatives Protect Maize from Residual Pesticide Injury Caused by PPO-Inhibitor Fomesafen. Biomolecules. 2019 09; 9(10):. doi: 10.3390/biom9100514. [PMID: 31547161]
  • Lulu Meng, Tong Sun, Mengyao Li, Muhammad Saleem, Qingming Zhang, Caixia Wang. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotoxicology and environmental safety. 2019 Apr; 171(?):75-83. doi: 10.1016/j.ecoenv.2018.12.065. [PMID: 30597319]
  • Zhaojie Chen, Lulu Huang, Shiming Song, Yan Zhang, Yuanfu Li, Huihua Tan, Xuesheng Li. Enhanced disappearance of mesotrione and fomesafen by water hyacinth (Eichhornia crassipes) in water. International journal of phytoremediation. 2019; 21(6):583-589. doi: 10.1080/15226514.2018.1540543. [PMID: 30648422]
  • Douglas J Spaunhorst, Haozhen Nie, James R Todd, Julie M Young, Bryan G Young, William G Johnson. Confirmation of herbicide resistance mutations Trp574Leu, ΔG210, and EPSPS gene amplification and control of multiple herbicide-resistant Palmer amaranth (Amaranthus palmeri) with chlorimuron-ethyl, fomesafen, and glyphosate. PloS one. 2019; 14(3):e0214458. doi: 10.1371/journal.pone.0214458. [PMID: 30913269]
  • Carla Alves, Eduarda Costa, Jessica R Sofiatti, Cesar T Forte, Fábio L Winter, Cinthia M Holz, Rosilene R Kaizer, Leandro Galon. Effect of herbicides in the oxidative stress in crop winter species. Anais da Academia Brasileira de Ciencias. 2018 Apr; 90(2):1533-1542. doi: 10.1590/0001-3765201820170482. [PMID: 29898110]
  • Xiao-Hu Wu, Ying Zhang, Peng-Qiang Du, Jun Xu, Feng-Shou Dong, Xin-Gang Liu, Yong-Quan Zheng. Impact of fomesafen on the soil microbial communities in soybean fields in Northeastern China. Ecotoxicology and environmental safety. 2018 Feb; 148(?):169-176. doi: 10.1016/j.ecoenv.2017.10.003. [PMID: 29054028]
  • Darci A Giacomini, Alinna M Umphres, Haozhen Nie, Thomas C Mueller, Lawrence E Steckel, Bryan G Young, Robert C Scott, Patrick J Tranel. Two new PPX2 mutations associated with resistance to PPO-inhibiting herbicides in Amaranthus palmeri. Pest management science. 2017 Aug; 73(8):1559-1563. doi: 10.1002/ps.4581. [PMID: 28370968]
  • Reiofeli A Salas, Nilda R Burgos, Patrick J Tranel, Shilpa Singh, Les Glasgow, Robert C Scott, Robert L Nichols. Resistance to PPO-inhibiting herbicide in Palmer amaranth from Arkansas. Pest management science. 2016 May; 72(5):864-9. doi: 10.1002/ps.4241. [PMID: 26817647]
  • Matheus G Silva, Orivaldo Arf, Paulo E Teodoro. Nitrogen topdressing and application ways of fluazifop-p-butyl + fomesafen in weed control and agronomic performance of common bean. Anais da Academia Brasileira de Ciencias. 2015 Oct; 87(4):2301-7. doi: 10.1590/0001-3765201520140347. [PMID: 26628016]
  • Xiaohu Wu, Jun Xu, Fengshou Dong, Xingang Liu, Yongquan Zheng. Responses of soil microbial community to different concentration of fomesafen. Journal of hazardous materials. 2014 May; 273(?):155-64. doi: 10.1016/j.jhazmat.2014.03.041. [PMID: 24731936]
  • Qingming Zhang, Lusheng Zhu, Jun Wang, Hui Xie, Jinhua Wang, Yingnan Han, Jinhui Yang. Oxidative stress and lipid peroxidation in the earthworm Eisenia fetida induced by low doses of fomesafen. Environmental science and pollution research international. 2013 Jan; 20(1):201-8. doi: 10.1007/s11356-012-0962-5. [PMID: 22585392]
  • Caroline Gorzerino, Alphonse Quemeneur, Anne Hillenweck, Maryse Baradat, Georges Delous, Martine Ollitrault, Didier Azam, Thierry Caquet, Laurent Lagadic. Effects of diquat and fomesafen applied alone and in combination with a nonylphenol polyethoxylate adjuvant on Lemna minor in aquatic indoor microcosms. Ecotoxicology and environmental safety. 2009 Mar; 72(3):802-10. doi: 10.1016/j.ecoenv.2008.08.001. [PMID: 18951630]
  • Jacqueline Russo, Luc Madec, Michel Brehélin. Effect of a toxicant on phagocytosis pathways in the freshwater snail Lymnaea stagnalis. Cell and tissue research. 2008 Jul; 333(1):147-58. doi: 10.1007/s00441-008-0578-8. [PMID: 18431599]
  • Jacqueline Russo, Luc Madec. Haemocyte apoptosis as a general cellular immune response of the snail, Lymnaea stagnalis, to a toxicant. Cell and tissue research. 2007 May; 328(2):431-41. doi: 10.1007/s00441-006-0353-7. [PMID: 17252246]
  • Akifumi Sugiyama, Jiro Sekiya. Homoglutathione confers tolerance to acifluorfen in transgenic tobacco plants expressing soybean homoglutathione synthetase. Plant & cell physiology. 2005 Aug; 46(8):1428-32. doi: 10.1093/pcp/pci143. [PMID: 15937325]
  • Mark Skipsey, Ian Cummins, Christopher J Andrews, Ian Jepson, Robert Edwards. Manipulation of plant tolerance to herbicides through co-ordinated metabolic engineering of a detoxifying glutathione transferase and thiol cosubstrate. Plant biotechnology journal. 2005 Jul; 3(4):409-20. doi: 10.1111/j.1467-7652.2005.00134.x. [PMID: 17173629]
  • Aroldo Ferreira Lopes Machado, Adriano Jakelaitis, Lino Roberto Ferreira, Ernani Luiz Agnes, Leonardo David Tuffi Santos. Population dynamics of weeds in no-tillage and conventional crop systems. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2005; 40(1):119-28. doi: 10.1081/pfc-200034259. [PMID: 15656169]
  • Kevin B Kelley, Kris N Lambert, Aaron G Hager, Dean E Riechers. Quantitative expression analysis of GH3, a gene induced by plant growth regulator herbicides in soybean. Journal of agricultural and food chemistry. 2004 Feb; 52(3):474-8. doi: 10.1021/jf035134l. [PMID: 14759135]
  • Ryan P Miller, Krishona B Martinson, Robert B Sothern, Beverly R Durgan, Jeffrey L Gunsolus. Circadian response of annual weeds in a natural setting to high and low application rates of four herbicides with different modes of actions. Chronobiology international. 2003 Mar; 20(2):299-324. doi: 10.1081/cbi-120019344. [PMID: 12723887]
  • C R Elcombe, D R Bell, E Elias, S C Hasmall, N J Plant. Peroxisome proliferators: species differences in response of primary hepatocyte cultures. Annals of the New York Academy of Sciences. 1996 Dec; 804(?):628-35. doi: 10.1111/j.1749-6632.1996.tb18649.x. [PMID: 8993577]
  • J Krijt, P Maruna, P Petrovicky, V Janousek. The effect of protoporphyrinogen oxidase inhibitors on microsomal and mitochondrial cytochromes. Obesity research. 1995 Dec; 3 Suppl 5(?):785S-788S. doi: 10.1002/j.1550-8528.1995.tb00500.x. [PMID: 8653563]
  • J Krijt, M Vokurka, J Sanitrak, V Janousek, I van Holsteijn, B J Blaauboer. Effect of the protoporphyrinogen oxidase-inhibiting herbicide fomesafen on liver uroporphyrin and heptacarboxylic porphyrin in two mouse strains. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1994 Jul; 32(7):641-50. doi: 10.1016/0278-6915(94)90008-6. [PMID: 8045477]
  • J M Rawlings, J Hilton, K L Trebilcock, B H Woollen, M F Wilks. Effect of dosing vehicle on the dermal absorption of fluazifop-butyl and fomesafen in rats in vivo. Fundamental and applied toxicology : official journal of the Society of Toxicology. 1994 Jul; 23(1):93-100. doi: 10.1006/faat.1994.1084. [PMID: 7958570]