Cyproconazole (BioDeep_00000001146)

 

Secondary id: BioDeep_00000397700

human metabolite blood metabolite


代谢物信息卡片


2-(4-chlorophenyl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol

化学式: C15H18ClN3O (291.1138)
中文名称: 环唑醇, 环丙唑
谱图信息: 最多检出来源 Viridiplantae(plant) 11.64%

分子结构信息

SMILES: CC(C1CC1)C(CN2C=NC=N2)(C3=CC=C(C=C3)Cl)O
InChI: InChI=1S/C15H18ClN3O/c1-11(12-2-3-12)15(20,8-19-10-17-9-18-19)13-4-6-14(16)7-5-13/h4-7,9-12,20H,2-3,8H2,1H3

描述信息

CONFIDENCE Parent Substance (Level 1); INTERNAL_ID 2100
CONFIDENCE standard compound; INTERNAL_ID 2568
D016573 - Agrochemicals
D010575 - Pesticides

同义名列表

5 个代谢物同义名

2-(4-chlorophenyl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol; (Cyclopropylmethyl)(triphenyl)phosphonium bromide; Cyproconazole (CP); Cyproconazole; Cyproconazole



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ADIG, AHR, ARHGAP45, CAT, CYP1A1, CYP3A4, ESR1, GADD45B, HPGDS, MDM2, NR1I3, RARA, SCP2
Peripheral membrane protein 4 CYP11A1, CYP1A1, CYP1B1, ESR1
Endoplasmic reticulum membrane 5 CYP19A1, CYP1A1, CYP1A2, CYP1B1, CYP3A4
Mitochondrion membrane 1 CYP11A1
Nucleus 10 ADIG, AHR, ESR1, GADD45B, MDM2, NR1I2, NR1I3, PPARGC1A, RARA, SCP2
cytosol 10 AHR, ARHGAP45, CAT, ESR1, HPGDS, MDM2, NR1I3, PPARGC1A, RARA, SCP2
dendrite 1 RARA
nuclear body 1 NR1I2
nucleoplasm 9 AHR, ESR1, HPGDS, MDM2, NR1I2, NR1I3, PPARGC1A, RARA, SCP2
RNA polymerase II transcription regulator complex 1 RARA
Cell membrane 1 ESR1
Cytoplasmic side 1 ESR1
ruffle membrane 1 ARHGAP45
Multi-pass membrane protein 1 CYP19A1
glutamatergic synapse 1 MDM2
Golgi apparatus 1 ESR1
mitochondrial inner membrane 2 CYP11A1, CYP1A1
plasma membrane 4 ARHGAP45, ESR1, MDM2, RARA
Membrane 9 ADIG, ARHGAP45, CAT, CYP11A1, CYP19A1, CYP1B1, CYP3A4, ESR1, SCP2
extracellular exosome 1 CAT
endoplasmic reticulum 2 CYP19A1, SCP2
extracellular space 1 IL22
perinuclear region of cytoplasm 1 RARA
mitochondrion 5 CAT, CYP11A1, CYP1A1, CYP1B1, SCP2
protein-containing complex 6 AHR, CAT, ESR1, MDM2, RARA, SCP2
intracellular membrane-bounded organelle 6 CAT, CYP1A1, CYP1A2, CYP1B1, CYP3A4, HPGDS
Microsome membrane 5 CYP19A1, CYP1A1, CYP1A2, CYP1B1, CYP3A4
postsynaptic density 1 MDM2
Secreted 2 ADIG, IL22
extracellular region 4 ADIG, ARHGAP45, CAT, IL22
Single-pass membrane protein 1 ADIG
mitochondrial matrix 2 CAT, CYP11A1
transcription regulator complex 4 AHR, ESR1, NR1I2, RARA
actin cytoskeleton 1 RARA
nucleolus 2 MDM2, RARA
Cell projection, ruffle membrane 1 ARHGAP45
Mitochondrion inner membrane 2 CYP11A1, CYP1A1
Cytoplasm, cytoskeleton 1 NR1I3
focal adhesion 1 CAT
Peroxisome 2 CAT, SCP2
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, SCP2
peroxisomal membrane 1 CAT
Nucleus, PML body 1 PPARGC1A
PML body 1 PPARGC1A
chromatin 6 AHR, ESR1, NR1I2, NR1I3, PPARGC1A, RARA
Chromosome 1 SCP2
cytoskeleton 1 NR1I3
Nucleus, nucleolus 1 MDM2
condensed chromosome, centromeric region 1 SCP2
Lipid droplet 1 ADIG
lateral element 1 SCP2
aryl hydrocarbon receptor complex 1 AHR
Nucleus, nucleoplasm 1 MDM2
euchromatin 1 ESR1
intermediate filament cytoskeleton 1 NR1I2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 ARHGAP45, CAT
transcription repressor complex 1 MDM2
endocytic vesicle membrane 1 MDM2
azurophil granule lumen 1 ARHGAP45
[Isoform 1]: Nucleus 2 ESR1, PPARGC1A
synaptonemal complex 1 SCP2
catalase complex 1 CAT
[Isoform SCP2]: Peroxisome 1 SCP2
[Isoform SCPx]: Peroxisome 1 SCP2
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
[Isoform B4]: Nucleus 1 PPARGC1A
[Isoform B4-8a]: Cytoplasm 1 PPARGC1A
[Isoform B5]: Nucleus 1 PPARGC1A
[Isoform 9]: Nucleus 1 PPARGC1A


文献列表

  • Savini Thrikawala, Fahmi Mesmar, Beas Bhattacharya, Maram Muhsen, Srijita Mukhopadhyay, Sara Flores, Sanat Upadhyay, Leoncio Vergara, Jan-Åke Gustafsson, Cecilia Williams, Maria Bondesson. Triazole fungicides induce adipogenesis and repress osteoblastogenesis in zebrafish. Toxicological sciences : an official journal of the Society of Toxicology. 2023 Mar; ?(?):. doi: 10.1093/toxsci/kfad031. [PMID: 36951524]
  • Lu Lv, Wenhong Li, Xinfang Li, Dou Wang, Hongbiao Weng, Yu-Cheng Zhu, Yanhua Wang. Mixture toxic effects of thiacloprid and cyproconazole on honey bees (Apis mellifera L.). The Science of the total environment. 2023 Jan; 870(?):161700. doi: 10.1016/j.scitotenv.2023.161700. [PMID: 36690094]
  • Zongzhe He, Liangliang Zhou, Yuting Tan, Zhen Wang, Haiyan Shi, Minghua Wang. Stereoselective toxicity, bioaccumulation, and metabolic pathways of triazole fungicide cyproconazole in zebrafish. Aquatic toxicology (Amsterdam, Netherlands). 2022 Dec; 253(?):106330. doi: 10.1016/j.aquatox.2022.106330. [PMID: 36279691]
  • Zongzhe He, Jing Zhang, Dongya Shi, Beibei Gao, Zhen Wang, Yanqing Zhang, Minghua Wang. Deoxynivalenol in Fusarium graminearum: Evaluation of Cyproconazole Stereoisomers In Vitro and In Planta. Journal of agricultural and food chemistry. 2021 Sep; 69(34):9735-9742. doi: 10.1021/acs.jafc.1c02555. [PMID: 34427095]
  • Zongzhe He, Zhen Wang, Beibei Gao, Shiling Liu, Xuejun Zhao, Haiyan Shi, Minghua Wang. Stereostructure-activity mechanism of cyproconazole by cytochrome P450 in rat liver microsomes: A combined experimental and computational study. Journal of hazardous materials. 2021 08; 416(?):125764. doi: 10.1016/j.jhazmat.2021.125764. [PMID: 33827004]
  • Fangjie Cao, Christopher L Souders, Pengfei Li, Sen Pang, Lihong Qiu, Christopher J Martyniuk. Developmental toxicity of the triazole fungicide cyproconazole in embryo-larval stages of zebrafish (Danio rerio). Environmental science and pollution research international. 2019 Feb; 26(5):4913-4923. doi: 10.1007/s11356-018-3957-z. [PMID: 30569354]
  • Claudia Luckert, Albert Braeuning, Georges de Sousa, Sigrid Durinck, Efrosini S Katsanou, Parthena Konstantinidou, Kyriaki Machera, Emanuela S Milani, Ad A C M Peijnenburg, Roger Rahmani, Andreja Rajkovic, Deborah Rijkers, Anastasia Spyropoulou, Marianna Stamou, Geert Stoopen, Shana Sturla, Bernd Wollscheid, Nathalie Zucchini-Pascal, Alfonso Lampen. Adverse Outcome Pathway-Driven Analysis of Liver Steatosis in Vitro: A Case Study with Cyproconazole. Chemical research in toxicology. 2018 08; 31(8):784-798. doi: 10.1021/acs.chemrestox.8b00112. [PMID: 29995386]
  • E Zahn, J Wolfrum, C Knebel, T Heise, F Weiß, O Poetz, P Marx-Stoelting, S Rieke. Mixture effects of two plant protection products in liver cell lines. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018 Feb; 112(?):299-309. doi: 10.1016/j.fct.2017.12.067. [PMID: 29294346]
  • Philip Marx-Stoelting, Katrin Ganzenberg, Constanze Knebel, Flavia Schmidt, Svenja Rieke, Helen Hammer, Felix Schmidt, Oliver Pötz, Michael Schwarz, Albert Braeuning. Hepatotoxic effects of cyproconazole and prochloraz in wild-type and hCAR/hPXR mice. Archives of toxicology. 2017 Aug; 91(8):2895-2907. doi: 10.1007/s00204-016-1925-2. [PMID: 28058446]
  • F Schmidt, P Marx-Stoelting, W Haider, T Heise, C Kneuer, M Ladwig, S Banneke, S Rieke, L Niemann. Combination effects of azole fungicides in male rats in a broad dose range. Toxicology. 2016 04; 355-356(?):54-63. doi: 10.1016/j.tox.2016.05.018. [PMID: 27234313]
  • Virunya S Bhat, Susan D Hester, Stephen Nesnow, David A Eastmond. Concordance of transcriptional and apical benchmark dose levels for conazole-induced liver effects in mice. Toxicological sciences : an official journal of the Society of Toxicology. 2013 Nov; 136(1):205-15. doi: 10.1093/toxsci/kft182. [PMID: 23970803]
  • Pierre Leroux, Michel Gredt, Florent Remuson, Annie Micoud, Anne-Sophie Walker. Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae. Pest management science. 2013 Jan; 69(1):15-26. doi: 10.1002/ps.3408. [PMID: 23073993]
  • Lina Yang, Fangluan Gao, Liping Shang, Jiasui Zhan, Bruce A McDonald. Association between virulence and triazole tolerance in the phytopathogenic fungus Mycosphaerella graminicola. PloS one. 2013; 8(3):e59568. doi: 10.1371/journal.pone.0059568. [PMID: 23555044]
  • Hu Zhang, Mingrong Qian, Xinquan Wang, Xiangyun Wang, Hao Xu, Qiang Wang, Minghua Wang. HPLC-MS/MS enantioseparation of triazole fungicides using polysaccharide-based stationary phases. Journal of separation science. 2012 Apr; 35(7):773-81. doi: 10.1002/jssc.201100889. [PMID: 22532344]
  • Eveline Snelders, Simone M T Camps, Anna Karawajczyk, Gijs Schaftenaar, Gert H J Kema, Henrich A van der Lee, Corné H Klaassen, Willem J G Melchers, Paul E Verweij. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PloS one. 2012; 7(3):e31801. doi: 10.1371/journal.pone.0031801. [PMID: 22396740]
  • N Stamatis, D Hela, I Konstantinou. Occurrence and removal of fungicides in municipal sewage treatment plant. Journal of hazardous materials. 2010 Mar; 175(1-3):829-35. doi: 10.1016/j.jhazmat.2009.10.084. [PMID: 19942349]
  • Paul M White, Thomas L Potter, Albert K Culbreath. Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics. The Science of the total environment. 2010 Feb; 408(6):1393-402. doi: 10.1016/j.scitotenv.2009.11.012. [PMID: 20015538]
  • G Rijckaert. The effect of fungicides on seed yield and disease control in Italian ryegrass. Communications in agricultural and applied biological sciences. 2009; 74(3):907-12. doi: ". [PMID: 20222577]
  • Richard C Peffer, Jonathan G Moggs, Timothy Pastoor, Richard A Currie, Jayne Wright, Gill Milburn, Felix Waechter, Ivan Rusyn. Mouse liver effects of cyproconazole, a triazole fungicide: role of the constitutive androstane receptor. Toxicological sciences : an official journal of the Society of Toxicology. 2007 Sep; 99(1):315-25. doi: 10.1093/toxsci/kfm154. [PMID: 17557908]
  • Ramin Roohparvar, Aurelie Huser, Lute-Harm Zwiers, Maarten A De Waard. Control of Mycosphaerella graminicola on wheat seedlings by medical drugs known to modulate the activity of ATP-binding cassette transporters. Applied and environmental microbiology. 2007 Aug; 73(15):5011-9. doi: 10.1128/aem.00285-07. [PMID: 17545327]
  • J Zhan, C C Mundt, B A McDonald. Sexual reproduction facilitates the adaptation of parasites to antagonistic host environments: Evidence from empirical study in the wheat-Mycosphaerella graminicola system. International journal for parasitology. 2007 Jul; 37(8-9):861-70. doi: 10.1016/j.ijpara.2007.03.003. [PMID: 17451717]
  • Elislene Dias Drummond, Juliana Quero Reimão, Amanda Latercia Tranches Dias, Antônio Martins de Siqueira. [Behaviour azole fungicide and fluconazole in Cryptococcus neoformans clinical and environmental isolates]. Revista da Sociedade Brasileira de Medicina Tropical. 2007 Mar; 40(2):209-11. doi: 10.1590/s0037-86822007000200012. [PMID: 17568890]
  • Ignaz J Buerge, Thomas Poiger, Markus D Müller, Hans-Rudolf Buser. Influence of pH on the stereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils. Environmental science & technology. 2006 Sep; 40(17):5443-50. doi: 10.1021/es060817d. [PMID: 16999123]
  • J Zhan, F L Stefanato, B A McDonald. Selection for increased cyproconazole tolerance in Mycosphaerella graminicola through local adaptation and in response to host resistance. Molecular plant pathology. 2006 Jul; 7(4):259-68. doi: 10.1111/j.1364-3703.2006.00336.x. [PMID: 20507445]
  • Rahim Mehrabi, Theo Van der Lee, Cees Waalwijk, H J Kema Gert. MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Molecular plant-microbe interactions : MPMI. 2006 Apr; 19(4):389-98. doi: 10.1094/mpmi-19-0389. [PMID: 16610742]
  • Olga Aguín, J Pedro Mansilla, María J Sainz. In vitro selection of an effective fungicide against Armillaria mellea and control of white root rot of grapevine in the field. Pest management science. 2006 Mar; 62(3):223-8. doi: 10.1002/ps.1149. [PMID: 16475239]
  • S Bensoltane, M Youbi, H Djebar, M R Djebar. Effects of two systemic fungicides: Artea (Propiconazole+cyproconazole) and Punch (Flusilazole) on the physiology and the respiratory metabolism of durum wheat (Triticum durum L.). Communications in agricultural and applied biological sciences. 2006; 71(3 Pt B):1041-8. doi: . [PMID: 17390857]
  • Ioannis Stergiopoulos, Johannes G M van Nistelrooy, Gert H J Kema, Maarten A De Waard. Multiple mechanisms account for variation in base-line sensitivity to azole fungicides in field isolates of Mycosphaerella graminicola. Pest management science. 2003 Dec; 59(12):1333-43. doi: 10.1002/ps.766. [PMID: 14667055]
  • I Stergiopoulos, M M C Gielkens, S D Goodall, K Venema, M A De Waard. Molecular cloning and characterisation of three new ATP-binding cassette transporter genes from the wheat pathogen Mycosphaerella graminicola. Gene. 2002 May; 289(1-2):141-9. doi: 10.1016/s0378-1119(02)00505-x. [PMID: 12036592]