Reaction Process: Reactome:R-DME-209776
Metabolism of amine-derived hormones related metabolites
find 24 related metabolites which is associated with chemical reaction(pathway) Metabolism of amine-derived hormones
Iodine + L-Tyr ⟶ HI + MIT
Tetrahydrobiopterin
Tetrahydrobiopterin (CAS: 17528-72-2), also known as BH4, is an essential cofactor in the synthesis of neurotransmitters and nitric oxide (PMID: 16946131). In fact, it is used by all three human nitric-oxide synthases (NOS) eNOS, nNOS, and iNOS as well as the enzyme glyceryl-ether monooxygenase. It is also essential in the conversion of phenylalanine into tyrosine by the enzyme phenylalanine-4-hydroxylase; the conversion of tyrosine into L-dopa by the enzyme tyrosine hydroxylase; and the conversion of tryptophan into 5-hydroxytryptophan via tryptophan hydroxylase. Specifically, tetrahydrobiopterin is a cofactor for tryptophan 5-hydroxylase 1, tyrosine 3-monooxygenase, and phenylalanine hydroxylase, all of which are essential for the formation of the neurotransmitters dopamine, noradrenaline, and adrenaline. Tetrahydrobiopterin has been proposed to be involved in the promotion of neurotransmitter release in the brain and the regulation of human melanogenesis. A defect in BH4 production and/or a defect in the enzyme dihydropteridine reductase (DHPR) causes phenylketonuria type IV, as well as dopa-responsive dystonias. BH4 is also implicated in Parkinsons disease, Alzheimers disease, and depression. Tetrahydrobiopterin is present in probably every cell or tissue of higher animals. On the other hand, most bacteria, fungi and plants do not synthesize tetrahydrobiopterin (Wikipedia). A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products C26170 - Protective Agent > C275 - Antioxidant Tetrahydrobiopterin ((Rac)-Sapropterin) is a cofactor of the aromatic amino acid hydroxylases enzymes and also acts as an essential cofactor for all nitric oxide synthase (NOS) isoforms.
Iodotyrosine
Iodotyrosine is an iodated derivative of L-tyrosine. This is an early precursor to L-thyroxine, one of the primary thyroid hormones. In the thyroid gland, iodide is trapped, transported, and concentrated in the follicular lumen for thyroid hormone synthesis. Before trapped iodide can react with tyrosine residues, it must be oxidized by thyroid peroxidase. Iodotyrosine is made from tyrosine via thyroid peroxidase and then further iodinated by this enzyme to make the di-iodo and tri-iodo variants. Two molecules of di-iodotyrosine combine to form T4, and one molecule of mono-iodotyrosine combines with one molecule of di-iodotyrosine to form T3. An iodated derivative of L-tyrosine. This is an early precursor to L-thyroxine, one of the primary thyroid hormones. In the thyroid gland, iodide is trapped, transported, and concentrated in the follicular lumen for thyroid hormone synthesis. Before trapped iodide can react with tyrosine residues, it must be oxidized by thyroid peroxidase. Iodotyrosine is made from tyrosine via thyroid peroxidase and then further iodinated by this enzyme to make the di-iodo and tri-iodo variants. Two molecules of di-iodotyrosine combine to form T4, and one molecule of mono-iodotyrosine combines with one molecule of di-iodotyrosine to form T3. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones KEIO_ID I050; [MS3] KO009007 KEIO_ID I050; [MS2] KO009006 KEIO_ID I050; [MS3] KO009008 KEIO_ID I050 H-Tyr(3-I)-OH is a potent and effective tyrosine hydroxylase inhibitor. H-Tyr(3-I)-OH is an intermediate in the production of thyroid hormones and has a role as a human or mouse metabolite[1][2].
Thyroxine
Thyroxine (3,5,3‚Ä≤,5‚Ä≤-tetraiodothyronine) or T4 is one of two major hormones derived from the thyroid gland, the other being triiodothyronine (T3). The major form of thyroid hormone in the blood is thyroxine (T4), which has a longer half-life than T3. In humans, the ratio of T4 to T3 released into the blood is approximately 14:1. T4 is converted to the active T3 (three to four times more potent than T4) within cells by enzymes known as deiodinases (5‚Ä≤-iodinase). Thyroxine is synthesized via the iodination of tyrosines (monoiodotyrosine) and the coupling of iodotyrosines (diiodotyrosine) in the thyroglobulin. Iodine is critical to the synthesis of thyroxine and other thyroid hormones. Through a reaction with the enzyme thyroperoxidase, iodine is covalently bound to tyrosine residues found in the thyroglobulin protein, forming monoiodotyrosine (MIT) and diiodotyrosine (DIT). Linking two moieties of DIT produces thyroxine. Combining one molecule of MIT and one molecule of DIT produces triiodothyronine. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Iodide is actively absorbed from the bloodstream and concentrated in the thyroid follicles where thyroxine is produced. If there is a deficiency of dietary iodine, the thyroid enlarges in an attempt to trap more iodine, resulting in a condition called goitre. More specifically, the lack of thyroid hormones will lead to decreased negative feedback on the pituitary gland, leading to increased production of thyroid-stimulating hormone, which causes the thyroid to enlarge, leading to goitre. Thyroxine can be peripherally de-iodinated to form triiodothyronine which exerts a broad spectrum of stimulatory effects on cell metabolism. Thyroid hormones function via a well-studied set of nuclear receptors, termed the thyroid hormone receptors. They act on nearly every cell in the body. In particular, thyroid hormones act to increase the basal metabolic rate, affect protein synthesis, help regulate long bone growth (synergy with growth hormone) and neural maturation, and increase the bodys sensitivity to catecholamines (such as adrenaline) by permissiveness. The thyroid hormones are essential to proper development and differentiation of all cells of the human body. These hormones also regulate protein, fat, and carbohydrate metabolism, affecting how human cells use energetic compounds. They also stimulate vitamin metabolism. Numerous physiological and pathological stimuli influence thyroid hormone synthesis. Levothyroxine, a manufactured form of thyroxine, was the most prescribed medication in the United States with more than 114 million prescriptions. Thyroxine, one of the two major hormones secreted by the thyroid gland (the other is triiodothyronine). Thyroxine’s principal function is to stimulate the consumption of oxygen and thus the metabolism of all cells and tissues in the body. Thyroxine is formed by the molecular addition of iodine to the amino acid tyrosine while the latter is bound to the protein thyroglobulin. Excessive secretion of thyroxine in the body is known as hyperthyroidism, and the deficient secretion of it is called hypothyroidism. Thyroid hormones are any hormones produced and released by the thyroid gland, namely triiodothyronine (T3) and thyroxine (T4). They are tyrosine-based hormones that are primarily responsible for regulation of metabolism. T3 and T4 are partially composed of iodine, derived from food.[2] A deficiency of iodine leads to decreased production of T3 and T4, enlarges the thyroid tissue and will cause the disease known as simple goitre.[3] The major form of thyroid hormone in the blood is thyroxine (T4), whose half-life of around one week[4] is longer than that of T3.[5] In humans, the ratio of T4 to T3 released into the blood is approximately 14:1.[6] T4 is converted to the active T3 (three to four times more potent than T4) within cells by deiodinases (5′-deiodinase). These are further processed by decarboxylation and deiodination to produce iodothyronamine (T1a) and thyronamine (T0a). All three isoforms of the deiodinases are selenium-containing enzymes, thus dietary selenium is essential for T3 production. The thyroid hormone is one of the factors responsible for the modulation of energy expenditure. This is achieved through several mechanisms, such as mitochondrial biogenesis, adaptive thermogenesis, etc.[7] American chemist Edward Calvin Kendall was responsible for the isolation of thyroxine in 1915.[8] In 2020, levothyroxine, a manufactured form of thyroxine, was the second most commonly prescribed medication in the United States, with more than 98 million prescriptions.[9][10] Levothyroxine is on the World Health Organization's List of Essential Medicines.[11] (-)-Thyroxine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7488-70-2 (retrieved 2024-06-28) (CAS RN: 51-48-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). D-Thyroxine (D-T4) is a thyroid hormone that can inhibit TSH secretion. D-Thyroxine can be used for the research of hypercholesterolemia[1][2]. L-Thyroxine (Levothyroxine; T4) is a synthetic hormone for the research of hypothyroidism. DIO enzymes convert biologically active thyroid hormone (Triiodothyronine,T3) from L-Thyroxine (T4)[1].
Nicotinamide adenine dinucleotide phosphate
NADPH is the reduced form of NADP+, and NADP+ is the oxidized form of NADPH. Nicotinamide adenine dinucleotide phosphate (NADP) is a coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled with a pyrophosphate linkage to 5-phosphate adenosine 2,5-bisphosphate. NADP serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). NADP is formed through the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage (Dorland, 27th ed). This extra phosphate is added by the enzyme NAD+ kinase and removed via NADP+ phosphatase. NADP is also known as TPN (triphosphopyridine nucleotide) and it is an important cofactor used in anabolic reactions in all forms of cellular life. Examples include the Calvin cycle, cholesterol synthesis, fatty acid elongation, and nucleic acid synthesis (Wikipedia). Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled by pyrophosphate linkage to the 5-phosphate adenosine 2,5-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed.) [HMDB]. NADPH is found in many foods, some of which are american pokeweed, rice, ginseng, and ostrich fern. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
NADP+
[Spectral] NADP+ (exact mass = 743.07545) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Water
Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .
Oxygen
Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases
Hydrogen peroxide
Hydrogen peroxide (H2O2) is a very pale blue liquid that appears colourless in a dilute solution. H2O2 is slightly more viscous than water and is a weak acid. H2O2 is unstable and slowly decomposes in the presence of light. It has strong oxidizing properties and is, therefore, a powerful bleaching agent that is mostly used for bleaching paper. H2O2 has also found use as a disinfectant and as an oxidizer. H2O2 in the form of carbamide peroxide is widely used for tooth whitening (bleaching), both in professionally- and in self-administered products. H2O2 is a well-documented component of living cells and is a normal metabolite of oxygen in the aerobic metabolism of cells and tissues. A total of 31 human cellular H2O2 generating enzymes has been identified so far (PMID: 25843657). H2O2 plays important roles in host defence and oxidative biosynthetic reactions. At high levels (>100 nM) H2O2 is toxic to most cells due to its ability to non-specifically oxidize proteins, membranes and DNA, leading to general cellular damage and dysfunction. However, at low levels (<10 nM), H2O2 functions as a signalling agent, particularly in higher organisms. In plants, H2O2 plays a role in signalling to cause cell shape changes such as stomatal closure and root growth. As a messenger molecule in vertebrates, H2O2 diffuses through cells and tissues to initiate cell shape changes, to drive vascular remodelling, and to activate cell proliferation and recruitment of immune cells. H2O2 also plays a role in redox sensing, signalling, and redox regulation (PMID: 28110218). This is normally done through molecular redox “switches” such as thiol-containing proteins. The production and decomposition of H2O2 are tightly regulated (PMID: 17434122). In humans, H2O2 can be generated in response to various stimuli, including cytokines and growth factors. H2O2 is degraded by several enzymes including catalase and superoxide dismutase (SOD), both of which play important roles in keeping the amount of H2O2 in the body below toxic levels. H2O2 also appears to play a role in vitiligo. Vitiligo is a skin pigment disorder leading to patchy skin colour, especially among dark-skinned individuals. Patients with vitiligo have low catalase levels in their skin, leading to higher levels of H2O2. High levels of H2O2 damage the epidermal melanocytes, leading to a loss of pigment (PMID: 10393521). Accumulating evidence suggests that hydrogen peroxide H2O2 plays an important role in cancer development. Experimental data have shown that cancer cells produce high amounts of H2O2. An increase in the cellular levels of H2O2 has been linked to several key alterations in cancer, including DNA changes, cell proliferation, apoptosis resistance, metastasis, angiogenesis and hypoxia-inducible factor 1 (HIF-1) activation (PMID: 17150302, 17335854, 16677071, 16607324, 16514169). H2O2 is found in most cells, tissues, and biofluids. H2O2 levels in the urine can be significantly increased with the consumption of coffee and other polyphenolic-containing beverages (wine, tea) (PMID: 12419961). In particular, roasted coffee has high levels of 1,2,4-benzenetriol which can, on its own, lead to the production of H2O2. Normal levels of urinary H2O2 in non-coffee drinkers or fasted subjects are between 0.5-3 uM/mM creatinine whereas, for those who drink coffee, the levels are between 3-10 uM/mM creatinine (PMID: 12419961). It is thought that H2O2 in urine could act as an antibacterial agent and that H2O2 is involved in the regulation of glomerular function (PMID: 10766414). A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives It is used in foods as a bleaching agent, antimicrobial agent and oxidising agent C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides D000890 - Anti-Infective Agents
Iodide
Iodide can function as an antioxidant as it is a reducing species that can detoxify reactive oxygen species such as hydrogen peroxide. Over three billion years ago, blue-green algae were the most primitive oxygenic photosynthetic organisms and are the ancestors of multicellular eukaryotic algae (1). Algae that contain the highest amount of iodine (1-3 \\% of dry weight) and peroxidase enzymes, were the first living cells to produce poisonous oxygen in the atmosphere. Therefore algal cells required a protective antioxidant action of their molecular components, in which iodides, through peroxidase enzymes, seem to have had this specific role. In fact, iodides are greatly present and available in the sea, where algal phytoplankton, the basis of marine food-chain, acts as a biological accumulator of iodides, selenium, (and n-3 fatty acids) :; Antioxidant biochemical mechanism of iodides, probably one of the most ancient mechanisms of defense from poisonous reactive oxygen species:; An iodide ion is an iodine atom with a -1 charge. Compounds with iodine in formal oxidation state -1 are called iodides. This can include ionic compounds such as caesium iodide or covalent compounds such as phosphorus triiodide. This is the same naming scheme as is seen with chlorides and bromides. The chemical test for an iodide compound is to acidify the aqueous compound by adding some drops of acid, to dispel any carbonate ions present, then adding lead(II) nitrate, yielding a bright yellow precipitate of lead iodide. Most ionic iodides are soluble, with the exception of yellow silver iodide and yellow lead iodide. Aqueous solutions of iodide dissolve iodine better than pure water due to the formation of complex ions: [HMDB]. Iodide is found in many foods, some of which are breakfast cereal, star anise, annual wild rice, and peppermint. Iodide can function as an antioxidant as it is a reducing species that can detoxify reactive oxygen species such as hydrogen peroxide. Over three billion years ago, blue-green algae were the most primitive oxygenic photosynthetic organisms and are the ancestors of multicellular eukaryotic algae (1). Algae that contain the highest amount of iodine (1-3 \\% of dry weight) and peroxidase enzymes, were the first living cells to produce poisonous oxygen in the atmosphere. Therefore algal cells required a protective antioxidant action of their molecular components, in which iodides, through peroxidase enzymes, seem to have had this specific role. In fact, iodides are greatly present and available in the sea, where algal phytoplankton, the basis of marine food-chain, acts as a biological accumulator of iodides, selenium, (and n-3 fatty acids) :; Antioxidant biochemical mechanism of iodides, probably one of the most ancient mechanisms of defense from poisonous reactive oxygen species:; An iodide ion is an iodine atom with a -1 charge. Compounds with iodine in formal oxidation state -1 are called iodides. This can include ionic compounds such as caesium iodide or covalent compounds such as phosphorus triiodide. This is the same naming scheme as is seen with chlorides and bromides. The chemical test for an iodide compound is to acidify the aqueous compound by adding some drops of acid, to dispel any carbonate ions present, then adding lead(II) nitrate, yielding a bright yellow precipitate of lead iodide. Most ionic iodides are soluble, with the exception of yellow silver iodide and yellow lead iodide. Aqueous solutions of iodide dissolve iodine better than pure water due to the formation of complex ions:. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Iodine
Elemental iodine (I2) is poisonous if taken orally in larger amounts; 2?3 grams of it is a lethal dose for an adult human.; Elemental iodine is an oxidizing irritant and direct contact with skin can cause lesions, so iodine crystals should be handled with care. Solutions with high elemental iodine concentration such as tincture of iodine are capable of causing tissue damage if use for cleaning and antisepsis is prolonged.; In many ways, 129I is similar to 36Cl. It is a soluble halogen, fairly non-reactive, exists mainly as a non-sorbing anion, and is produced by cosmogenic, thermonuclear, and in-situ reactions. In hydrologic studies, 129I concentrations are usually reported as the ratio of 129I to total I (which is virtually all 127I). As is the case with 36Cl/Cl, 129I/I ratios in nature are quite small, 10?14 to 10?10 (peak thermonuclear 129I/I during the 1960s and 1970s reached about 10?7). 129I differs from 36Cl in that its halflife is longer (15.7 vs. 0.301 million years), it is highly biophilic, and occurs in multiple ionic forms (commonly, I? and IO3?) which have different chemical behaviors. This makes it fairly easy for 129I to enter the biosphere as it becomes incorporated into vegetation, soil, milk, animal tissue, etc.; Iodic acid (HIO3) and its salts are strong oxidizers. Periodic acid (HIO4) cleaves vicinal diols along the C-C bond to give aldehyde fragments. 2-Iodoxybenzoic acid and Dess-Martin periodinane are hypervalent iodine oxidants used to specifically oxidize alcohols to ketones or aldehydes. Iodine pentoxide is a strong oxidant as well.; Iodine (pronounced /?a?.?da?n/ EYE-o-dyne, /?a?.?d?n/ EYE-o-d?n, or in chemistry /?a?.?di?n/ EYE-o-deen; from Greek: ????? iodes "violet"), is a chemical element that has the symbol I and atomic number 53. Naturally-occurring iodine is a single isotope with 74 neutrons. Chemically, iodine is the second least reactive of the halogens, and the second most electropositive halogen, trailing behind astatine in both of these categories. However, the element does not occur in the free state in nature. As with all other halogens (members of Group 17 in the periodic table), when freed from its compounds iodine forms diatomic molecules (I2).; Iodine forms many compounds. Potassium iodide is the most commercially significant iodine compound. It is a convenient source of the iodide anion; it is easier to handle than sodium iodide because it is not hygroscopic. Sodium iodide is especially useful in the Finkelstein reaction, because it is soluble in acetone, while potassium iodide is poorly so. In this reaction, an alkyl chloride is converted to an alkyl iodide. This relies on the insolubility of sodium chloride in acetone to drive the reaction:; Iodine is a common general stain used in thin-layer chromatography. It is also used in the Gram stain as a mordant, after the sample is treated with crystal violet.; Iodine is an essential trace element for life, the heaviest element commonly needed by living organisms, and the second-heaviest known to be used by any form of life (only tungsten, a component of a few bacterial enzymes, has a higher atomic number and atomic weight). Iodines main role in animal biology is as constituents of the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). These are made from addition condensation products of the amino acid tyrosine, and are stored prior to release in an iodine-containing protein called thyroglobulin. T4 and T3 contain four and three atoms of iodine per molecule, respectively. The thyroid gland actively absorbs iodide from the blood to make and release these hormones into the blood, actions which are regulated by a second hormone TSH from the pituitary. Thyroid hormones are phylogenetically very old molecules which are synthesized by most multicellular organisms, and which even have some effect on unicellular organisms.; Iodine is an essential trace element. Chemically, iodine is the least reactive of the halogens, and the most ele... Iodine is an essential trace element. Chemically, iodine is the least reactive of the halogens, and the most electropositive halogen after astatine. However, iodine does not occur in the free state in nature. As with all other halogens , when freed from its compounds iodine forms diatomic molecules (I2). Iodine and its compounds are primarily used in medicine, photography, and dyes. Iodine is required for the production of thyroid hormones, which are essential for normal brain development, and the fetus, newborn, and young child are particularly vulnerable to iodine deficiency. Physiologically, iodine exists as an ion in the body. The iodine requirement increases during pregnancy and recommended intakes are in the range of 220-250 microg/day. Monitoring iodine status during pregnancy is a challenge. New recommendations from World Health Organization suggest that a median urinary iodine concentration >250 microg/L and <500 microg/L indicates adequate iodine intake in pregnancy. Based on this range, it appears that many pregnant women in have inadequate intakes. Thyroid-stimulating hormone concentration in the newborn is a sensitive indicator of mild iodine deficiency in late pregnancy. The potential adverse effects of mild iodine deficiency during pregnancy are uncertain. Controlled trials of iodine supplementation in mildly iodine-deficient pregnant women suggest beneficial effects on maternal and newborn serum thyroglobulin and thyroid volume, but no effects on maternal and newborn total or free thyroid hormone concentrations. There are no long-term data on the effect of iodine supplementation on birth outcomes or infant development. New data from well-controlled studies indicate that iodine repletion in moderately iodine-deficient school-age children has clear benefits: it improves cognitive and motor function; it also increases concentrations of insulin-like growth factor 1 and insulin-like growth factor-binding protein 3, and improves somatic growth. (PMID: 17956157). D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AG - Iodine products D018977 - Micronutrients > D014131 - Trace Elements D000890 - Anti-Infective Agents
Reverse-triiodthyronine
This compound belongs to the family of Phenylpropanoic Acids. These are compounds whose structure contain a benzene ring conjugated to a propanoic acid. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
4a-Hydroxytetrahydrobiopterin
Tetrahydrobiopterin (BH4) is essential for catalyzing the conversion of phenylalanine into tyrosine by phenylalanine hydroxylase. During this physiological reaction, the oxidation of BH4 creates 4a-hydroxytetrahydropterin (CAS: 70110-58-6) intermediates and hydrogen peroxide is formed. The hydrogen peroxide and the hydroxytetrahydropterin can both be derived from alternate breakdown routes of a common precursor, the corresponding 4a-hydroperoxytetrahydropterin (PMID: 8323303). Tetrahydrobiopterin (BH4) is essential to catalyze the conversion of phenylalanine to tyrosine by phenylalanine hydroxylase. During this physiological reaction, the oxidation of BH4 creates 4a-hydroxytetrahydropterin intermediates and hydrogen peroxide is formed. The hydrogen peroxide and the hydroxytetrahydropterin can both derive from alternate routes of breakdown of a common precursor, the corresponding 4a-hydroperoxytetrahydropterin. (PMID 8323303) [HMDB]
Hydrogen Ion
Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])
(2S)-2-azaniumyl-3-(3,4-dihydroxyphenyl)propanoate
(2S)-2-ammonio-3-(5-hydroxy-1H-indol-3-yl)propanoate
Intropin
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents COVID info from COVID-19 Disease Map D002317 - Cardiovascular Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
(2S)-2-ammonio-3-(3,5-diiodo-4-oxidophenyl)propanoate
(2R)-2-(3,4-dihydroxyphenyl)-2-hydroxyethanaminium
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS