Reaction Process: PlantCyc:PLANT_PWY-7149

superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium) related metabolites

find 22 related metabolites which is associated with chemical reaction(pathway) superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)

3,6,7-trimethylquercetagetin + SAM ⟶ 3,6,7,4'-tetramethylquercetagetin + H+ + SAH

3,7-Dimethylquercetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-3,7-dimethoxy-

C17H14O7 (330.0739494)


3,4,5-trihydroxy-3,7-dimethoxyflavone is a dimethoxyflavone that the 3,7-di-O-methyl derivative of quercetin. It has a role as an EC 1.3.1.22 [3-oxo-5alpha-steroid 4-dehydrogenase (NADP(+))] inhibitor and a metabolite. It is a trihydroxyflavone and a dimethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3,7-dimethoxyflavone(1-). 3,7-Di-O-methylquercetin is a natural product found in Wollastonia biflora, Psiadia viscosa, and other organisms with data available. 3,7-Dimethylquercetin is found in beer. 3,7-Dimethylquercetin is isolated from various plants including many Asteraceae [CCD Isolated from various plants including many Asteraceae [CCD]. 3,7-Dimethylquercetin is found in beer and grape wine. A dimethoxyflavone that the 3,7-di-O-methyl derivative of quercetin.

   

Ayanin

4H-1-BENZOPYRAN-4-ONE, 5-HYDROXY-2-(3-HYDROXY-4-METHOXYPHENYL)-3,7-DIMETHOXY-

C18H16O7 (344.0895986)


3,5-dihydroxy-3,4,7-trimethoxyflavone is a trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups. It has a role as a plant metabolite. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,5-dihydroxy-3,4,7-trimethoxyflavone(1-). Ayanin is a natural product found in Psiadia viscosa, Solanum pubescens, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups.

   

chrysoplenol D

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-3,6,7-trimethoxy-

C18H16O8 (360.0845136)


3,4,5-trihydroxy-3,6,7-trimethoxyflavone is a trimethoxyflavone that is the 3,6,7-trimethyl ether derivative of quercetagetin. It has a role as an antineoplastic agent and a metabolite. It is a trihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetagetin. Chrysosplenol D is a natural product found in Psiadia viscosa, Chrysosplenium oppositifolium, and other organisms with data available. See also: Vitex negundo fruit (part of). Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4]. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4].

   

Water

oxidane

H2O (18.0105642)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Oxygen

Molecular oxygen

O2 (31.98983)


Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Carbon dioxide

Carbonic acid anhydride

CO2 (43.98983)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Tomentin

2- (3,4-Dihydroxyphenyl) -5,6-dihydroxy-3,7-dimethoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0688644)


   

Chrysosplenol

5,6-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one

C18H16O8 (360.0845136)


Chrysosplenol, also known as quercetagetin 3,7,3-trimethyl ether or 4,5,6-trihydroxy-3,3,7-trimethoxyflavone, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, chrysosplenol is considered to be a flavonoid lipid molecule. Chrysosplenol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Chrysosplenol can be found in german camomile, which makes chrysosplenol a potential biomarker for the consumption of this food product.

   
   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

Artemetin

4H-1-Benzopyran-4-one, 2-(3,4-dimethoxyphenyl)-5-hydroxy-3,6,7-trimethoxy-

C20H20O8 (388.115812)


Artemetin is found in common verbena. Artemetin is a constituent of Artemisia species, Kuhnia eupatorioides (preferred genus name Brickellia), Achillea species, Brickellia species and others in the Compositae [CCD] Constituent of Artemisia subspecies, Kuhnia eupatorioides (preferred genus name Brickellia), Achillea subspecies, Brickellia subspecies and others in the Compositae [CCD]. Artemetin is found in common verbena. Artemetin is a member of flavonoids and an ether. Artemetin is a natural product found in Achillea santolina, Psiadia viscosa, and other organisms with data available. Artemitin is a flavonol found in Laggera pterodonta (DC.) Benth., with antioxidative, anti-inflammatory, and antiviral activity[1]. Artemitin is a flavonol found in Laggera pterodonta (DC.) Benth., with antioxidative, anti-inflammatory, and antiviral activity[1].

   

Casticin

5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,6,7-trimethoxy-4H-benzopyran-4-one, 9CI

C19H18O8 (374.1001628)


Casticin is a tetramethoxyflavone that consists of quercetagetin in which the hydroxy groups at positions 3, 6, 7 and 4 have been replaced by methoxy groups. It has been isolated from Eremophila mitchellii. It has a role as an apoptosis inducer and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Casticin is a natural product found in Psiadia viscosa, Psiadia dentata, and other organisms with data available. See also: Chaste tree fruit (part of). A tetramethoxyflavone that consists of quercetagetin in which the hydroxy groups at positions 3, 6, 7 and 4 have been replaced by methoxy groups. It has been isolated from Eremophila mitchellii. Casticin is found in fruits. Casticin is a constituent of Vitex agnus-castus (agnus castus) seeds Casticin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=479-91-4 (retrieved 2024-07-01) (CAS RN: 479-91-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3. Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3.

   

S-Adenosyl-L-methionine

S-Adenosyl-L-methionine

C15H23N6O5S+ (399.1450568)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Coenzyme II

Coenzyme II

C21H25N7O17P3-3 (740.051977)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

Uridine-diphosphate

Uridine-diphosphate

C9H11N2O12P2-3 (400.9787246)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5-S-[(3S)-3-azaniumyl-3-carboxylatopropyl]-5-thioadenosine

5-S-[(3S)-3-azaniumyl-3-carboxylatopropyl]-5-thioadenosine

C14H20N6O5S (384.12158300000004)


   
   

3,4,5-Trihydroxy-3-methoxyflavon-7-olate

3,4,5-Trihydroxy-3-methoxyflavon-7-olate

C16H11O7- (315.0504756)


The conjugate base of 3,4,5,7-tetrahydroxy-3-methoxyflavone arising from selective deprotonation of the 7-hydroxy group; major species at pH 7.3.

   

(2R,4S,5R,6R)-5-acetamido-2-[[(2R,3R,4S,5R,6S)-6-[(2R,3S,4R,5R,6S)-5-acetamido-6-[(2R,3S,4S,5S,6R)-2-[(2S,3S,4S,5R,6R)-2-[(2R,3S,4R,5R,6S)-5-acetamido-6-[(2R,3S,4R,5S)-5-acetamido-1,2,4,6-tetrahydroxyhexan-3-yl]oxy-4-hydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-[[(2S,3S,4S,5S,6R)-3,5-bis[[(2S,3R,4R,5S,6R)-3-acetamido-5-[(2S,3R,4S,5S,6R)-4-[(2S,4S,5R,6R)-5-acetamido-2-carboxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3,5-dihydroxyoxan-4-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-4-hydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

(2R,4S,5R,6R)-5-acetamido-2-[[(2R,3R,4S,5R,6S)-6-[(2R,3S,4R,5R,6S)-5-acetamido-6-[(2R,3S,4S,5S,6R)-2-[(2S,3S,4S,5R,6R)-2-[(2R,3S,4R,5R,6S)-5-acetamido-6-[(2R,3S,4R,5S)-5-acetamido-1,2,4,6-tetrahydroxyhexan-3-yl]oxy-4-hydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-[[(2S,3S,4S,5S,6R)-3,5-bis[[(2S,3R,4R,5S,6R)-3-acetamido-5-[(2S,3R,4S,5S,6R)-4-[(2S,4S,5R,6R)-5-acetamido-2-carboxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3,5-dihydroxyoxan-4-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-4-hydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C109H180N8O80 (2881.0262199999997)