Reaction Process: Plant Reactome:R-OSA-5096066
Amine and polyamine biosynthesis related metabolites
find 25 related metabolites which is associated with chemical reaction(pathway) Amine and polyamine biosynthesis
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
Allantoin
Allantoin is an imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. It has a role as a vulnerary, a human metabolite, a Saccharomyces cerevisiae metabolite and an Escherichia coli metabolite. It is a member of ureas and an imidazolidine-2,4-dione. It is functionally related to a hydantoin. It is a tautomer of a 1-(5-hydroxy-2-oxo-2,3-dihydroimidazol-4-yl)urea. Allantoin is a substance that is endogenous to the human body and also found as a normal component of human diets. In healthy human volunteers, the mean plasma concentration of allantoin is about 2-3 mg/l. During exercise, the plasma allantoin concentration rapidly increases about two fold and remains elevated. In human muscle, urate is oxidized to allantoin during such exercise. The concentration of allantoin in muscles increases from a resting value of about 5000 ug/kg to about 16000 ug/kg immediately after short-term exhaustive cycling exercise. More specifically, allantoin is a diureide of glyoxylic acid that is produced from uric acid. It is a major metabolic intermediate in most organisms. Allantoin is found in OTC cosmetic products and other commercial products such as oral hygiene products, in shampoos, lipsticks, anti-acne products, sun care products, and clarifying lotions. Allantoin has also demonstrated to ameliorate the wound healing process in some studies. Allantoin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Allantoin is a natural product found in Aristolochia gigantea, Rhinacanthus, and other organisms with data available. Allantoin is a mineral with formula of C4H6N4O3. The corresponding IMA (International Mineralogical Association) number is IMA2020-004a. The IMA symbol is Aan. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard Allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as shampoos, lipsticks, various cosmetic lotions and creams and other cosmetic and pharmaceutical products. Allantoin is a metabolite found in or produced by Saccharomyces cerevisiae. A urea hydantoin that is found in URINE and PLANTS and is used in dermatological preparations. See also: Alcloxa (active moiety of); Comfrey Leaf (part of); Comfrey Root (part of) ... View More ... Allantoin is a chemical compound with formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a diureide of glyoxylic acid. Named after the allantois, an amniote embryonic excretory organ in which it concentrates during development in most mammals except humans and higher apes, it is a product of oxidation of uric acid by purine catabolism. After birth, it is the predominant means by which nitrogenous waste is excreted in the urine of these animals. In humans and higher apes, the metabolic pathway for conversion of uric acid to allantoin is not present, so the former is excreted. Recombinant rasburicase is sometimes used as a drug to catalyze this metabolic conversion in patients. In fish, allantoin is broken down further (into ammonia) before excretion. Allantoin is a major metabolic intermediate in many other organisms including plants and bacteria.; Its chemical formula is C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a diureide of glyoxylic acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. Allantoin is a botanical extract of the comfrey plant and is used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulate growth of healthy tissue. This extract can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a product of the oxidation of uric acid. It is also a product of purine metabolism in most mammals except for higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard, allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as in shampoos, lipsticks, various cosmetic lotions and creams, and other cosmetic and pharmaceutical products. It is also a metabolite of Bacillus (PMID: 18302748) and Streptomyces (PMID: 24292080). An imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. Allantoin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5377-33-3 (retrieved 2024-06-29) (CAS RN: 97-59-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth.
5-methylthioadenosine (MTA)
5-Methylthioadenosine, also known as MTA or thiomethyladenosine, belongs to the class of organic compounds known as 5-deoxy-5-thionucleosides. These are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-Methylthioadenosine is metabolized solely by MTA-phosphorylase, to yield 5-methylthioribose-1-phosphate and adenine, a crucial step in the methionine and purine salvage pathways, respectively. 5-Methylthioadenosine exists in all living species, ranging from bacteria to humans. 5-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside present in all mammalian tissues. Within humans, 5-methylthioadenosine participates in a number of enzymatic reactions. In particular, 5-methylthioadenosine and spermidine can be biosynthesized from S-adenosylmethioninamine and putrescine through the action of the enzyme spermidine synthase. In addition, 5-methylthioadenosine can be converted into 5-methylthioribose 1-phosphate and L-methionine; which is catalyzed by the enzyme S-methyl-5-thioadenosine phosphorylase. It is produced from S-adenosylmethionine mainly through the polyamine biosynthetic pathway, where it behaves as a powerful inhibitory product. For instance, 5-Methylthioadenosine has been shown to influence the regulation of gene expression, proliferation, differentiation, and apoptosis (PMID:15313459). In humans, 5-methylthioadenosine is involved in the metabolic disorder called hypermethioninemia. Outside of the human body, 5-Methylthioadenosine has been detected, but not quantified in several different foods, such as soursops, allspices, summer grapes, alaska wild rhubarbs, and breadfruits. Elevated excretion appears in children with severe combined immunodeficiency syndrome (SCID) (PMID:3987052). Evidence suggests that 5-Methylthioadenosine can affect cellular processes in many ways. 5-Methylthioadenosine can be found in human urine. 5-deoxy-5-methylthioadenosine, also known as S-methyl-5-thioadenosine or mta, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-deoxy-5-methylthioadenosine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-deoxy-5-methylthioadenosine can be found in a number of food items such as allspice, sesame, roselle, and bayberry, which makes 5-deoxy-5-methylthioadenosine a potential biomarker for the consumption of these food products. 5-deoxy-5-methylthioadenosine can be found primarily in blood and urine, as well as in human fibroblasts, platelet and prostate tissues. 5-deoxy-5-methylthioadenosine exists in all living species, ranging from bacteria to humans. In humans, 5-deoxy-5-methylthioadenosine is involved in a couple of metabolic pathways, which include methionine metabolism and spermidine and spermine biosynthesis. 5-deoxy-5-methylthioadenosine is also involved in several metabolic disorders, some of which include glycine n-methyltransferase deficiency, methionine adenosyltransferase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, and hypermethioninemia. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2].
Glycerate
Glyceric acid is a colourless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria, an inborn error of metabolism, and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive, and metabolic acidosis. At sufficiently high levels, glyceric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Glyceric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glyceric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Elevated values may also be due to microbial sources such as yeast (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). Glyceric acid is isolated from various plants (e.g. brassicas, pulses, and Vicia faba). A colorless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive and metabolic acidosis.; Glyceric acid is a natural three-carbon sugar acid. Salts and esters of glyceric acid are known as glycerates. Glyceric acid is found in many foods, some of which are peanut, common grape, garden tomato (variety), and french plantain. Glyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=473-81-4 (retrieved 2024-06-29) (CAS RN: 473-81-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Nicotinamide adenine dinucleotide phosphate
NADPH is the reduced form of NADP+, and NADP+ is the oxidized form of NADPH. Nicotinamide adenine dinucleotide phosphate (NADP) is a coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled with a pyrophosphate linkage to 5-phosphate adenosine 2,5-bisphosphate. NADP serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). NADP is formed through the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage (Dorland, 27th ed). This extra phosphate is added by the enzyme NAD+ kinase and removed via NADP+ phosphatase. NADP is also known as TPN (triphosphopyridine nucleotide) and it is an important cofactor used in anabolic reactions in all forms of cellular life. Examples include the Calvin cycle, cholesterol synthesis, fatty acid elongation, and nucleic acid synthesis (Wikipedia). Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled by pyrophosphate linkage to the 5-phosphate adenosine 2,5-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed.) [HMDB]. NADPH is found in many foods, some of which are american pokeweed, rice, ginseng, and ostrich fern. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Glyoxylic acid
Glyoxylic acid or oxoacetic acid is an organic compound that is both an aldehyde and a carboxylic acid. Glyoxylic acid is a liquid with a melting point of -93°C and a boiling point of 111°C. It is an intermediate of the glyoxylate cycle, which enables certain organisms to convert fatty acids into carbohydrates. The conjugate base of glyoxylic acid is known as glyoxylate (PMID: 16396466). In humans, glyoxylate is produced via two pathways: (1) through the oxidation of glycolate in peroxisomes and (2) through the catabolism of hydroxyproline in mitochondria. In the peroxisomes, glyoxylate is converted into glycine by glyoxylate aminotransferase (AGT1) or into oxalate by glycolate oxidase. In the mitochondria, glyoxylate is converted into glycine by mitochondrial glyoxylate aminotransferase AGT2 or into glycolate by glycolate reductase. A small amount of glyoxylate is converted into oxalate by cytoplasmic lactate dehydrogenase. Glyoxylic acid is found to be associated with primary hyperoxaluria I, which is an inborn error of metabolism. Under certain circumstances, glyoxylate can be a nephrotoxin and a metabotoxin. A nephrotoxin is a compound that causes damage to the kidney and kidney tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. High levels of glyoxylate are involved in the development of hyperoxaluria, a key cause of nephrolithiasis (commonly known as kidney stones). Glyoxylate is both a substrate and inductor of sulfate anion transporter-1 (SAT-1), a gene responsible for oxalate transportation, allowing it to increase SAT-1 mRNA expression, and as a result oxalate efflux from the cell. The increased oxalate release allows the buildup of calcium oxalate in the urine, and thus the eventual formation of kidney stones. As an aldehyde, glyoxylate is also highly reactive and will modify proteins to form advanced glycation products (AGEs). Glyoxylic acid, also known as alpha-ketoacetic acid or glyoxylate, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Glyoxylic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Glyoxylic acid can be found in a number of food items such as european chestnut, cowpea, wheat, and common thyme, which makes glyoxylic acid a potential biomarker for the consumption of these food products. Glyoxylic acid can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout all human tissues. Glyoxylic acid exists in all living species, ranging from bacteria to humans. In humans, glyoxylic acid is involved in a couple of metabolic pathways, which include alanine metabolism and glycine and serine metabolism. Glyoxylic acid is also involved in several metabolic disorders, some of which include lactic acidemia, pyruvate carboxylase deficiency, 3-phosphoglycerate dehydrogenase deficiency, and hyperglycinemia, non-ketotic. Moreover, glyoxylic acid is found to be associated with transurethral resection of the prostate and primary hyperoxaluria I. Glyoxylic acid or oxoacetic acid is an organic compound. Together with acetic acid, glycolic acid, and oxalic acid, glyoxylic acid is one of the C2 carboxylic acids. It is a colourless solid that occurs naturally and is useful industrially . KEIO_ID G013
Urea
Urea is a highly soluble organic compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids. Urea is formed in a cyclic pathway known simply as the urea cycle. In this cycle, amino groups donated by ammonia and L-aspartate are converted to urea. Urea is essentially a waste product; it has no physiological function. It is dissolved in blood (in humans in a concentration of 2.5 - 7.5 mmol/liter) and excreted by the kidney in the urine. In addition, a small amount of urea is excreted (along with sodium chloride and water) in human sweat. Urea is found to be associated with primary hypomagnesemia, which is an inborn error of metabolism. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis Formulation aid. Cattle feed supplement. Urea is found in many foods, some of which are globe artichoke, hickory nut, hard wheat, and cherry tomato. D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.
Allantoic acid
Allantoic acid is the end product of Allantoicase [EC:3.5.3.4], an enzyme involved in uric acid degradation (Purine metabolism). Although it is commonly accepted that allantoicase is lost in mammals, it has been identified in mice and humans. (PMID 11852104). A crystalline, transparent, colorless substance found in the allantoic liquid of the fetal calf. It was formerly called allantoic acid and amniotic acid. Isolated from coffee beans and leaves KEIO_ID A139 Allantoic acid is a degradative product of uric acid and associated with purine metabolism[1][2][3].
NADP+
[Spectral] NADP+ (exact mass = 743.07545) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Water
Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .
Carbon dioxide
Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases
ammonia
An azane that consists of a single nitrogen atom covelently bonded to three hydrogen atoms. Ammonia, also known as nh3 or ammonia solution, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Ammonia can be found in a number of food items such as rose hip, yardlong bean, cereals and cereal products, and ceylon cinnamon, which makes ammonia a potential biomarker for the consumption of these food products. Ammonia can be found primarily in blood, cellular cytoplasm, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Ammonia exists in all eukaryotes, ranging from yeast to humans. In humans, ammonia is involved in several metabolic pathways, some of which include glucose-alanine cycle, phenylalanine and tyrosine metabolism, homocysteine degradation, and d-arginine and d-ornithine metabolism. Ammonia is also involved in several metabolic disorders, some of which include ureidopropionase deficiency, hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], non ketotic hyperglycinemia, and beta-mercaptolactate-cysteine disulfiduria. Moreover, ammonia is found to be associated with 3-Hydroxy-3-methylglutaryl-CoA lyase deficiency, 3-Methyl-crotonyl-glycinuria, citrullinemia type I, and short bowel syndrome. Ammonia is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ammonia or azane is a compound of nitrogen and hydrogen with the formula NH3. The simplest pnictogen hydride, ammonia is a colourless gas with a characteristic pungent smell. It is a common nitrogenous waste, particularly among aquatic organisms, and it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceutical products and is used in many commercial cleaning products . Acute Exposure: EYES: irrigate opened eyes for several minutes under running water. INGESTION: do not induce vomiting. Rinse mouth with water (never give anything by mouth to an unconscious person). Seek immediate medical advice. SKIN: should be treated immediately by rinsing the affected parts in cold running water for at least 15 minutes, followed by thorough washing with soap and water. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. INHALATION: supply fresh air. If required provide artificial respiration. (z)-n-coumaroyl-5-hydroxyanthranilic acid is a member of the class of compounds known as avenanthramides. Avenanthramides are a group of phenolic alkaloids consisting of conjugate of three phenylpropanoids (ferulic, caffeic, or p-coumaric acid) and anthranilic acid (z)-n-coumaroyl-5-hydroxyanthranilic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (z)-n-coumaroyl-5-hydroxyanthranilic acid can be found in cereals and cereal products and oat, which makes (z)-n-coumaroyl-5-hydroxyanthranilic acid a potential biomarker for the consumption of these food products.
N-Carbamoylputrescine
Alkaloid from Hordeum vulgare (barley) and Sesamum indicum (sesame). N-Carbamoylputrescine is found in many foods, some of which are new zealand spinach, cupuaçu, common oregano, and agar. N-Carbamoylputrescine is found in cereals and cereal products. N-Carbamoylputrescine is an alkaloid from Hordeum vulgare (barley) and Sesamum indicum (sesame).
(S)-Ureidoglycolic acid
(S)-Ureidoglycolic acid is a substrate of enzyme ureidoglycolate dehydrogenase [EC 1.1.1.154] in purine metabolism pathway (KEGG). [HMDB] (S)-Ureidoglycolic acid is a substrate of enzyme ureidoglycolate dehydrogenase [EC 1.1.1.154] in purine metabolism pathway (KEGG).
Tartronate semialdehyde
Tartronate semialdehyde is an intermediate in ascorbate and aldarate as well as glyoxylate and dicarboxylate metabolism. It is generated from 2-dehydro-3-deoxy-D-glucarate and 5-dehydro-4-deoxy-D-glucarate via the enzyme 2-dehydro-3-deoxyglucarate aldolase [EC:4.1.2.20]. [HMDB]. Tartronate semialdehyde is found in many foods, some of which are wild leek, common salsify, sunflower, and new zealand spinach. Tartronate semialdehyde is an intermediate in ascorbate and aldarate as well as glyoxylate and dicarboxylate metabolism. It is generated from 2-dehydro-3-deoxy-D-glucarate and 5-dehydro-4-deoxy-D-glucarate via the enzyme 2-dehydro-3-deoxyglucarate aldolase [EC:4.1.2.20].
Ammonium
Ammonium, also known as ammonium(1+) or nh4+, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Ammonium can be found in a number of food items such as irish moss, sago palm, sorghum, and malabar spinach, which makes ammonium a potential biomarker for the consumption of these food products. Ammonium can be found primarily in blood and sweat. Ammonium exists in all living species, ranging from bacteria to humans. In humans, ammonium is involved in the the oncogenic action of 2-hydroxyglutarate. Ammonium is also involved in a couple of metabolic disorders, which include the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria and the oncogenic action of l-2-hydroxyglutarate in hydroxygluaricaciduria. Moreover, ammonium is found to be associated with n-acetylglutamate synthetase deficiency. The ammonium cation is a positively charged polyatomic ion with the chemical formula NH+ 4. It is formed by the protonation of ammonia (NH3). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations (NR+ 4), where one or more hydrogen atoms are replaced by organic groups (indicated by R) . Ammonium is an important source of nitrogen for many plant species, especially those growing on hypoxic soils. However, it is also toxic to most crop species and is rarely applied as a sole nitrogen source. The ammonium (more obscurely: aminium) cation is a positively charged polyatomic cation with the chemical formula NH4+. It is formed by the protonation of ammonia (NH3). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations (NR4+), where one or more hydrogen atoms are replaced by organic radical groups (indicated by R). Ammonium is found to be associated with N-acetylglutamate synthetase deficiency, which is an inborn error of metabolism.
Hydrogen Ion
Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])
S-Adenosyl-L-methioninamine
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Spermidine(3+)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate
COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Spermine (fully protonated form)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Adenosine-diphosphate
COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
3-phosphonato-D-glycerate(3-)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Agmatinium(2+)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS