Biological Pathway: BioCyc:META_PWY-6614

tetrahydrofolate biosynthesis related metabolites

find 43 related metabolites which is associated with the biological pathway tetrahydrofolate biosynthesis

this pathway object is a conserved pathway across multiple organism.

Trimethoprim

5-[(3,4,5-Trimethoxyphenyl)methyl]-2,4-pyrimidinediamine

C14H18N4O3 (290.1378838)


A pyrimidine inhibitor of dihydrofolate reductase, it is an antibacterial related to pyrimethamine. The interference with folic acid metabolism may cause a depression of hematopoiesis. It is potentiated by sulfonamides and the trimethoprim-sulfamethoxazole combination is the form most often used. It is sometimes used alone as an antimalarial. Trimethoprim resistance has been reported. [PubChem] Trimethoprim. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=738-70-5 (retrieved 2024-07-09) (CAS RN: 738-70-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Pyrophosphate

phosphono dihydrogen phosphate

H4O7P2 (177.9432294)


The anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The pyrophosphate anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate is an osteotoxin (arrests bone development) and an arthritogen (promotes arthritis). It is also a metabotoxin (an endogenously produced metabolite that causes adverse health affects at chronically high levels). Chronically high levels of pyrophosphate are associated with hypophosphatasia. Hypophosphatasia (also called deficiency of alkaline phosphatase or phosphoethanolaminuria) is a rare, and sometimes fatal, metabolic bone disease. Hypophosphatasia is associated with a molecular defect in the gene encoding tissue non-specific alkaline phosphatase (TNSALP). TNSALP is an enzyme that is tethered to the outer surface of osteoblasts and chondrocytes. TNSALP hydrolyzes several substances, including inorganic pyrophosphate (PPi) and pyridoxal 5-phosphate (PLP), a major form of vitamin B6. When TSNALP is low, inorganic pyrophosphate (PPi) accumulates outside of cells and inhibits the formation of hydroxyapatite, one of the main components of bone, causing rickets in infants and children and osteomalacia (soft bones) in adults. Vitamin B6 must be dephosphorylated by TNSALP before it can cross the cell membrane. Vitamin B6 deficiency in the brain impairs synthesis of neurotransmitters which can cause seizures. In some cases, a build-up of calcium pyrophosphate dihydrate crystals in the joints can cause pseudogout. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Calcium

Calcium Cation

Ca+2 (39.962591)


   

Potassium

Liver regeneration factor 1

K+ (38.963708)


Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry. Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).

   

Magnesium

Magnesium Cation

Mg+2 (23.98505)


   

Sodium

sodium(1+)

Na+ (22.98977)


Na+, also known as sodium ion or na(+), is a member of the class of compounds known as homogeneous alkali metal compounds. Homogeneous alkali metal compounds are inorganic compounds containing only metal atoms,with the largest atom being a alkali metal atom. Na+ can be found in a number of food items such as nanking cherry, opium poppy, alpine sweetvetch, and salmonberry, which makes na+ a potential biomarker for the consumption of these food products. Na+ can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human kidney tissue. Na+ exists in all eukaryotes, ranging from yeast to humans. In humans, na+ is involved in several metabolic pathways, some of which include eplerenone action pathway, betaxolol action pathway, furosemide action pathway, and morphine action pathway. Na+ is also involved in several metabolic disorders, some of which include diltiazem action pathway, bendroflumethiazide action pathway, dimethylthiambutene action pathway, and lidocaine (antiarrhythmic) action pathway. NA, N.A., Na, or n/a may refer to: . Sodium ions are necessary for regulation of blood and body fluids, transmission of nerve impulses, heart activity, and certain metabolic functions. Physiologically, it exists as an ion in the body. Sodium is needed by animals, which maintain high concentrations in their blood and extracellular fluids, but the ion is not needed by plants. The human requirement for sodium in the diet is less than 500 mg per day, which is typically less than a tenth as much as many diets "seasoned to taste." Most people consume far more sodium than is physiologically needed. For certain people with salt-sensitive blood pressure, this extra intake may cause a negative effect on health.

   

Rubidium

rubidium(1+) ion

Rb+ (84.9118)


Rubidium is a soft, silvery-white metallic element of the alkali metal group, present in traces amounts in human tissues and fluids. Rb-87, a naturally occurring isotope, is (slightly) radioactive. Rubidium is very soft and highly reactive, with properties similar to other elements in group 1, like rapid oxidation in air. Rubidium, particularly 87Rb, in the form of vapor, is one of the most commonly-used atomic species employed for laser cooling and Bose-Einstein condensation. Its desirable features for this application include the ready availability of inexpensive diode laser light at the relevant wavelength, and the moderate temperatures required to obtain substantial vapor pressures. Physiologically, it exists as an ion in the body. It has been found slightly increased in neoplastic human breast tissues obtained from patients at the time of mastectomy, compared to normal tissue. (PMID: 6488192, 15820728, 7324778, 9630429, 577330). Rubidium is a chemical element with the symbol Rb and atomic number 37. Rubidium is not known to be necessary for any living organisms. However, like caesium, rubidium ions are handled by living organisms in a manner similar to potassium ions, being actively taken up by plants and by animal cells. Rubidium, like sodium and potassium, almost always has ==+1== oxidation state when dissolved in water, including its presence in all biological systems. The human body tends to treat Rb==+== ions as if they were potassium ions, and therefore concentrates rubidium in the bodys intracellular fluid. The ions are not particularly toxic. [Wikipedia]. Rubidium is found in many foods, some of which are garden tomato, sweet orange, black walnut, and coconut.

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

4-aminobenzoate

4-Aminobenzoic acid, ion(1-)

C7H6NO2- (136.0398516)


4-aminobenzoate, also known as para-aminobenzoic acid or paba, is a member of the class of compounds known as aminobenzoic acids. Aminobenzoic acids are benzoic acids containing an amine group attached to the benzene moiety. 4-aminobenzoate is soluble (in water) and a weakly acidic compound (based on its pKa). 4-aminobenzoate can be found in a number of food items such as babassu palm, nectarine, java plum, and black cabbage, which makes 4-aminobenzoate a potential biomarker for the consumption of these food products. Aminobenzoic acid (a benzoic acid with an amino group) can refer to: 4-Aminobenzoic acid (p-aminobenzoic acid or para-aminobenzoic acid) 3-Aminobenzoic acid (m-aminobenzoic acid or meta-aminobenzoic acid) 2-aminobenzoic acid (o-aminobenzoic acid or ortho-aminobenzoic acid, Anthranilic acid) .

   

6-hydroxymethyl-dihydropterin diphosphate

6-({[hydroxy(phosphonooxy)phosphoryl]oxy}methyl)-2-imino-1,2,7,8-tetrahydropteridin-4-olate

C7H8N5O8P2 (351.9848128)


6-hydroxymethyl-dihydropterin pyrophosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). 6-hydroxymethyl-dihydropterin pyrophosphate can be found in a number of food items such as black huckleberry, chickpea, chinese chives, and annual wild rice, which makes 6-hydroxymethyl-dihydropterin pyrophosphate a potential biomarker for the consumption of these food products. 6-hydroxymethyl-dihydropterin pyrophosphate exists in E.coli (prokaryote) and yeast (eukaryote).

   

barium cation

barium cation

Ba+2 (137.905236)


   

Trimethioprim

2,4-Diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine

C14H18N4O3 (290.1378838)


Trimethoprim. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=738-70-5 (retrieved 2024-07-09) (CAS RN: 738-70-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Coenzyme II

Coenzyme II

C21H25N7O17P3-3 (740.051977)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

Cesium cation

Cesium cation

Cs+ (132.905433)


   

5-[[4-Methoxy-3-(phenylmethoxy)phenyl]methyl]-2,4-pyrimidinediamine

5-[[4-Methoxy-3-(phenylmethoxy)phenyl]methyl]-2,4-pyrimidinediamine

C19H20N4O2 (336.158618)


   

s-Triazine, 1,2-dihydro-1-(p-butylphenyl)-4,6-diamino-2,2-dimethyl-

s-Triazine, 1,2-dihydro-1-(p-butylphenyl)-4,6-diamino-2,2-dimethyl-

C15H23N5 (273.1953358)


   

1,4-Butanediammonium

1,4-Butanediammonium

C4H14N2+2 (90.1156924)


   

Spermidine(3+)

Spermidine(3+)

C7H22N3+3 (148.1813632)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

C10H12N5O13P3-4 (502.9644492)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Spermine (fully protonated form)

Spermine (fully protonated form)

C10H30N4+4 (206.24703399999999)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-diphosphate

Adenosine-diphosphate

C10H12N5O10P2-3 (424.0059412)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2,2,2,2-(Ethane-1,2-diyldiammonio)tetraacetate

2,2,2,2-(Ethane-1,2-diyldiammonio)tetraacetate

C10H14N2O8-2 (290.0750124)


   

L-glutamate(1-)

L-glutamate(1-)

C5H8NO4- (146.0453308)


An alpha-amino-acid anion that is the conjugate base of L-glutamic acid, having anionic carboxy groups and a cationic amino group

   
   

2-Aminoethanaminium

2-Aminoethanaminium

C2H9N2+ (61.0765694)


   

2,4-Diamino-5-[3-(2-trifluoromethylphenoxy)propoxy]-6-methylpyrimidine

2,4-Diamino-5-[3-(2-trifluoromethylphenoxy)propoxy]-6-methylpyrimidine

C15H17F3N4O2 (342.13035379999997)


   

2,4-Diamino-6-ethyl-5,3-(2-trifluoromethylphenoxy)prop-1-yloxypyrimidine

2,4-Diamino-6-ethyl-5,3-(2-trifluoromethylphenoxy)prop-1-yloxypyrimidine

C16H19F3N4O2 (356.14600299999995)


   

2,4-Diamino-6-methyl-5,3-(3-trifluoromethylphenoxy)prop-1-yloxypyrimidine

2,4-Diamino-6-methyl-5,3-(3-trifluoromethylphenoxy)prop-1-yloxypyrimidine

C15H17F3N4O2 (342.13035379999997)


   

2,4-Diamino-6-ethyl-5,3-(2-trifluoromethyl-4-sulphonamidophenoxy)prop-1-yloxypyrimidine

2,4-Diamino-6-ethyl-5,3-(2-trifluoromethyl-4-sulphonamidophenoxy)prop-1-yloxypyrimidine

C16H20F3N5O4S (435.1188036000001)


   

1,4-bis-{[N-(1-imino-1-guanidino-methyl)]sulfanylmethyl}-3,6-dimethyl-benzene

1,4-bis-{[N-(1-imino-1-guanidino-methyl)]sulfanylmethyl}-3,6-dimethyl-benzene

C14H26N8S2+4 (370.1721756)


   

5-(4-Chlorophenyl)-6-ethylpyrimidin-3-ium-2,4-diamine

5-(4-Chlorophenyl)-6-ethylpyrimidin-3-ium-2,4-diamine

C12H14ClN4+ (249.0906934)


   

2,4-Diamino-6-ethyl-5,3-(2-cyclohexylphenoxy)prop-1-yloxypyrimidine

2,4-Diamino-6-ethyl-5,3-(2-cyclohexylphenoxy)prop-1-yloxypyrimidine

C23H32N4O3 (412.24742819999994)


   

Diphosphoric acid

Pyrophosphoric acid

H4O7P2 (177.9432294)


An acyclic phosphorus acid anhydride obtained by condensation of two molecules of phosphoric acid. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Potassium cation

Potassium cation

K+ (38.963708)


   

Calcium Cation

Calcium Cation

Ca+2 (39.962591)


   

Magnesium Cation

Magnesium Cation

Mg+2 (23.98505)


   

Sodium Cation

SODIUM ION CHROMATOGRAPHY STANDARD

Na+ (22.98977)


A monoatomic monocation obtained from sodium.

   

Hydrogen cation

Hydrogen cation

H+ (1.0078246)


   

RUBIDIUM ion

RUBIDIUM ion

Rb+ (84.9118)


   

4-Aminobenzoate

4-Aminobenzoate

C7H6NO2- (136.0398516)


An aromatic amino-acid anion that is the conjugate base of 4-aminobenzoic acid.