Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.0477)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1264)


Aucubin is found in common verbena. Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety. Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally. Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis. The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1 Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety.; Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally.; Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis.; The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1. Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O5 (270.0528)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Luteolin 7-glucoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Luteolin 7-O-beta-D-glucoside is a glycosyloxyflavone that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and a plant metabolite. It is a beta-D-glucoside, a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a luteolin. It is a conjugate acid of a luteolin 7-O-beta-D-glucoside(1-). Cynaroside is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. See also: Cynara scolymus leaf (part of); Lonicera japonica flower (part of); Chamaemelum nobile flower (part of). Luteolin 7-glucoside is found in anise. Luteolin 7-glucoside is a constituent of the leaves of Capsicum annuum (red pepper).Cynaroside is a flavone, a flavonoid-like chemical compound. It is a 7-O-glucoside of luteolin and can be found in dandelion coffee, in Ferula varia and F. foetida in Campanula persicifolia and C. rotundifolia and in Cynara scolymus (artichoke) A glycosyloxyflavone that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Constituent of the leaves of Capsicum annuum (red pepper) Cynaroside (Luteolin 7-glucoside) is a flavonoid compound that exhibits anti-oxidative capabilities. Cynaroside is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 32 nM. Cynaroside also is a promising inhibitor for H2O2-induced apoptosis, has cytoprotection against oxidative stress-induced cardiovascular diseases. Cynaroside also has antibacterial, antifungal and anticancer activities, antioxidant and anti-inflammatory activities[1][3][4][5].

   

DL-Mannitol

(2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol

C6H14O6 (182.079)


D-mannitol appears as odorless white crystalline powder or free-flowing granules. Sweet taste. (NTP, 1992) D-mannitol is the D-enantiomer of mannitol. It has a role as an osmotic diuretic, a sweetening agent, an antiglaucoma drug, a metabolite, an allergen, a hapten, a food bulking agent, a food anticaking agent, a food humectant, a food stabiliser, a food thickening agent, an Escherichia coli metabolite and a member of compatible osmolytes. Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Mannitol is an Osmotic Diuretic. The mechanism of action of mannitol is as an Osmotic Activity. The physiologic effect of mannitol is by means of Increased Diuresis. Mannitol is a natural product found in Pavetta indica, Scoparia dulcis, and other organisms with data available. Mannitol is a naturally occurring alcohol found in fruits and vegetables and used as an osmotic diuretic. Mannitol is freely filtered by the glomerulus and poorly reabsorbed from the renal tubule, thereby causing an increase in osmolarity of the glomerular filtrate. An increase in osmolarity limits tubular reabsorption of water and inhibits the renal tubular reabsorption of sodium, chloride, and other solutes, thereby promoting diuresis. In addition, mannitol elevates blood plasma osmolarity, resulting in enhanced flow of water from tissues into interstitial fluid and plasma. D-mannitol is a metabolite found in or produced by Saccharomyces cerevisiae. A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. See also: Mannitol; sorbitol (component of); Mannitol; menthol (component of). Mannitol, or hexan-1,2,3,4,5,6-hexol (C6H8(OH)6), is an alcohol and a sugar (sugar alcohol), or a polyol, it is a stereoisomer of sorbitol and is similar to the C5 xylitol. The structure of mannitol is made of a straight chain of six carbon atoms, each of which is substituted with a hydroxyl group. Mannitol is one of the most abundant energy and carbon storage molecules in nature, it is produced by a wide range of organisms such as bacteria, fungi and plants (PMID: 19578847). In medicine, mannitol is used as a diuretic and renal diagnostic aid. Mannitol has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. Mannitol has a tendency to lose a hydrogen ion in aqueous solutions, which causes the solution to become acidic. For this, it is not uncommon to add a weak base, such as sodium bicarbonate, to the solution to adjust its pH. Mannitol is a non-permeating molecule i.e., it cannot cross biological membranes. Mannitol is an osmotic diuretic agent and a weak renal vasodilator. Mannitol is found to be associated with cytochrome c oxidase deficiency and ribose-5-phosphate isomerase deficiency, which are inborn errors of metabolism. Mannitol is also a microbial metabolite found in Aspergillus, Candida, Clostridium, Gluconobacter, Lactobacillus, Lactococcus, Leuconostoc, Pseudomonas, Rhodobacteraceae, Saccharomyces, Streptococcus, Torulaspora and Zymomonas (PMID: 15240312; PMID: 29480337). Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85085-15-0 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.

   

Catalposide

beta-D-Glucopyranoside, 1a,1b,2,5a,6,6a-hexahydro-6-((4-hydroxybenzoyl)oxy)-1a-(hydroxymethyl)oxireno(4,5)cyclopenta(1,2-c)pyran-2-yl, (1aS-(1a-alpha,1b-beta,2-beta,5a-beta,6-beta,6a-alpha))-

C22H26O12 (482.1424)


Catalposide is a glycoside.

   

Picein

1-(4-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)ethanone

C14H18O7 (298.1052)


Picein is a glycoside. Picein is a natural product found in Salix candida, Halocarpus biformis, and other organisms with data available. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1]. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1].

   

Geniposidic acid

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Catalpol

(2S,3R,4S,5S,6R)-2-(((1aS,1bS,2S,5aR,6S,6aS)-6-hydroxy-1a-(hydroxymethyl)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O10 (362.1213)


Catalpol is an organic molecular entity. It has a role as a metabolite. Catalpol is a natural product found in Verbascum lychnitis, Plantago atrata, and other organisms with data available. See also: Rehmannia glutinosa Root (part of). Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3]. Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3].

   

Zingerone glucoside

4-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)butan-2-one

C17H24O8 (356.1471)


Zingerone glucoside is found in fruits. Zingerone glucoside is isolated from Riesling vine leaf. Isolated from Riesling vine leaf. Zingerone glucoside is found in fruits.

   

Luteolin 7-galactoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O11 (448.1006)


Luteolin 7-galactoside is found in fruits. Luteolin 7-galactoside is isolated from Capsella bursa-pastoris (shepherds purse). Isolated from Capsella bursa-pastoris (shepherds purse). Luteolin 7-galactoside is found in herbs and spices and fruits.

   

Verproside

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3,4-dihydroxybenzoate

C22H26O13 (498.1373)


   

Geniposidic_acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Ampicoside

(1AS,1bS,2S,5aR,6S,6aS)-1a-(hydroxymethyl)-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-6-yl 4-hydroxy-3-methoxybenzoate

C23H28O13 (512.153)


Picroside II is a natural product found in Veronica pulvinaris, Veronica thomsonii, and other organisms with data available. Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. picroside II alleviates the inflammatory response in sepsis and enhances immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways[1]. Picroside II is an antioxidant, exhibits a significant neuroprotective effect through reducing ROS production and protects the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. Picroside II has antioxidant, anti-inflammatory, immune regulatory, anti-virus and other pharmacological activities[2]. Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. picroside II alleviates the inflammatory response in sepsis and enhances immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways[1]. Picroside II is an antioxidant, exhibits a significant neuroprotective effect through reducing ROS production and protects the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. Picroside II has antioxidant, anti-inflammatory, immune regulatory, anti-virus and other pharmacological activities[2].

   

Picroside

(1AS,1bS,2S,5aR,6S,6aS)-1a-(hydroxymethyl)-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-6-yl 4-hydroxy-3-methoxybenzoate

C23H28O13 (512.153)


Picroside II is a natural product found in Veronica pulvinaris, Veronica thomsonii, and other organisms with data available. Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. picroside II alleviates the inflammatory response in sepsis and enhances immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways[1]. Picroside II is an antioxidant, exhibits a significant neuroprotective effect through reducing ROS production and protects the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. Picroside II has antioxidant, anti-inflammatory, immune regulatory, anti-virus and other pharmacological activities[2]. Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. picroside II alleviates the inflammatory response in sepsis and enhances immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways[1]. Picroside II is an antioxidant, exhibits a significant neuroprotective effect through reducing ROS production and protects the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. Picroside II has antioxidant, anti-inflammatory, immune regulatory, anti-virus and other pharmacological activities[2].

   

D-Mannitol

D-glycero-Hexitol

C6H14O6 (182.079)


Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol, a type of sugar alcohol, serves several important biological functions: Osmotic Diuretic: Mannitol is used medically as an osmotic diuretic to reduce intracranial and intraocular pressure. By increasing urine production, it helps to draw excess fluid from the brain and eyes, which is beneficial in conditions like cerebral edema and glaucoma. Sweetener and Sugar Substitute: In the food industry, mannitol is used as a sweetener and sugar substitute. It provides sweetness without contributing to tooth decay and is often used in products for diabetics because it has a minimal impact on blood sugar levels. Preservative: Mannitol’s hygroscopic properties make it useful as a preservative in various products, including pharmaceuticals and foods, to prevent moisture absorption and maintain product stability. Laxative: In high concentrations, mannitol can act as a laxative due to its osmotic effect in the intestine, drawing water into the bowel and stimulating bowel movements. Tissue Protectant: In cryopreservation, mannitol is used to protect tissues from damage caused by freezing and thawing processes. Cell Culture Medium Component: Mannitol is often included in cell culture media to maintain osmotic balance and provide a stable environment for cell growth. Pharmaceutical Excipient: It is used as an excipient in the pharmaceutical industry, helping to enhance the stability and bioavailability of drugs. Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-65-8 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.

   

Picroside II

Picroside II

C23H28O13 (512.153)


Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. picroside II alleviates the inflammatory response in sepsis and enhances immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways[1]. Picroside II is an antioxidant, exhibits a significant neuroprotective effect through reducing ROS production and protects the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. Picroside II has antioxidant, anti-inflammatory, immune regulatory, anti-virus and other pharmacological activities[2]. Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. picroside II alleviates the inflammatory response in sepsis and enhances immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways[1]. Picroside II is an antioxidant, exhibits a significant neuroprotective effect through reducing ROS production and protects the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. Picroside II has antioxidant, anti-inflammatory, immune regulatory, anti-virus and other pharmacological activities[2].

   

Minecoside

Minecoside

C25H30O13 (538.1686)


A natural product found in Veronica lavaudiana.

   

Verminoside

[(1S,2S,4S,5S,6R,10S)-2-(Hydroxymethyl)-10-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,9-dioxatricyclo[4.4.0.02,4]dec-7-en-5-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O13 (524.153)


Verminoside is a hydroxycinnamic acid. It has a role as a metabolite. Verminoside is a natural product found in Stereospermum colais, Veronica pulvinaris, and other organisms with data available. A natural product found in Veronica lavaudiana.

   

Apigenin

5,7,4-Trihydroxyflavone

C15H10O5 (270.0528)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.058 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.0477)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1264)


Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids; Origin: Plant Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

Luteolin 7-O-glucoside

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one mono-beta-D-glucopyranoside

C21H20O11 (448.1006)


   

Geniposidic acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Verproside

Verproside

C22H26O13 (498.1373)


A natural product found in Veronica lavaudiana.

   

Zingerone glucoside

4-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)butan-2-one

C17H24O8 (356.1471)


   

Versulin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxyphenyl)- (9CI)

C15H10O5 (270.0528)


Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

cinaroside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Cynaroside (Luteolin 7-glucoside) is a flavonoid compound that exhibits anti-oxidative capabilities. Cynaroside is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 32 nM. Cynaroside also is a promising inhibitor for H2O2-induced apoptosis, has cytoprotection against oxidative stress-induced cardiovascular diseases. Cynaroside also has antibacterial, antifungal and anticancer activities, antioxidant and anti-inflammatory activities[1][3][4][5].

   

methyl (1s,4as,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4as,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O10 (390.1526)


   

methyl (1r,4as,7s,7as)-7-hydroxy-7-methyl-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1r,4as,7s,7as)-7-hydroxy-7-methyl-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O10 (390.1526)


   

(2s,3r,4s,5r,6r)-2-{[(1s,4as,5r,7as)-5-hydroxy-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{[(1s,4as,5r,7as)-5-hydroxy-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H22O9 (346.1264)


   

(2s,3s,4s,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2s,3s,4s,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C34H44O19 (756.2477)


   

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl benzoate

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl benzoate

C22H26O11 (466.1475)


   

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O13 (524.153)


   

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

C31H40O18 (700.2215)


   

(1s,4as,7as)-7-(hydroxymethyl)-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,7as)-7-(hydroxymethyl)-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


   

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxybenzoate

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxybenzoate

C22H26O12 (482.1424)


   

(2s,4s,5s,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxy-3-methoxybenzoate

(2s,4s,5s,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxy-3-methoxybenzoate

C23H28O13 (512.153)


   

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3-hydroxy-4-methoxyphenyl)prop-2-enoate

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3-hydroxy-4-methoxyphenyl)prop-2-enoate

C25H30O13 (538.1686)


   

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxybenzoate

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxybenzoate

C22H26O12 (482.1424)


   

4-(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)butan-2-one

4-(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)butan-2-one

C17H24O8 (356.1471)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O11 (448.1006)


   

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

C31H40O18 (700.2215)


   

methyl (1s,4as,7s,7as)-1-{[(2s,3r,4s,5s,6r)-6-({[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-7-hydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4as,7s,7as)-1-{[(2s,3r,4s,5s,6r)-6-({[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-7-hydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C26H32O13 (552.1843)


   

(2r,3r,4s,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4s,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C34H44O19 (756.2477)


   

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

C30H38O18 (686.2058)


   

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl benzoate

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl benzoate

C22H26O11 (466.1475)


   

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

C30H38O18 (686.2058)


   

(1s,4as,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2e,6s)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2e,6s)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C26H38O12 (542.2363)


   

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl benzoate

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl benzoate

C22H26O11 (466.1475)


   

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O13 (524.153)


   

(2s,3r,4s,5s,6r)-2-{[(1s,2s,4s,5s,6s,10s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(1s,2s,4s,5s,6s,10s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H22O10 (362.1213)


   

methyl 1-{[6-({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-7-hydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 1-{[6-({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-7-hydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C26H32O13 (552.1843)


   

methyl 7-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 7-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O10 (390.1526)


   

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2z)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2z)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O13 (524.153)


   

7-hydroxy-7-methyl-1-[(3,4,5-trihydroxy-6-{[(6-hydroxy-2,6-dimethylocta-2,7-dienoyl)oxy]methyl}oxan-2-yl)oxy]-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

7-hydroxy-7-methyl-1-[(3,4,5-trihydroxy-6-{[(6-hydroxy-2,6-dimethylocta-2,7-dienoyl)oxy]methyl}oxan-2-yl)oxy]-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C26H38O12 (542.2363)


   

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxy-3-methoxybenzoate

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxy-3-methoxybenzoate

C23H28O13 (512.153)


   

(1s,2s,6r)-2-(hydroxymethyl)-10-{[(2s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxybenzoate

(1s,2s,6r)-2-(hydroxymethyl)-10-{[(2s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxybenzoate

C22H26O12 (482.1424)


   

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxybenzoate

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 4-hydroxybenzoate

C22H26O12 (482.1424)


   

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

C30H38O18 (686.2058)


   

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoate

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoate

C25H30O13 (538.1686)


   

(2r)-2-{[(1r,2s,6s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r)-2-{[(1r,2s,6s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H22O10 (362.1213)


   

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoate

C31H40O18 (700.2215)


   

(2s,3r,4s,5r,6r)-2-{[(1s,4as,5r)-5-hydroxy-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{[(1s,4as,5r)-5-hydroxy-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H22O9 (346.1264)