Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). [Raw Data] CBA25_Isovitexin_neg_20eV_1-7_01_1425.txt [Raw Data] CBA25_Isovitexin_neg_10eV_1-7_01_1369.txt [Raw Data] CBA25_Isovitexin_pos_30eV_1-7_01_1399.txt [Raw Data] CBA25_Isovitexin_neg_40eV_1-7_01_1427.txt [Raw Data] CBA25_Isovitexin_neg_30eV_1-7_01_1426.txt [Raw Data] CBA25_Isovitexin_neg_50eV_1-7_01_1428.txt [Raw Data] CBA25_Isovitexin_pos_20eV_1-7_01_1398.txt [Raw Data] CBA25_Isovitexin_pos_10eV_1-7_01_1358.txt [Raw Data] CBA25_Isovitexin_pos_40eV_1-7_01_1400.txt [Raw Data] CBA25_Isovitexin_pos_50eV_1-7_01_1401.txt Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

Isoorientin 7-O-(6'-O-(E)-feruloyl)glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O11 (448.1006)


Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside, also known as homoorientin or luteolin-6-C-beta-D-glucoside, is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be synthesized from luteolin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is also a parent compound for other transformation products, including but not limited to, isoorientin 7-O-glucoside, 7-O-[alpha-L-rhamnosyl-(1->2)-beta-D-glucosyl]isoorientin, and 7-O-(6-sinapoylglucosyl)isoorientin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be found in barley, which makes isoorientin 7-o-(6-o-(e)-feruloyl)glucoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA21_Isoorientin_neg_20eV_1-3_01_1409.txt [Raw Data] CBA21_Isoorientin_pos_20eV_1-3_01_1382.txt [Raw Data] CBA21_Isoorientin_pos_50eV_1-3_01_1385.txt [Raw Data] CBA21_Isoorientin_neg_40eV_1-3_01_1411.txt [Raw Data] CBA21_Isoorientin_neg_10eV_1-3_01_1365.txt [Raw Data] CBA21_Isoorientin_neg_50eV_1-3_01_1412.txt [Raw Data] CBA21_Isoorientin_pos_10eV_1-3_01_1354.txt [Raw Data] CBA21_Isoorientin_pos_40eV_1-3_01_1384.txt [Raw Data] CBA21_Isoorientin_pos_30eV_1-3_01_1383.txt [Raw Data] CBA21_Isoorientin_neg_30eV_1-3_01_1410.txt Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Swertisin

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C22H22O10 (446.1213)


Swertisin is a flavone C-glycoside that is 7-O-methylapigenin in which the hydrogen at position 6 has been replaced by a beta-D-glucosyl residue. It has a role as a plant metabolite, an adenosine A1 receptor antagonist, an anti-inflammatory agent, an antioxidant and a hypoglycemic agent. It is a flavone C-glycoside, a monosaccharide derivative, a polyphenol, a monomethoxyflavone and a dihydroxyflavone. It is functionally related to an apigenin. Swertisin is a natural product found in Carex fraseriana, Gentiana orbicularis, and other organisms with data available. A flavone C-glycoside that is 7-O-methylapigenin in which the hydrogen at position 6 has been replaced by a beta-D-glucosyl residue. Swertisin, a C-glucosylflavone isolated from Iris tectorum, is known to have antidiabetic, anti-inflammatory and antioxidant effects. Swertisin is an adenosine A1 receptor antagonist[1][2].

   

Swertiajaponin

2-(3,4-Dihydroxyphenyl)-5-hydroxy-7-methoxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-oneertiajaponin

C22H22O11 (462.1162)


Swertiajaponin is a natural product found in Carex fraseriana, Alliaria petiolata, and other organisms with data available. Swertiajaponin is found in green vegetables. Swertiajaponin is a constituent of leaves of Gnetum gnemon (bago)

   

trans-Aconitic acid

(1E)-prop-1-ene-1,2,3-tricarboxylic acid

C6H6O6 (174.0164)


trans-Aconitic acid, also known as trans-aconitate or (e)-aconitic acid, belongs to the class of organic compounds known as tricarboxylic acids and derivatives. These are carboxylic acids containing exactly three carboxyl groups. trans-Aconitic acid exists in all living species, ranging from bacteria to humans. trans-Aconitic acid is a dry, musty, and nut tasting compound. Outside of the human body, trans-aconitic acid has been detected, but not quantified in several different foods, such as garden tomato fruits, root vegetables, soy beans, and rices. trans-Aconitic acid is normally present in human urine, and it has been suggested that is present in larger amounts with Reyes syndrome and organic aciduria. trans-Aconitic acid in the urine is a biomarker for the consumption of soy products. trans-Aconitic acid is a substrate of enzyme trans-Aconitic acid 2-methyltransferase (EC2.1.1.144). Isolated from Asarum europaeum, from cane-sugar molasses, roasted chicory root, roasted malt barley, passion fruit, sorghum root and sugar beet. Flavouring agent used in fruit flavours and alcoholic beverages. Aconitic acid is an organic acid. The two isomers are cis-aconitic acid and trans-aconitic acid. The conjugate base of cis-aconitic acid, cis-aconitate is an intermediate in the isomerisation of citrate to isocitrate in the citric acid cycle. It is acted upon by aconitase. Trans-aconitate in the urine is a biomarker for the consumption of soy products. (E)-Aconitic acid is found in many foods, some of which are cereals and cereal products, rice, garden tomato (variety), and root vegetables. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A117 trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase. trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase.

   

Caftaric acid

Butanedioic acid, 2-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3-hydroxy-, (2R,3R)- (9CI); Butanedioic acid, 2-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3-hydroxy-, [R-[R*,R*-(E)]]-; (2R,3R)-2-[[(2E)-3-(3,4-Dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]-3-hydroxybutanedioic acid; trans-Caftaric acid

C13H12O9 (312.0481)


Caftaric acid is a hydroxycinnamic acid. Caftaric acid is a natural product found in Vitis rotundifolia, Vitis cinerea var. helleri, and other organisms with data available. Caftaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. Caftaric acid is a non-flavanoid that impacts the color of white wine. Many believe this molecule is responsible for the yellowish-gold color seen in some whites wines[citation needed]. Aside from wine, it is abundantly present in raisins. Caftaric acid is a natural compound. Caftaric acid is a natural compound.

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.1006)


Isoorientin is a flavone C-glycoside consisting of luteolin having a beta-D-glucosyl residue at the 6-position. It has a role as a radical scavenger and an antineoplastic agent. It is a tetrahydroxyflavone and a flavone C-glycoside. It is functionally related to a luteolin. It is a conjugate acid of an isoorientin(1-). Isoorientin is a natural product found in Carex fraseriana, Itea chinensis, and other organisms with data available. See also: Acai fruit pulp (part of). A C-glycosyl compound consisting of luteolin having a beta-D-glucosyl residue at the 6-position. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Chicoric acid

Butanedioic acid, 2,3-bis[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-, (2R,3R)- (9CI)

C22H18O12 (474.0798)


Chicoric acid (CAS: 6537-80-0) is found in the fresh aerial parts of different chicory varieties: green chicory (c.v. Catalogna), two red chicory varieties (radicchio rosso di Chioggia and radicchio rosso di Treviso), and Witloof or Belgian endive. Cichorium sp. L. is a member of the sunflower family (Asteraceae or Compositae), which also includes globe and Jerusalem artichokes, lettuce, and many ornamental plants. It is indigenous to Europe, western Asia, Egypt, and North America. In popular medicine, Cichorium intybus L. has been used to treat skin disorders, such as gout, because of its antihepatotoxic activity. Animal studies have revealed that preparations from chicory roots can lower serum and liver lipid concentration in rats. Cichorium aqueous extracts from roots and aerial parts have been reported for antibacterial activity. Chicory is used as a vegetable, fresh or cooked, while the ground and roasted roots are widely used for blending with coffee powder (PMID: 16076140). Chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro (PMID: 15302207). D-chicoric acid, also known as D-chicate, belongs to tetracarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly four carboxyl groups. D-chicoric acid is practically insoluble (in water) and a moderately acidic compound (based on its pKa). D-chicoric acid can be found in green vegetables, which makes D-chicoric acid a potential biomarker for the consumption of this food product. Cichoric acid is a hydroxycinnamic acid, an organic compound of the phenylpropanoid class and occurs in a variety of plant species. It is a derivative of both caffeic acid and tartaric acid . Chicoric acid is an organooxygen compound. It has a role as a HIV-1 integrase inhibitor and a geroprotector. It is functionally related to a tetracarboxylic acid. Chicoric acid is a natural product found in Cichorium intybus, Cinnamomum camphora, and other organisms with data available. D004791 - Enzyme Inhibitors > D019429 - Integrase Inhibitors > D019428 - HIV Integrase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents Chicoric acid (Cichoric acid), an orally active dicaffeyltartaric acid, induces reactive oxygen species (ROS) generation. Chicoric acid inhibits cell viability and induces mitochondria-dependent apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. Chicoric acid increases glucose uptake, improves insulin resistance, and attenuates glucosamine-induced inflammation. Chicoric acid has antidiabetic properties and antioxidant, anti-inflammatory effects[1][2][3]. Chicoric acid (Cichoric acid), an orally active dicaffeyltartaric acid, induces reactive oxygen species (ROS) generation. Chicoric acid inhibits cell viability and induces mitochondria-dependent apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. Chicoric acid increases glucose uptake, improves insulin resistance, and attenuates glucosamine-induced inflammation. Chicoric acid has antidiabetic properties and antioxidant, anti-inflammatory effects[1][2][3]. L-Chicoric Acid ((-)-Chicoric acid) is a dicaffeoyltartaric acid and a potent, selective and reversible HIV-1 integrase inhibitor with an IC50 of ~100 nM. L-Chicoric Acid inhibits HIV-1 replication in tissue culture[1][2][3]. L-Chicoric Acid ((-)-Chicoric acid) is a dicaffeoyltartaric acid and a potent, selective and reversible HIV-1 integrase inhibitor with an IC50 of ~100 nM. L-Chicoric Acid inhibits HIV-1 replication in tissue culture[1][2][3].

   

Isoorientin

Luteolin 6-C-glucoside

C21H20O11 (448.1006)


Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O11 (448.1006)


   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


   

7-O-Methylapigenin 6-C-beta-D-glucopyranoside

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C22H22O10 (446.1213)


   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-4-chromenone

C21H20O11 (448.1006)


Isolated from wheat leaves (Triticum species). Isoorientin 6-diglucoside is found in wheat and cereals and cereal products. Isoorientin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin can be found in a number of food items such as oat, prairie turnip, common buckwheat, and common salsify, which makes isoorientin a potential biomarker for the consumption of these food products. Isoorientin (or homoorientin) is a flavone, a chemical flavonoid-like compound. It is the luteolin-6-C-glucoside. Bioassay-directed fractionation techniques led to isolation of isoorientin as the main hypoglycaemic component in Gentiana olivieri . Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   
   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). A C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. Isovitexin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isovitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isovitexin can be found in a number of food items such as common salsify, winged bean, flaxseed, and common buckwheat, which makes isovitexin a potential biomarker for the consumption of these food products. Isovitexin (or homovitexin, saponaretin) is a flavone. the apigenin-6-C-glucoside. It can be found in the passion flower, Cannabis, and the açaí palm . Constituent of Cucumis sativus (cucumber). Isovitexin 2-(6-p-coumaroylglucoside) 4-glucoside is found in cucumber and fruits. Constituent of young green barley leaves (Hordeum vulgare variety nudum). Isovitexin 7-(6-sinapoylglucoside) is found in barley and cereals and cereal products. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

trans-Aconitic acid

1-Propene-1,2,3-tricarboxylic acid

C6H6O6 (174.0164)


The trans-isomer of aconitic acid. trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase. trans-Aconitic acid is present in normal human urine, and it has been suggested that is present in larger amounts with Reye's syndrome and organic aciduria. trans-Aconitic acid is a substrate of enzyme trans-aconitate 2-methyltransferase.

   

Caftaric acid

(2R,3R)-2-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3-hydroxybutanedioic acid

C13H12O9 (312.0481)


Caftaric acid is a natural compound. Caftaric acid is a natural compound.

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

(1s,2e,6z,14r)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

(1s,2e,6z,14r)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

C20H30O3 (318.2195)


   

5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O4 (332.1987)


   

5-[2-(5-hydroxy-2h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5-[2-(5-hydroxy-2h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H29NO3 (331.2147)


   

(4ar,5s,6r,8ar)-5-{2-[1-(4-{[(2e)-1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-5-oxo-2h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4ar,5s,6r,8ar)-5-{2-[1-(4-{[(2e)-1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-5-oxo-2h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C34H46N2O6 (578.3356)


   

3-[2-(2-acetyl-4,4,7a-trimethyl-3a,5,6,7-tetrahydro-3h-inden-1-yl)ethyl]-5h-furan-2-one

3-[2-(2-acetyl-4,4,7a-trimethyl-3a,5,6,7-tetrahydro-3h-inden-1-yl)ethyl]-5h-furan-2-one

C20H28O3 (316.2038)


   

(1s,2e,6z,10z,14s)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

(1s,2e,6z,10z,14s)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

C20H30O3 (318.2195)


   

3-{2-[(1r,2r,3as,7as)-2-acetyl-1-hydroxy-4,4,7a-trimethyl-hexahydroinden-1-yl]ethyl}-5h-furan-2-one

3-{2-[(1r,2r,3as,7as)-2-acetyl-1-hydroxy-4,4,7a-trimethyl-hexahydroinden-1-yl]ethyl}-5h-furan-2-one

C20H30O4 (334.2144)


   

(4ar,5s,6r,8ar)-5-[2-(5-hydroxy-2h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4ar,5s,6r,8ar)-5-[2-(5-hydroxy-2h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H29NO3 (331.2147)


   

14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

C20H30O3 (318.2195)


   

3-{3-oxo-3-[1,3,3-trimethyl-2-(3-oxobutyl)cyclohexyl]propyl}-5h-furan-2-one

3-{3-oxo-3-[1,3,3-trimethyl-2-(3-oxobutyl)cyclohexyl]propyl}-5h-furan-2-one

C20H30O4 (334.2144)


   

(1s,2e,6e,10z,14r)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

(1s,2e,6e,10z,14r)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

C20H30O3 (318.2195)


   

5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-5-oxo-2h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-5-oxo-2h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C28H37NO4 (451.2722)


   

3-{3-oxo-3-[(1s,2s)-1,3,3-trimethyl-2-(3-oxobutyl)cyclohexyl]propyl}-5h-furan-2-one

3-{3-oxo-3-[(1s,2s)-1,3,3-trimethyl-2-(3-oxobutyl)cyclohexyl]propyl}-5h-furan-2-one

C20H30O4 (334.2144)


   

(4as,5r,6s,8as)-5-{2-[1-(4-{[(2e)-1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-2-oxo-5h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4as,5r,6s,8as)-5-{2-[1-(4-{[(2e)-1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-2-oxo-5h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C34H46N2O6 (578.3356)


   

2,3-dihydroxy-2,3-bis[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]butanedioic acid

2,3-dihydroxy-2,3-bis[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]butanedioic acid

C24H22O12 (502.1111)


   

2,3-bis[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]-2,3-dihydroxybutanedioic acid

2,3-bis[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]-2,3-dihydroxybutanedioic acid

C22H18O12 (474.0798)


   

3-{2-[(3ar,7ar)-2-acetyl-4,4,7a-trimethyl-3a,5,6,7-tetrahydro-3h-inden-1-yl]ethyl}-5h-furan-2-one

3-{2-[(3ar,7ar)-2-acetyl-4,4,7a-trimethyl-3a,5,6,7-tetrahydro-3h-inden-1-yl]ethyl}-5h-furan-2-one

C20H28O3 (316.2038)


   

(4ar,5s,6r,8ar)-5-{2-[(2s)-2-hydroxy-5-oxo-2h-furan-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4ar,5s,6r,8ar)-5-{2-[(2s)-2-hydroxy-5-oxo-2h-furan-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O5 (348.1937)


   

(4ar,5s,6r,8ar)-5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-5-oxo-2h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4ar,5s,6r,8ar)-5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-5-oxo-2h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C28H37NO4 (451.2722)


   

3-{2-[(3as,7as)-2-acetyl-4,4,7a-trimethyl-3a,5,6,7-tetrahydro-3h-inden-1-yl]ethyl}-5h-furan-2-one

3-{2-[(3as,7as)-2-acetyl-4,4,7a-trimethyl-3a,5,6,7-tetrahydro-3h-inden-1-yl]ethyl}-5h-furan-2-one

C20H28O3 (316.2038)


   

(1s,2e,6z,14s)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

(1s,2e,6z,14s)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

C20H30O3 (318.2195)


   

5-{2-[1-(4-{[1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-5-oxo-2h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5-{2-[1-(4-{[1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-5-oxo-2h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C34H46N2O6 (578.3356)


   

methyl (4ar,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylate

methyl (4ar,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylate

C21H30O3 (330.2195)


   

(4as,5r,6s,8as)-5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4as,5r,6s,8as)-5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O4 (332.1987)


   

(1z,5e,7e,11e)-8-isopropyl-5,11-dimethylcyclotetradeca-1,5,7,11-tetraene-1-carboxylic acid

(1z,5e,7e,11e)-8-isopropyl-5,11-dimethylcyclotetradeca-1,5,7,11-tetraene-1-carboxylic acid

C20H30O2 (302.2246)


   

(1s,2e,6z,10z,14r)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

(1s,2e,6z,10z,14r)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

C20H30O3 (318.2195)


   

(4ar,5s,6r,8ar)-5-{2-[1-(4-{[(2e)-1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-2-oxo-5h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4ar,5s,6r,8ar)-5-{2-[1-(4-{[(2e)-1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-2-oxo-5h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C34H46N2O6 (578.3356)


   

9-isopropyl-2,6,12-trimethylcyclotetradeca-2,6,8,12-tetraen-1-ol

9-isopropyl-2,6,12-trimethylcyclotetradeca-2,6,8,12-tetraen-1-ol

C20H32O (288.2453)


   

5-[2-(2-hydroxy-5-oxo-2h-furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5-[2-(2-hydroxy-5-oxo-2h-furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O5 (348.1937)


   

5-[2-(2-hydroxy-5h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5-[2-(2-hydroxy-5h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H29NO3 (331.2147)


   

(4as,5r,6s,8as)-5-[2-(2-hydroxy-5h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4as,5r,6s,8as)-5-[2-(2-hydroxy-5h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H29NO3 (331.2147)


   

(4ar,5s,6r,8ar)-5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-2-oxo-5h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4ar,5s,6r,8ar)-5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-2-oxo-5h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C28H37NO4 (451.2722)


   

(1r,2e,6e,8e,12e)-9-isopropyl-2,6,12-trimethylcyclotetradeca-2,6,8,12-tetraen-1-ol

(1r,2e,6e,8e,12e)-9-isopropyl-2,6,12-trimethylcyclotetradeca-2,6,8,12-tetraen-1-ol

C20H32O (288.2453)


   

5-{2-[1-(4-{[1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-2-oxo-5h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5-{2-[1-(4-{[1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-2-oxo-5h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C34H46N2O6 (578.3356)


   

(4as,5r,6s,8as)-5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-2-oxo-5h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4as,5r,6s,8as)-5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-2-oxo-5h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C28H37NO4 (451.2722)


   

(4as,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-5,6-dimethyl-4,4a,6,7,8,8a-hexahydro-3h-naphthalene-1-carboxylic acid

(4as,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-5,6-dimethyl-4,4a,6,7,8,8a-hexahydro-3h-naphthalene-1-carboxylic acid

C19H26O3 (302.1882)


   

(4as,5r,6s,8as)-5-[2-(5-hydroxy-2h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4as,5r,6s,8as)-5-[2-(5-hydroxy-2h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H29NO3 (331.2147)


   

methyl (4ar,5s,6r,8ar)-5-{2-[(2r)-2-ethoxy-5-oxo-2h-furan-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylate

methyl (4ar,5s,6r,8ar)-5-{2-[(2r)-2-ethoxy-5-oxo-2h-furan-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylate

C23H34O5 (390.2406)


   

(1s,2e,6e,10z,14s)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

(1s,2e,6e,10z,14s)-14-hydroxy-3-isopropyl-6,14-dimethyl-15-oxabicyclo[8.4.2]hexadeca-2,6,10-trien-16-one

C20H30O3 (318.2195)


   

(4ar,5s,6r,8ar)-5-[2-(2-hydroxy-5h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4ar,5s,6r,8ar)-5-[2-(2-hydroxy-5h-pyrrol-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H29NO3 (331.2147)


   

methyl 5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylate

methyl 5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylate

C21H30O3 (330.2195)


   

(4as,5r,6s,8as)-5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-5-oxo-2h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4as,5r,6s,8as)-5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-5-oxo-2h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C28H37NO4 (451.2722)


   

(4ar,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4ar,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O3 (316.2038)


   

2-hydroxy-4-(2-hydroxy-4-methoxy-6-methylbenzoyloxy)-6-(2-oxononyl)benzoic acid

2-hydroxy-4-(2-hydroxy-4-methoxy-6-methylbenzoyloxy)-6-(2-oxononyl)benzoic acid

C25H30O8 (458.1941)


   

5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-2-oxo-5h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-2-oxo-5h-pyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C28H37NO4 (451.2722)


   

8-isopropyl-5,11-dimethylcyclotetradeca-1,5,7,11-tetraene-1-carboxylic acid

8-isopropyl-5,11-dimethylcyclotetradeca-1,5,7,11-tetraene-1-carboxylic acid

C20H30O2 (302.2246)


   

2-[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]-2,3-dihydroxy-3-[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]butanedioic acid

2-[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]-2,3-dihydroxy-3-[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]butanedioic acid

C23H20O12 (488.0955)


   

methyl 5-[2-(2-ethoxy-5-oxo-2h-furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylate

methyl 5-[2-(2-ethoxy-5-oxo-2h-furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylate

C23H34O5 (390.2406)