Caftaric acid (BioDeep_00000017222)

 

Secondary id: BioDeep_00000614850

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


Butanedioic acid, 2-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3-hydroxy-, (2R,3R)- (9CI); Butanedioic acid, 2-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3-hydroxy-, [R-[R*,R*-(E)]]-; (2R,3R)-2-[[(2E)-3-(3,4-Dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]-3-hydroxybutanedioic acid; trans-Caftaric acid

化学式: C13H12O9 (312.0481302)
中文名称: 咖啡酰基酒石酸, 单咖啡酰酒石酸, 咖啡酸, 咖啡酰基酒石酸
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 1.54%

分子结构信息

SMILES: C1=CC(=C(C=C1C=CC(=O)OC(C(C(=O)O)O)C(=O)O)O)O
InChI: InChI=1S/C13H12O9/c14-7-3-1-6(5-8(7)15)2-4-9(16)22-11(13(20)21)10(17)12(18)19/h1-5,10-11,14-15,17H,(H,18,19)(H,20,21)/b4-2+/t10-,11-/m1/s1

描述信息

Caftaric acid is a hydroxycinnamic acid.
Caftaric acid is a natural product found in Vitis rotundifolia, Vitis cinerea var. helleri, and other organisms with data available.
Caftaric acid is a metabolite found in or produced by Saccharomyces cerevisiae.
Caftaric acid is a non-flavanoid that impacts the color of white wine. Many believe this molecule is responsible for the yellowish-gold color seen in some whites wines[citation needed]. Aside from wine, it is abundantly present in raisins.
Caftaric acid is a natural compound.
Caftaric acid is a natural compound.

同义名列表

28 个代谢物同义名

Butanedioic acid, 2-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3-hydroxy-, (2R,3R)- (9CI); Butanedioic acid, 2-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3-hydroxy-, [R-[R*,R*-(E)]]-; (2R,3R)-2-[[(2E)-3-(3,4-Dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]-3-hydroxybutanedioic acid; trans-Caftaric acid; 2-Caffeoyl-L-tartaric acid;2-[3-(3,4-dihydroxyphenyl)prop-2-enoyloxy]-3-hydroxy-butanedioic acid; Butanedioic acid, 2-(((2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl)oxy)-3-hydroxy-, (2R,3R)-; Butanedioic acid, 2-(3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl)-3-hydroxy-, (R-(R*,R*-(E)))-; (2R,3R)-2-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3-hydroxybutanedioic acid; (2R,3R)-2-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-3-hydroxy-butanedioic acid; (2R,3R)-2-(((2E)-3-(3,4-DIHYDROXYPHENYL)-2-PROPENOYL)OXY)-3-HYDROXYSUCCINIC ACID; (2R,3R)-2-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-3-hydroxybutanedioic acid; (2R,3R)-2-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3-hydroxybutanedioate; (2R,3R)-2-{[3-(3,4-Dihydroxyphenyl)prop-2-enoyl]oxy}-3-hydroxybutanedioic acid; (2R,3R)-2-(((E)-3-(3,4-Dihydroxyphenyl)acryloyl)oxy)-3-hydroxysuccinic acid; (2R,3R)-2-((E)-3-(3,4-dihydroxyphenyl)acryloyloxy)-3-hydroxysuccinic acid; Caftaric acid, United States Pharmacopeia (USP) Reference Standard; Caftaric acid, analytical standard; Caftaric acid , HPLC Grade; monocaffeoyltartaric acid; trans-Caffeoyl tartarate; Caftaric acid, >=97.0\\%; CAFTARIC ACID [USP-RS]; Caffeoyltartaric acid; CAFFEOYLTARTARICACID; trans-caftaric acid; BOC,TBU-BETA-ALA-OH; UNII-WCV7W3174L; Caftaric acid; WCV7W3174L; Caftarate; Caftaric



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

69 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Xuzhen Lv, Shuai Feng, Jiacheng Zhang, Sihai Sun, Yannan Geng, Min Yang, Yali Liu, Lu Qin, Tianlun Zhao, Chenxi Wang, Guangxu Liu, Feng Li. Application of HPLC Fingerprint Combined with Chemical Pattern Recognition and Multi-Component Determination in Quality Evaluation of Echinacea purpurea (L.) Moench. Molecules (Basel, Switzerland). 2022 Sep; 27(19):. doi: 10.3390/molecules27196463. [PMID: 36235000]
  • Plamen Momchev, Petar Ciganović, Mario Jug, Eva Marguí, Jasna Jablan, Marijana Zovko Končić. Comparison of Maceration and Ultrasonication for Green Extraction of Phenolic Acids from Echinacea purpurea Aerial Parts. Molecules (Basel, Switzerland). 2020 Nov; 25(21):. doi: 10.3390/molecules25215142. [PMID: 33167320]
  • Li Duan, Chenmeng Zhang, Yang Zhao, Yanzhong Chang, Long Guo. Comparison of Bioactive Phenolic Compounds and Antioxidant Activities of Different Parts of Taraxacum mongolicum. Molecules (Basel, Switzerland). 2020 Jul; 25(14):. doi: 10.3390/molecules25143260. [PMID: 32708908]
  • Fábio F Cardoso, Antoniel A S Gomes, Thiago R Dreyer, Walter L G Cavalcante, Maeli Dal Pai, Márcia Gallacci, Marcos R M Fontes. Neutralization of a bothropic PLA2-like protein by caftaric acid, a novel potent inhibitor of ophidian myotoxicity. Biochimie. 2020 Mar; 170(?):163-172. doi: 10.1016/j.biochi.2020.01.010. [PMID: 31978419]
  • Aysu Tolun, Nevzat Artik, Zeynep Altintas. Effect of different microencapsulating materials and relative humidities on storage stability of microencapsulated grape pomace extract. Food chemistry. 2020 Jan; 302(?):125347. doi: 10.1016/j.foodchem.2019.125347. [PMID: 31430631]
  • Jéssica A A Garcia, Rúbia C G Corrêa, Lillian Barros, Carla Pereira, Rui M V Abreu, Maria José Alves, Ricardo C Calhelha, Adelar Bracht, Rosane M Peralta, Isabel C F R Ferreira. Phytochemical profile and biological activities of 'Ora-pro-nobis' leaves (Pereskia aculeata Miller), an underexploited superfood from the Brazilian Atlantic Forest. Food chemistry. 2019 Oct; 294(?):302-308. doi: 10.1016/j.foodchem.2019.05.074. [PMID: 31126467]
  • Ana Margarida Silva, Diana Pinto, Iva Fernandes, Tânia Gonçalves Albuquerque, Helena S Costa, Vitor Freitas, Francisca Rodrigues, M Beatriz P P Oliveira. Infusions and decoctions of dehydrated fruits of Actinidia arguta and Actinidia deliciosa: Bioactivity, radical scavenging activity and effects on cells viability. Food chemistry. 2019 Aug; 289(?):625-634. doi: 10.1016/j.foodchem.2019.03.105. [PMID: 30955657]
  • Mateja Senica, Gregor Mlinsek, Robert Veberic, Maja Mikulic-Petkovsek. Which Plant Part of Purple Coneflower (Echinacea purpurea (L.) Moench) Should be Used for Tea and Which for Tincture?. Journal of medicinal food. 2019 Jan; 22(1):102-108. doi: 10.1089/jmf.2018.0026. [PMID: 30222488]
  • A Garbetta, L Nicassio, I D'Antuono, A Cardinali, V Linsalata, G Attolico, F Minervini. Influence of in vitro digestion process on polyphenolic profile of skin grape (cv. Italia) and on antioxidant activity in basal or stressed conditions of human intestinal cell line (HT-29). Food research international (Ottawa, Ont.). 2018 04; 106(?):878-884. doi: 10.1016/j.foodres.2018.01.072. [PMID: 29579999]
  • Livia Marques Casanova, Wenqian Gu, Sônia Soares Costa, Per Bendix Jeppesen. Phenolic Substances from Ocimum Species Enhance Glucose-Stimulated Insulin Secretion and Modulate the Expression of Key Insulin Regulatory Genes in Mice Pancreatic Islets. Journal of natural products. 2017 12; 80(12):3267-3275. doi: 10.1021/acs.jnatprod.7b00699. [PMID: 29192771]
  • Khaled M M Koriem, Mahmoud S Arbid. Role of caftaric acid in lead-associated nephrotoxicity in rats via antidiuretic, antioxidant and anti-apoptotic activities. Journal of complementary & integrative medicine. 2017 Nov; 15(2):. doi: 10.1515/jcim-2017-0024. [PMID: 29148979]
  • Ricardo Chagas, Ana Maria Lourenço, Sara Monteiro, Ricardo Boavida Ferreira, Luísa Maria Ferreira. Is caffeic acid, as the major metabolite present in Moscatel wine protein haze hydrolysate, involved in protein haze formation?. Food research international (Ottawa, Ont.). 2017 08; 98(?):103-109. doi: 10.1016/j.foodres.2016.09.007. [PMID: 28610727]
  • L F da S Constantino, L B Dos S Nascimento, L M Casanova, N Dos S Moreira, E A Menezes, R L Esteves, S S Costa, E S Tavares. Responses of Crepis japonica induced by supplemental blue light and UV-A radiation. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. 2017 02; 16(2):238-245. doi: 10.1039/c6pp00343e. [PMID: 28009887]
  • Vincent Brieudes, Apostolis Angelis, Konstantina Vougogiannopoulou, Harris Pratsinis, Dimitris Kletsas, Sofia Mitakou, Maria Halabalaki, Leandros A Skaltsounis. Phytochemical Analysis and Antioxidant Potential of the Phytonutrient-Rich Decoction of Cichorium spinosum and C. intybus. Planta medica. 2016 Jul; 82(11-12):1070-8. doi: 10.1055/s-0042-107472. [PMID: 27220071]
  • Zong-Quan Ou, David M Schmierer, Clare J Strachan, Thomas Rades, Arlene McDowell. Influence of postharvest processing and storage conditions on key antioxidants in pūhā (Sonchus oleraceus L.). The Journal of pharmacy and pharmacology. 2014 Jul; 66(7):998-1008. doi: 10.1111/jphp.12220. [PMID: 24697835]
  • Fabiana N Fonseca, Genovefa Papanicolaou, Hong Lin, Clara B S Lau, Edward J Kennelly, Barrie R Cassileth, Susanna Cunningham-Rundles. Echinacea purpurea (L.) Moench modulates human T-cell cytokine response. International immunopharmacology. 2014 Mar; 19(1):94-102. doi: 10.1016/j.intimp.2013.12.019. [PMID: 24434371]
  • Michael L Sullivan, Jamie L Foster. Perennial peanut (Arachis glabrata Benth.) contains polyphenol oxidase (PPO) and PPO substrates that can reduce post-harvest proteolysis. Journal of the science of food and agriculture. 2013 Aug; 93(10):2421-8. doi: 10.1002/jsfa.6050. [PMID: 23400843]
  • Zong-Quan Ou, David M Schmierer, Thomas Rades, Lesley Larsen, Arlene McDowell. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts. The Journal of pharmacy and pharmacology. 2013 Feb; 65(2):271-9. doi: 10.1111/j.2042-7158.2012.01591.x. [PMID: 23278695]
  • Sakae Arimoto-Kobayashi, Xiaomeng Zhang, Yuta Yuhara, Tomonori Kamiya, Tomoe Negishi, Goro Okamoto. Chemopreventive effects of the juice of Vitis coignetiae Pulliat on two-stage mouse skin carcinogenesis. Nutrition and cancer. 2013; 65(3):440-50. doi: 10.1080/01635581.2013.767916. [PMID: 23530644]
  • Maria O Thomsen, Xavier C Fretté, Kathrine B Christensen, Lars P Christensen, Kai Grevsen. Seasonal variations in the concentrations of lipophilic compounds and phenolic acids in the roots of Echinacea purpurea and Echinacea pallida. Journal of agricultural and food chemistry. 2012 Dec; 60(49):12131-41. doi: 10.1021/jf303292t. [PMID: 23181941]
  • Matthias Lechtenberg, Katrin Henschel, Ursula Liefländer-Wulf, Bettina Quandt, Andreas Hensel. Fast determination of N-phenylpropenoyl-l-amino acids (NPA) in cocoa samples from different origins by ultra-performance liquid chromatography and capillary electrophoresis. Food chemistry. 2012 Dec; 135(3):1676-84. doi: 10.1016/j.foodchem.2012.06.006. [PMID: 22953909]
  • Maria Nikolantonaki, Michael Jourdes, Kentaro Shinoda, Pierre-Louis Teissedre, Stéphane Quideau, Philippe Darriet. Identification of adducts between an odoriferous volatile thiol and oxidized grape phenolic compounds: kinetic study of adduct formation under chemical and enzymatic oxidation conditions. Journal of agricultural and food chemistry. 2012 Mar; 60(10):2647-56. doi: 10.1021/jf204295s. [PMID: 22324817]
  • Paula N Brown, Michael Chan, Lori Paley, Joseph M Betz. Determination of major phenolic compounds in Echinacea spp. raw materials and finished products by high-performance liquid chromatography with ultraviolet detection: single-laboratory validation matrix extension. Journal of AOAC International. 2011 Sep; 94(5):1400-10. doi: 10.5740/jaoacint.11-142. [PMID: 22165004]
  • Anatoly P Sobolev, Donatella Capitani, Donato Giannino, Chiara Nicolodi, Giulio Testone, Flavio Santoro, Giovanna Frugis, Maria A Iannelli, Autar K Mattoo, Elvino Brosio, Raffaella Gianferri, Irene D'Amico, Luisa Mannina. NMR-metabolic methodology in the study of GM foods. Nutrients. 2010 Jan; 2(1):1-15. doi: 10.3390/nu20100001. [PMID: 22253988]
  • Evangelia Karvela, Dimitris P Makris, Nick Kalogeropoulos, Vaios T Karathanos. Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols. Talanta. 2009 Oct; 79(5):1311-21. doi: 10.1016/j.talanta.2009.05.042. [PMID: 19635365]
  • Daniela Hanganu, L Vlase, Lorena Filip, Camelia Sand, Simona Mirel, L L Indrei. The study of some polyphenolic compounds from Melissa officinalis L. (Lamiaceae). Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi. 2008 Apr; 112(2):525-9. doi: ". [PMID: 19295032]
  • Chun-Hua Wu, Hosakatte Niranjana Murthy, Eun-Joo Hahn, Kee-Yoeup Paek. Large-scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid. Biotechnology letters. 2007 Aug; 29(8):1179-82. doi: 10.1007/s10529-007-9399-1. [PMID: 17589811]
  • Andreja Vanzo, Roberto Cecotti, Urska Vrhovsek, Adriana M Torres, Fulvio Mattivi, Sabina Passamonti. The fate of trans-caftaric acid administered into the rat stomach. Journal of agricultural and food chemistry. 2007 Feb; 55(4):1604-11. doi: 10.1021/jf0626819. [PMID: 17300159]
  • M-P Gonthier, C Remesy, A Scalbert, V Cheynier, J-M Souquet, K Poutanen, A-M Aura. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2006 Nov; 60(9):536-40. doi: 10.1016/j.biopha.2006.07.084. [PMID: 16978827]
  • Thorsten Maier, Solveigh Sanzenbacher, Dietmar R Kammerer, Nicolai Berardini, Jürgen Conrad, Uwe Beifuss, Reinhold Carle, Andreas Schieber. Isolation of hydroxycinnamoyltartaric acids from grape pomace by high-speed counter-current chromatography. Journal of chromatography. A. 2006 Sep; 1128(1-2):61-7. doi: 10.1016/j.chroma.2006.06.082. [PMID: 16860334]
  • Federico Ferreres, Carla Sousa, Mulangu Justin, Patrícia Valentão, Paula B Andrade, Rafael Llorach, Alírio Rodrigues, Rosa M Seabra, Anabela Leitão. Characterisation of the phenolic profile of Boerhaavia diffusa L. by HPLC-PAD-MS/MS as a tool for quality control. Phytochemical analysis : PCA. 2005 Nov; 16(6):451-8. doi: 10.1002/pca.869. [PMID: 16315490]
  • Joana S Amaral, Federico Ferreres, Paula B Andrade, Patrícia Valentão, Cristina Pinheiro, Alberto Santos, Rosa Seabra. Phenolic profile of hazelnut (Corylus avellana L.) leaves cultivars grown in Portugal. Natural product research. 2005 Feb; 19(2):157-63. doi: 10.1080/14786410410001704778. [PMID: 15715260]
  • Muhammad Saleem, Hyoung Ja Kim, Changbae Jin, Yong Sup Lee. Antioxidant caffeic acid derivatives from leaves of Parthenocissus tricuspidata. Archives of pharmacal research. 2004 Mar; 27(3):300-4. doi: 10.1007/bf02980064. [PMID: 15089035]
  • Emma Cantos, Juan Carlos Espín, Francisco A Tomás-Barberán. Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. Journal of agricultural and food chemistry. 2002 Sep; 50(20):5691-6. doi: 10.1021/jf0204102. [PMID: 12236700]