Exact Mass: 374.08941100000004
Exact Mass Matches: 374.08941100000004
Found 500 metabolites which its exact mass value is equals to given mass value 374.08941100000004
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Swertiamarin
Swertiamarin is a glycoside. Swertiamarin is a natural product found in Lonicera japonica, Fontanesia philliraeoides, and other organisms with data available. See also: Centaurium erythraea whole (part of). Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1]. Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1].
Chrysosplenetin
Chrysosplenetin, also known as quercetagetin 3,6,7,3-tetramethyl ether or 3,6,7,3-tetra-methylquercetagetin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, chrysosplenetin is considered to be a flavonoid lipid molecule. Chrysosplenetin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Chrysosplenetin can be found in german camomile, which makes chrysosplenetin a potential biomarker for the consumption of this food product. Chrysosplenetin is an O-methylated flavonol. It can be found in the root of Berneuxia thibetica and in Chamomilla recutita . Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].
Gardoside
Gardoside is a glycoside. Gardoside is a natural product found in Plantago atrata, Gardenia jasminoides, and other organisms with data available.
Skullcapflavone II
Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].
(-)-Wikstromol
(-)-Wikstromol is found in fruits. (-)-Wikstromol is obtained from Pinus palustris (pitch pine) and Carissa edulis (agam obtained from Pinus palustris (pitch pine) and Carissa edulis (agam). (-)-Wikstromol is found in fruits and sesame.
Geniposidic acid
Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Secologanate
Kievitone hydrate
Isolated from Phaseolus mungo (mung bean). Kievitone hydrate is found in pulses, lima bean, and gram bean. Kievitone hydrate is found in gram bean. Kievitone hydrate is isolated from Phaseolus mungo (mung bean).
Portulacaxanthin II
Portulacaxanthin II is involved in betaxanthin biosynthesis (via dopaxanthin) pathway. This pathway demonstrates the formation of betaxanthins such as portulacaxanthin II and dopaxanthin by means of non-enzymatic condensation from the amino acids L-tyrosine and L-DOPA, respectively. Tyrosinases have been described as capable to use those betaxanthins [ GandiaHerr05a ] as substrates for further metabolization. [HMDB]. Portulacaxanthin II is found in many foods, some of which are pineappple sage, peppermint, japanese pumpkin, and medlar. Portulacaxanthin II is involved in betaxanthin biosynthesis (via dopaxanthin) pathway. This pathway demonstrates the formation of betaxanthins such as portulacaxanthin II and dopaxanthin by means of non-enzymatic condensation from the amino acids L-tyrosine and L-DOPA, respectively. Tyrosinases have been described as capable to use those betaxanthins [ GandiaHerr05a ] as substrates for further metabolization.
Isodiospyrin
Isodiospyrin is a member of biphenyls. Isodiospyrin is a natural product found in Diospyros morrisiana, Diospyros verrucosa, and other organisms with data available. Isodiospyrin, a natural dimeric naphthoquinone, is a human DNA topoisomerase I (Topoisomerase) inhibitor. Isodiospyrin can prevent both DNA relaxation and kinase activities of human topoisomerase I. Isodiospyrin shows anticancer, antibacterial and antifungal activities[1][2][3]. Isodiospyrin, a natural dimeric naphthoquinone, is a human DNA topoisomerase I (Topoisomerase) inhibitor. Isodiospyrin can prevent both DNA relaxation and kinase activities of human topoisomerase I. Isodiospyrin shows anticancer, antibacterial and antifungal activities[1][2][3].
N-(3-Benzooxazol-2-yl-4-hydroxy-phenyl)-2-p-tolyloxyacetamide
Chlorophacinone
D006401 - Hematologic Agents > D000925 - Anticoagulants D010575 - Pesticides > D012378 - Rodenticides D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals
Famoxadone
D010575 - Pesticides > D005659 - Fungicides, Industrial > D000073739 - Strobilurins CONFIDENCE standard compound; INTERNAL_ID 403; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5208; ORIGINAL_PRECURSOR_SCAN_NO 5203 CONFIDENCE standard compound; INTERNAL_ID 403; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5187; ORIGINAL_PRECURSOR_SCAN_NO 5183 CONFIDENCE standard compound; INTERNAL_ID 403; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5271; ORIGINAL_PRECURSOR_SCAN_NO 5269 CONFIDENCE standard compound; INTERNAL_ID 403; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5195; ORIGINAL_PRECURSOR_SCAN_NO 5192 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3049
Casticin
Casticin is a tetramethoxyflavone that consists of quercetagetin in which the hydroxy groups at positions 3, 6, 7 and 4 have been replaced by methoxy groups. It has been isolated from Eremophila mitchellii. It has a role as an apoptosis inducer and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Casticin is a natural product found in Psiadia viscosa, Psiadia dentata, and other organisms with data available. See also: Chaste tree fruit (part of). A tetramethoxyflavone that consists of quercetagetin in which the hydroxy groups at positions 3, 6, 7 and 4 have been replaced by methoxy groups. It has been isolated from Eremophila mitchellii. Casticin is found in fruits. Casticin is a constituent of Vitex agnus-castus (agnus castus) seeds Casticin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=479-91-4 (retrieved 2024-07-01) (CAS RN: 479-91-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3. Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3.
Methylrosmarinic acid
Methyl rosmarinate is a hydroxycinnamic acid. Methyl rosmarinate is a natural product found in Dimetia scandens, Bourreria pulchra, and other organisms with data available. Methylrosmarinic acid is found in herbs and spices. Methylrosmarinic acid is isolated from Salvia (sage) species. Isolated from Salvia (sage) subspecies Methyl rosmarinate is found in herbs and spices. Methyl rosmarinate is a noncompetitive tyrosinase inhibitor which is isolated from Rabdosia serra, with an IC50 of 0.28 mM for mushroom tyrosinase, and also inhibits a-glucosidase[1]. Methyl rosmarinate is a noncompetitive tyrosinase inhibitor which is isolated from Rabdosia serra, with an IC50 of 0.28 mM for mushroom tyrosinase, and also inhibits a-glucosidase[1].
Neobaicalein
Scullcapflavone II is a tetramethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7, 8 and 6 and hydroxy groups at positons 5 and 2 respectively. It has a role as a plant metabolite and an anti-asthmatic drug. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Skullcapflavone II is a natural product found in Lagochilus leiacanthus, Scutellaria guatemalensis, and other organisms with data available. A tetramethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7, 8 and 6 and hydroxy groups at positons 5 and 2 respectively. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].
8-Hydroxypinoresinol
8-Hydroxypinoresinol is found in olive. 8-Hydroxypinoresinol is a constituent of bark of Olea europaea (olive).
N-[(5-Hydroxy-2-pyridinyl)methyl]adenosine
C16H18N6O5 (374.13386180000003)
N-[(5-Hydroxy-2-pyridinyl)methyl]adenosine is found in mushrooms. N-[(5-Hydroxy-2-pyridinyl)methyl]adenosine is isolated from Armillaria mellea (honey mushroom). Isolated from Armillaria mellea (honey mushroom). N-[(5-Hydroxy-2-pyridinyl)methyl]adenosine is found in mushrooms.
5,8-Dihydroxy-3,3',4',7-tetramethoxyflavone
5,8-Dihydroxy-3,3,4,7-tetramethoxyflavone is found in citrus. 5,8-Dihydroxy-3,3,4,7-tetramethoxyflavone is isolated from sweet orange oi
3-O-Methylrosmarinic acid
3-O-Methylrosmarinic acid is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]
Comosin
Comosin is found in herbs and spices. Comosin is a constituent of Muscari comosum (tassel hyacinth). Constituent of Muscari comosum (tassel hyacinth). Comosin is found in herbs and spices.
3-(3,4-dihydroxyphenyl)-2-{[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}propanoic acid
Neodiospyrin
Neodiospyrin is found in fruits. Neodiospyrin is isolated from roots of Diospyros kaki (Japanese persimmon
3',4',5,7,8-Pentamethoxyflavanone
3,4,5,7,8-Pentamethoxyflavanone is found in citrus. 3,4,5,7,8-Pentamethoxyflavanone is a constituent of a Citrus sp. (Dancy tangerine). Constituent of a Citrus species (Dancy tangerine). 3,4,5,7,8-Pentamethoxyflavanone is found in citrus.
Pebrellin
Constituent of Mentha piperita and Thymus piperella. Pebrellin is found in many foods, some of which are spearmint, peppermint, pot marjoram, and herbs and spices. Pebrellin is found in herbs and spices. Pebrellin is a constituent of Mentha piperita and Thymus piperella
Hymenoxin
Isolated from Mentha piperita (peppermint). Hymenoxin is found in sunflower, peppermint, and herbs and spices. Hymenoxin is found in herbs and spices. Hymenoxin is isolated from Mentha piperita (peppermint).
6-Hydroxymethyletoricoxib
C18H15ClN2O3S (374.0491870000001)
6-Hydroxymethyletoricoxib is only found in individuals that have used or taken Etoricoxib. 6-Hydroxymethyletoricoxib is a metabolite of Etoricoxib. 6-hydroxymethyletoricoxib belongs to the family of Bipyridines. These are organic compounds containing two pyridine rings linked to each other.
4',5-Dihydroxy-3',5',7,8-tetramethoxyflavone
4,5-Dihydroxy-3,5,7,8-tetramethoxyflavone is isolated from Lepidium sativum (garden cress). Isolated from Lepidium sativum (garden cress).
Menadiol disuccinate
Prothrombogenic vitamin. Prothrombogenic vitamin
Kievitol
Kievitol is found in lima bean. Kievitol is isolated from Phaseolus lunatus (butter bean). Isolated from Phaseolus lunatus (butter bean). Kievitol is found in pulses and lima bean.
N-Desmethylzopiclone
C16H15ClN6O3 (374.08941100000004)
N-Desmethylzopiclone is a metabolite of Eszopiclone. Eszopiclone, marketed by Sepracor under the brand-name Lunesta, is a nonbenzodiazepine hypnotic which is slightly effective for insomnia. Eszopiclone is the active dextrorotatory stereoisomer of zopiclone, and belongs to the class of drugs known as cyclopyrrolones. (Wikipedia)
Etoricoxib 1'-N'-oxide
C18H15ClN2O3S (374.0491870000001)
Etoricoxib 1-N-oxide is a metabolite of etoricoxib. Etoricoxib (brand name NUSHIN MASCOT HEALTH SERIES Arcoxia worldwide; also Algix and Tauxib in Italy, Nucoxia in India) is a COX-2 selective inhibitor (approx. 106.0 times more selective for COX-2 inhibition over COX-1) from Merck & Co. Currently it is approved in more than 70 countries worldwide but not in the US, where the Food and Drug Administration (FDA) requires additional safety and efficacy data for etoricoxib before it will issue approval. (Wikipedia)
Ethyl gallate 3-glucuronide
Ethyl gallate 3-glucuronide belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either (1) galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units, or (2) at least two galloyl units C-C coupled to each other and without a glycosidically linked catechin unit. Ethyl gallate 3-glucuronide is an extremely weak basic (essentially neutral) compound (based on its pKa).
Ethyl gallate 4-glucuronide
Ethyl gallate 4-glucuronide belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans and flavonoids. Ethyl gallate 4-glucuronide is an extremely weak basic (essentially neutral) compound (based on its pKa).
Succinylaminoimidazole carboxamide riboside
Succinylaminoimidazole carboxamide riboside, also known as SAICAr, is the riboside form of the better known compound SAICAR (the ribotide). Ribosides chemically resemble ribotides except they do not contain a phosphate group. The appearance of succinylaminoimidazolecarboxamide riboside (SAICAriboside) and succinyladenosine (S-Ado) in cerebrospinal fluid, in urine, and, to a lesser extent, in plasma is characteristic of a heritable deficiency known as adenylosuccinate lyase deficiency (ADSL). Adenylosuccinate lyase deficiency is responsible for a range of symptoms that involve psychomotor retardation, often accompanied by epileptic seizures, and autistic features. In adenylosuccinate lyase deficiency it is believed that the buildup of SAICAr causes neurotoxic effects. In the severely affected individuals, the concentration levels of SAICAr and S-Ado are comparable, whereas in people with milder forms of the disease, the concentration of S-Ado is more than double that of those more severely affected, while SAICAr concentration levels remain comparable. Therefore, when present in sufficiently high levels, SAICAr can act as a metabotoxin and an acidogen. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated adenylosuccinate lyase deficiency. Many affected children with organic acidemias experience intellectual disability or delayed development.
Syringic acid glucuronide
3'-Azido-2',3'-dideoxyuridine 5'-(1,4-dihydro-1-methyl-3-pyridinecarboxylate)
C16H18N6O5 (374.13386180000003)
7'-Hydroxymatairesinol
3-(6-((4-(Trifluoromethoxy)phenyl)amino)pyrimidin-4-yl)benzamide
(4-Methoxyphenyl)-morpholin-4-yl-morpholin-4-ylsulfanyl-sulfidophosphanium
C15H23N2O3PS2 (374.08876580000003)
Harmol glucuronide
hydroxymatairesinol
Iguratimod
C17H14N2O6S (374.05725440000003)
C308 - Immunotherapeutic Agent
(6'-Hydroxy-3-oxospiro[2-benzofuran-1,9'-xanthene]-3'-yl) acetate
Swertiamarin
Valeant
7-Hydroxymatairesinol
7-hydroxymatairesinol is a member of the class of compounds known as dibenzylbutyrolactone lignans. Dibenzylbutyrolactone lignans are lignan compounds containing a 3,4-dibenzyloxolan-2-one moiety. 7-hydroxymatairesinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 7-hydroxymatairesinol can be found in sesame, which makes 7-hydroxymatairesinol a potential biomarker for the consumption of this food product. Hydroxymatairesinol (HMR) is a lignan found in Norway spruce (Picea abies). It is an enterolactone precursor with anticancer activities. In rats, HMR decreased the volume of induced tumours and stabilised established tumours, as well as preventing the development of new tumours. It has also shown anti-oxidant properties in vitro .
Isohydroxymatairesinol
Isohydroxymatairesinol is a member of the class of compounds known as lignan lactones. Lignan lactones are lignans that contain a lactone moiety. They include 1-aryltetralin lactones, dibenzylbutyrolactone lignans, and podophyllotoxins, among others. Isohydroxymatairesinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Isohydroxymatairesinol can be found in sesame, which makes isohydroxymatairesinol a potential biomarker for the consumption of this food product.
(+)-Pinoresinolin
(+)-pinoresinolin is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety (+)-pinoresinolin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-pinoresinolin can be found in burdock, which makes (+)-pinoresinolin a potential biomarker for the consumption of this food product.
secologanate
Secologanate, also known as secologanic acid, is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Secologanate is soluble (in water) and a weakly acidic compound (based on its pKa). Secologanate can be found in a number of food items such as komatsuna, french plantain, shallot, and japanese persimmon, which makes secologanate a potential biomarker for the consumption of these food products.
Geniposidic_acid
Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
8-epidiosbulbin E acetate
Diffractic
4-[(2,4-dimethoxy-3,6-dimethylphenyl)-oxomethoxy]-2-hydroxy-3,6-dimethylbenzoic acid is a carbonyl compound. Diffractaic acid is a natural product found in Alectoria ochroleuca, Ophioparma ventosa, and other organisms with data available. Diffractaic acid, a major constituent of U. longissimi, acts as an effective proapoptotic agent in various disorders research[1]. Diffractaic acid is the analgesic and antipyretic component of Usnea diffracta[2]. Diffractaic acid, a major constituent of U. longissimi, acts as an effective proapoptotic agent in various disorders research[1]. Diffractaic acid is the analgesic and antipyretic component of Usnea diffracta[2].
7-Hydroxy-5,8-dimethoxy-6-methyl-3-(2-hydroxy-4-methoxybenzyl)chroman-4-one
[2aR-(2aalpha,3beta,4alpha,7balpha)]-3-(beta-D-Gucopyranosyloxy)-2a,3,4,4a,5,7b-hexahydro-4a-hydroxy-4-methyl-1H-2,6-dioxacyclopent[cd]inden-1-one
Parmelin
Atranorin is a lichen secondary metabolite. Atranorin inhibits lung cancer cell motility and tumorigenesis by affecting AP-1, Wnt, and STAT signaling and suppressing RhoGTPase activity[1][2]. Atranorin is a lichen secondary metabolite. Atranorin inhibits lung cancer cell motility and tumorigenesis by affecting AP-1, Wnt, and STAT signaling and suppressing RhoGTPase activity[1][2]. Atranorin is a lichen secondary metabolite. Atranorin inhibits lung cancer cell motility and tumorigenesis by affecting AP-1, Wnt, and STAT signaling and suppressing RhoGTPase activity[1][2].
Hyuganin D
Hyuganin D is a natural product found in Musineon divaricatum with data available.
3,5,7,4-Tetrahydroxy-8-(3-hydroxy-3-methylbutyl)flavanone
[2,2-Binaphthalene]-1,1,4,4-tetrone, 5,5-dihydroxy-7,7-dimethyl-
5,8-Dihydroxy-7,6-dimethyl-2,2-binaphthalene-1,1,4,4-tetraone
1alpha-Hydroxy-2alpha,4alpha-guaicyl-3,7-dioxabicyclo[3.3.0]octane
Paeciloquinone D
(2R,3R)-5,2-Dihydroxy-7,8-dimethoxy-3-O-acetylflavanone
5,7-Dimethoxy-3-(3,4,5-trimethoxyphenylmethyl)phthalide
7-Hydroxy-3-(2-hydroxy-3-methoxybenzyl)-5,8-dimethoxy-6-methylchroman-4-one
5,4-Dihidroxy-6,7,3,5-tetramethoxyflavone
5,3-Dihydroxy-6,7,4,5-tetramethoxyflavone
Quercetagetin 6,7,34-tetramethyl ether
Gossypetin 3,7,8,4-tetramethyl ether
Myricetin 3,3,4,5-tetramethyl ether
8-C-Methylquercetagetin 3,6,7-trimethyl ether
8-C-Methylquercetagetin 3,6,3-trimethyl ether
5,4-Dihydroxy-7,2,3,5-tetramethoxyflavone
5,7-Dihydroxy-2,3,4,5-tetramethoxyflavone
3,5-Dihydroxy-6,7,8,4-tetramethoxyflavone
3,5-Dihydroxy-7,3,4,5-tetramethoxyflavone
6-Methoxy-3,4-dehydromurranganon-2-methylpropanoate
Arteanoflavone
Arteanoflavone is a natural product found in Artemisia lucentica with data available.
Rubone
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.378 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.380 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.382
Polycladin
Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].
Casticin
[Raw Data] CB178_Casticin_pos_50eV_CB000067.txt [Raw Data] CB178_Casticin_pos_40eV_CB000067.txt [Raw Data] CB178_Casticin_pos_30eV_CB000067.txt [Raw Data] CB178_Casticin_pos_20eV_CB000067.txt [Raw Data] CB178_Casticin_pos_10eV_CB000067.txt Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3. Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3.
Neobaicalein
Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].
1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one
3,5-dihydroxy-3,4,5,7-tetramethoxyflavone
A tetramethoxyflavone that is myricetin in which the hydroxy groups at positions 3, 7, 4 and 5 have been replaced by methoxy groups. It has been isolated from Combretum quadrangulare.
4-O-beta-D-glucopyranosylsyringic acid methyl ester|methyl syringate 4-O-beta-D-glucopyranoside|methyl syringate 4-O-beta-D-glucuronopyranoside|Methyl syringate 4-O-??-D-glucopyranoside
4-Hydroxybenzophenone glucuronide|O1-(4-benzoyl-phenyl)-beta-D-glucopyranuronic acid|O1-(4-Benzoyl-phenyl)-beta-D-glucopyranuronsaeure
5-hydroxy-2-(4-hydroxy-2,3,5-trimethoxyphenyl)-7-methoxychromen-4-one
(4aS,5R,6S)-5-ethenyl-6-(beta-D-glucopyranosyloxy)-4,4a,5,6-tetrahydro-3-hydroxy-1H,3H-pyrano[3,4-c]pyran-1-one|secologanic acid
1,2-Dimethoxy-12-methyl-12,13-dihydro-[1,3]dioxolo[4,5:4,5]benzo[1,2-c]phenanthridin-13-carbonitril|1,2-dimethoxy-12-methyl-12,13-dihydro-[1,3]dioxolo[4,5:4,5]benzo[1,2-c]phenanthridine-13-carbonitrile|Cheleritrin-pseudocyanid|Chelerythrin-4-cyanin|chelerythrine phi-cyanide|Chelerythrine Psi-cyanid|Pseudocyanid von Chelerythrin
Neodiospyrin
7,8-dimethyl-10-<(3,4,5-trihydroxytetrahydrofuran-2-yl)methyl>isoalloxazin|7,8-dimethyl-10-[(3,4,5-trihydroxytetrahydrofuran-2-yl)methyl]isoalloxazin
C17H18N4O6 (374.12262880000003)
(5E,11E,15E,19E)-20-bromoeicosa-5,11,15,19-tetraen-9,17-diynoic acid|(all-E)-form-20-Bromo-5, 11, 15, 19-eicosatetraene-9, 17-diynoic aicd
1-(2,5-Dihydroxy-4-bromophenyl)-3,7-dihydroxy-3,7-dimethyl-1-octanone
Diospyrin, 1.1.4.4-Tetraoxo-7.7-dimethyl-5.5-dihydroxy-1.1.4.4-tetrahydro-binaphthyl-(2.6 oder 3.6)|Euclein
(1S,4aS,7aS)-1-(beta-D-glucopyranosyloxy)-1,4a,5,7a-tetrahydro-7-(hydroxymethyl)cyclopenta[c]pyran-4-carboxylic acid|geniposidic acid
4alpha,10alpha-dihydroxy-1alpha,2alpha-epoxy-5alpha,7alphaH-guaia-11(13)-en-12,6alpha-olide
4,4-Dihydroxy-7,7-dimethyl-2,2-binaphthalene-5,5,8,8-tetraone
Diplotrin A
A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 2 and 5 and methoxy groups at positions 3, 7, 8 and 4. It has been isolated from the aerial parts of Mimosa diplotricha.
5-hydroxy-2-(2-hydroxy-3,4,5-trimethoxy-phenyl)-7-methoxy-chromen-4-one
8-O-beta-D-glucopyranosyl-(R)-(+)-3,4,8-trihydroxymethyl phenylpropionate
7-Hydroxy-2-(3-methoxy-4-hydroxyphenyl)-3,5,8-trimethoxy-4H-1-benzopyran-4-one
3,8-epoxy-5-hydroxyvalechlorin-1-yl isovalerate|jatamanin O|rel-(2R,4S,4aS,5S,7S,7aS)-7-(acetyloxy)-7a-(chloromethyl)hexahydro-8-methylene-2,5-methanocyclopenta-1,3-dioxin-4-yl 3-methylbutanoate
1-Hydroxy-2,3,7,8-tetramethoxy-chromeno[5,4,3-cde]chromen-5,10-dion|1-hydroxy-2,3,7,8-tetramethoxy-chromeno[5,4,3-cde]chromene-5,10-dione|3,3,4,4-tetra-O-methylflavellagic acid
Me glycoside,4,6-O-benzylidene,2-mesyl-3-O-Methylgalactose
3,7-diacetoxy epicatechin|3,7-diacetyl (-) epicatechin|3,7-O-diacetyl-(-)-epicatechin
Atranorin
Atranorin is a carbonyl compound. Atranorin is a natural product found in Candelaria concolor, Loxospora elatina, and other organisms with data available. Atranorin is a lichen secondary metabolite. Atranorin inhibits lung cancer cell motility and tumorigenesis by affecting AP-1, Wnt, and STAT signaling and suppressing RhoGTPase activity[1][2]. Atranorin is a lichen secondary metabolite. Atranorin inhibits lung cancer cell motility and tumorigenesis by affecting AP-1, Wnt, and STAT signaling and suppressing RhoGTPase activity[1][2]. Atranorin is a lichen secondary metabolite. Atranorin inhibits lung cancer cell motility and tumorigenesis by affecting AP-1, Wnt, and STAT signaling and suppressing RhoGTPase activity[1][2].
6-(Hydroxymethyl)-1,2,3,5-tetramethoxy-8-hydroxy-9,10-anthraquinone
impatienol
A hydroxy-1,4-naphthoquinone that is ethane in which one of the carbons is substituted by two 3-hydroxy-1,4-naphthoquinon-2-yl groups.
2,3,5,7-Tetra-Me ether-2,3,5,5,6,7-Hexahydroxyflavone|6,5-dihydroxy-3,5,7,2-tetramethoxyflavone
3,4,5,6tetrahydroxy-2-(3,4,5-trihydroxyphenoxy)biphenyl
2-(5-Hydroxy-2,3-dimethoxyphenyl)-5-hydroxy-6,7-dimethoxy-4H-1-benzopyran-4-one
3,4,7-Tri-Me ether-3,3,4,5,5,7-Hexahydroxy-8-methylflavone
6-(1,2-dihydroxy-ethyl)-8-D-ribitol-1-yl-1H,8H-pteridine-2,4,7-trione|Photolumazin A
Arborescosidic acid
Arborescosidic acid is a natural product found in Plantago atrata, Plantago maritima, and Globularia trichosantha with data available.
Geniposidic acid
Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Swertiamarin
Annotation level-1 Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1]. Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1].
7-Hydroxy-2-phenoxy-3-(2-carboxybenzyl)chromone
5-hydroxy-2-(2-hydroxy-6-methoxyphenyl)-6,7,8-trimethoxychromen-4-one
[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] 3,4,5-trimethoxybenzoate
5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,7-dimethoxychromen-4-one
Swertiamarine
Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1]. Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1].
CHLOROPHACINONE
D006401 - Hematologic Agents > D000925 - Anticoagulants D010575 - Pesticides > D012378 - Rodenticides D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals
5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,7-dimethoxychromen-4-one [IIN-based: Match]
5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,7-dimethoxychromen-4-one [IIN-based on: CCMSLIB00000848808]
5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one
2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-chromen-4-one
7-[2-TRIFLUOROMETHYL-4-(2-HYDROXYPHENYL)-1,3-DIOXAN-cis-5-YL]-HEPT-5Z-ENOIC ACID
C18H21F3O5 (374.13410120000003)
6-Hydroxymethyletoricoxib
C18H15ClN2O3S (374.0491870000001)
Comosin
4',5-Dihydroxy-3',5',7,8-tetramethoxyflavone
Methyl rosmarinate
Methyl rosmarinate is a noncompetitive tyrosinase inhibitor which is isolated from Rabdosia serra, with an IC50 of 0.28 mM for mushroom tyrosinase, and also inhibits a-glucosidase[1]. Methyl rosmarinate is a noncompetitive tyrosinase inhibitor which is isolated from Rabdosia serra, with an IC50 of 0.28 mM for mushroom tyrosinase, and also inhibits a-glucosidase[1].
AMG-1
C16H18N6O5 (374.13386180000003)
3-O-Methylrosmarinic acid
4-Methylphenyl 4,6-O-benzylidene-1-thio-b-D-glucopyranoside
C20H22O5S (374.11878820000004)
1 4-BIS(TRIFLUOROMETHYL)-1 4-DIPHENYL-2&
C18H12F6O2 (374.07414439999997)
4-METHYLPHENYL4,6-O-[(R)-PHENYLMETHYLENE]-1-THIO-BETA-D-GLUCOPYRANOSIDE
C20H22O5S (374.11878820000004)
Benzyl 4-(4-bromophenyl)piperazine-1-carboxylate
C18H19BrN2O2 (374.06298139999996)
(1S,2S)-1,2-Bis(4-nitrophenyl)-1,2-ethanediamine dihydrochloride
4-Methylphenyl 4,6-O-benzylidene-1-thio-b-D-galactopyranoside
C20H22O5S (374.11878820000004)
(11ar)-(+)-10,11,12,13-tetrahydrodiindeno[7,1-de:1,7-fg][1,3,2]dioxaphosphocin-5-phenoxy
3-[3-Fluoro-4-(4-morpholinyl)phenyl]-5-[[(methylsulfonyl)oxy]methyl]-2-oxazolidinone
C15H19FN2O6S (374.09478060000004)
(R)-(3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl methanesulfonate
C15H19FN2O6S (374.09478060000004)
pentamethyl cyclohexane-1,1,3,3,5-pentacarboxylate
ethyl (2S)-3-(4-aminophenyl)-2-(1,3-dioxoisoindol-2-yl)propanoate,hydrochloride
2,2:5,2'-Terthiophene-5-boronic acid pinacol ester
(S)-N4-(3-chloro-4-fluorophenyl)-7-(tetrahydrofuran-3-yloxy)quinazoline-4,6-diaMine
3-O-(4-TOLUENESULFONYL)-2-O-ACETYL-L-METHYLFUCOSIDE
3-(4-(2-chlorophenoxy)piperidine-1-carboxamido)benzoic acid
1-(2,6-Dichlorobenzyl)-3-(1-Pyrrolidinylmethyl)-1H-Indazol-6-Amine
1-[2-[(4-CHLORO-2-NITROPHENYL)AMINO]BENZOYL]-4-METHYL-PIPERAZINE
C18H19ClN4O3 (374.11456139999996)
(2S,TRANS)-4-NITROBENZYL 2-(HYDROXYMETHYL)-4-((METHYLSULFONYL)OXY)PYRROLIDINE-1-CARBOXYLATE
C14H18N2O8S (374.07838280000004)
4-Amino-5-cyano-6-ethoxy-N-[4-(methylsulfonyl)benzyl]-2-pyridinec arboxamide
C17H18N4O4S (374.10487080000007)
sintofen
C18H15ClN2O5 (374.06694500000003)
Equilin 3-Sulfate-d4 sodium salt
C18H15D4NaO5S (374.11019311200005)
((2R,3R,4R,5R)-3-(benzoyloxy)-4-fluoro-5-hydroxy-4-methyltetrahydrofuran-2-yl)methyl benzoate
6-deoxy-1,2-O-isopropylidene-6-(4-methylbenzene)sulfonyloxy-D-glucofuranose
N-(benzo[d][1,3]dioxol-5-yl)-2-(thiophen-2-yl)quinoline-4-carboxamide
C21H14N2O3S (374.07250940000006)
4-Methylumbelliferyla-L-idopyranosiduronicacidsodiumsalt
6,8-difluoro-4-methyl-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one
6-(difluoro(6-phenyl-[1,2,4]triazolo[4,3-b][1,2,4]triazin-3-yl)Methyl)quinoline
(1R,2R)-1,2-BIS(4-NITROPHENYL)ETHANE-1,2-DIAMINE DIHYDROCHLORIDE
17-Beta-Estradiol-3-O-Sulfate Sodium
C18H23NaO5S (374.11638280000005)
17β-Estradiol sulfate (sodium), also known as β-Estradiol 3-sulfate sodium salt, is a neuroactive steroid[1][2].
3-iodo-4-(4-propan-2-ylpiperazin-1-yl)benzoic acid
4-[(4-ethylpiperazin-1-yl)methyl]-3-iodobenzoic acid
methyl 3-iodo-4-[(3-methylpiperazin-1-yl)methyl]benzoate
(10R)-10-methyl-3-(6-methylpyridin-3-yl)-9,10,11,12-tetrahydro-8H-[1,4]diazepino[5,6:4,5]thieno[3,2-f]quinolin-8-one
Puromycin aminonucleoside 5-monophosphate
C12H19N6O6P (374.11036440000004)
2-[[3-[(2-phenylacetyl)amino]benzoyl]amino]benzoic Acid
Ethyl 3-(benzylthio)-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydrobenzo[c]thiophene-1-carboxylate
(Z)-7-[(2S,4S,5R)-4-(2-hydroxyphenyl)-2-(trifluoromethyl)-1,3-dioxan-5-yl]hept-5-enoic acid
C18H21F3O5 (374.13410120000003)
2-{4-(2-furylmethyl)-5-[(3-phenyl-2-propen-1-yl)thio]-4H-1,2,4-triazol-3-yl}pyridine
1-(1-Benzotriazolyl)-3-(10-phenothiazinyl)-2-propanol
[4-(4-Phenyl-piperidin-1-yl)-benzenesulfonylamino]-acetic acid
C19H22N2O4S (374.13002120000004)
n-Hydroxy-4-[(4-methoxylphenyl)sulfonyl]-2,2-dimethyl-hexahydro-1,4-thiazepine-3(s)-carboxamide
4-(1,3-Benzodioxol-5-Yloxy)-2-[4-(1h-Imidazol-1-Yl)phenoxy]pyrimidine
(2s)-({(5z)-5-[(5-Ethyl-2-Furyl)methylene]-4-Oxo-4,5-Dihydro-1,3-Thiazol-2-Yl}amino)(4-Fluorophenyl)acetic Acid
NCI60_040650
Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].
603-56-5
Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].
N-[2-[[3-chloro-5-(triluoromethyl)pyridin-2-yl]methylsulanyl]ethyl]benzamide
4H-1-Benzopyran-4-one, 5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,7-dimethoxy-
(4R,4aR)-4-ethenyl-4a-hydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4,5,6-tetrahydropyrano[3,4-c]pyran-8-one
3,6-bis(1H-indol-3-yl)cyclohexa-2,5-diene-1,2,4,5-tetrol
[(2R,3S,4R,5S)-3,4-dihydroxy-5-(5-methoxy-6-methylbenzimidazol-1-yl)oxolan-2-yl]methyl dihydrogen phosphate
C14H19N2O8P (374.08789840000003)
(4E)-4-[2-[1-carboxy-2-(4-hydroxyphenyl)ethyl]iminoethylidene]-2,3-dihydro-1H-pyridine-2,6-dicarboxylic acid
2-[[(5E)-5-[(5-ethylfuran-2-yl)methylidene]-4-oxo-1,3-thiazolidin-2-ylidene]amino]-2-(4-fluorophenyl)acetic acid
2-bromo-N-[3-(pentanoylamino)phenyl]benzamide
C18H19BrN2O2 (374.06298139999996)
ethyl (2Z)-5-phenyl-2-(1,1,1-trifluoro-3-methoxy-3-oxopropan-2-ylidene)-1,3-oxathiole-4-carboxylate
C16H13F3O5S (374.04357640000006)
3-Tert-butyl-7-[[2-(4-methylphenyl)-2-oxoethyl]thio]-[1,3,4]thiadiazolo[2,3-c][1,2,4]triazin-4-one
2-[3-[2-furanyl(oxo)methyl]-1-indolyl]-N-(2-methoxyphenyl)acetamide
3-(3-bromophenyl)-2-(4-fluorophenyl)-5,6,7,7a-tetrahydro-3H-pyrrolo[1,2-c]imidazol-1-one
C18H16BrFN2O (374.04299579999997)
N-(4-benzamido-3-methylphenyl)-1,3-benzodioxole-5-carboxamide
2-[[5-(2-Furanyl)-4-(2-furanylmethyl)-1,2,4-triazol-3-yl]thio]-1-(4-morpholinyl)ethanone
C17H18N4O4S (374.10487080000007)
N-[2-(trifluoromethyl)-1,3-benzodioxol-2-yl]-1,4-dioxa-8-azaspiro[4.5]decane-8-carboxamide
3-Hydroxy-2-[5-[4-(trifluoromethyl)phenyl]-2-furanyl]-1,2-dihydroquinazolin-4-one
C19H13F3N2O3 (374.08782240000005)
2-(4-chlorophenyl)-N-[(Z)-pyrrol-2-ylidenemethyl]cinchoninohydrazide
1-butyl-3-thiophen-2-ylsulfonyl-2H-imidazo[4,5-b]quinoxaline
3-Methyl-benzoic acid 4-[(2-hydroxy-benzoyl)-hydrazonomethyl]-phenyl ester
4-{4-(2-furylmethyl)-5-[(3-phenyl-2-propen-1-yl)thio]-4H-1,2,4-triazol-3-yl}pyridine
3-[2-(4-chlorophenyl)-4-quinolinyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine
C22H19ClN4 (374.12981640000004)
4-Acetamidobenzenesulfonic acid [2-(1-piperidinyl)phenyl] ester
C19H22N2O4S (374.13002120000004)
N-(4-ethylphenyl)-2-(2-furanylmethyl)-1,3-dioxo-5-isoindolecarboxamide
N-[3-chloro-2-(4-morpholinyl)phenyl]-2,3-dihydro-1,4-benzodioxin-6-carboxamide
4-[2-[(4-Fluorophenyl)methylamino]-2-oxoethyl]-2-methyl-5-thieno[3,2-b]pyrrolecarboxylic acid ethyl ester
C19H19FN2O3S (374.11003560000006)
2-(8,9-Dimethyl-thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylsulfanyl)-N-(5-methyl-isoxazol-3-yl)-acetamide
C15H14N6O2S2 (374.06196239999997)
6-[(1H-benzimidazol-2-ylthio)methyl]-1-phenyl-2H-pyrazolo[3,4-d]pyrimidin-4-one
4-[(E)-{2-[2-(2-fluorophenyl)quinazolin-4-yl]hydrazinylidene}methyl]benzene-1,3-diol
C21H15FN4O2 (374.11789819999996)
Methyl 3-[2-(2,6-dichlorophenyl)quinolin-6-yl]alaninate
C19H16Cl2N2O2 (374.05887759999996)
5-[(3-Formyl-2-hydroxy-4-methoxy-6-methylphenyl)-oxomethoxy]-2-hydroxy-3,6-dimethylbenzoic acid
(E)-7-[4-(2-hydroxyphenyl)-2-(trifluoromethyl)-1,3-dioxan-5-yl]hept-5-enoic acid
C18H21F3O5 (374.13410120000003)
(2R,3R,4S)-1-ethylsulfonyl-3-[4-(3-fluorophenyl)phenyl]-4-(hydroxymethyl)azetidine-2-carbonitrile
C19H19FN2O3S (374.11003560000006)
(2R,3S,4S)-1-ethylsulfonyl-3-[4-(3-fluorophenyl)phenyl]-4-(hydroxymethyl)-2-azetidinecarbonitrile
C19H19FN2O3S (374.11003560000006)
(2S,3R,4R)-1-ethylsulfonyl-3-[4-(3-fluorophenyl)phenyl]-4-(hydroxymethyl)azetidine-2-carbonitrile
C19H19FN2O3S (374.11003560000006)
(2S,3S,4R)-1-ethylsulfonyl-3-[4-(3-fluorophenyl)phenyl]-4-(hydroxymethyl)-2-azetidinecarbonitrile
C19H19FN2O3S (374.11003560000006)
1-S-[(1Z)-N-(sulfonatooxy)pentanimidoyl]-1-thio-beta-D-glucopyranose
1-O-(3,4,5-Trimethoxybenzoyl)-beta-L-galactopyranose
7-[2beta-(Trifluoromethyl)-6beta-(2-hydroxyphenyl)-1,3-dioxan-5beta-yl]-5-heptenoic acid
C18H21F3O5 (374.13410120000003)
2-(7-hydroxy-4-oxo-3-phenoxy-4H-chromen-2-yl)benzoic acid
Chrysosplenetin
Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. A tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].
4-Ethenyl-4a-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4,5,6-tetrahydropyrano[3,4-c]pyran-8-one
N-[(5-Hydroxy-2-pyridinyl)methyl]adenosine
C16H18N6O5 (374.13386180000003)
glucocochlearin(1-)
An alkylglucosinolate that is the conjugate base of glucocochlearin.
isobutylglucosinolate
An alkylglucosinolate that is the conjugate base of isobutylglucosinolic acid.
butylglucosinolate
An alkylglucosinolate that is the conjugate base of butylglucosinolic acid.
7-[4-(2-hydroxyphenyl)-2-(trifluoromethyl)-1,3-dioxan-5-yl]-5-heptenoic acid
C18H21F3O5 (374.13410120000003)
7-[(2S,4S,5R)-4-(2-hydroxyphenyl)-2-(trifluoromethyl)-1,3-dioxan-5-yl]-5-heptenoic acid
C18H21F3O5 (374.13410120000003)
3,3,4,5-tetramethylmyricetin
A tetramethoxyflavone that is myricetin in which the hydroxy groups at positions 3, 3, 4 and 5 are replaced by methoxy groups. It is isolated from Bridelia ferruginea, a subtropical medicinal plant widely used in traditional African medicine.
6-CEPN
6-CEPN is a RAS inhibitor. 6-CEPN can inhibit RAS activation by binding to Icmt binding sites. 6-CEPN has anticancer activity. 6-CEPN can block cancer cells in the G1 phase. 6-CEPN can induce autophagy and necrosis of Cancer cells (Icmt: isovalerylcysteine carboxymethyltransferase)[1].
BMS-984923
BMS-984923, a potent mGluR5 silent allosteric modulator (SAM), with exquisite binding affinity (Ki = 0.6 nM), exhibits good oral bioavailability and BBB penetration. BMS-984923 potently inhibits the PrPC-mGluR5 interaction and prevents pathological Aβo signaling without affecting physiological glutamate signaling[1][2].
Fatostatin (hydrobromide)
Fatostatin hydrobromide (125B11 hydrobromide), a specific inhibitor of SREBP activation, impairs the activation of SREBP-1 and SREBP-2. Fatostatin hydrobromide binds to SCAP (SREBP cleavage-activating protein), and inhibits the ER-Golgi translocation of SREBPs. Fatostatin hydrobromide decreases the transcription of lipogenic genes in cells. Fatostatin hydrobromide possesses antitumor properties, and lowers hyperglycemia in ob/ob mice[1][2].
RK-9123016
RK-9123016 is a potent inhibitor of SIRT2. RK-9123016 inhibits the enzymatic activity of SIRT2 with an IC50?value of 0.18?μM but not other human sirtuin members including SIRT1 and SIRT3 at 100?μM. RK-9123016 increases the acetylation level of eukaryotic translation initiation factor 5A (eIF5A), a physiological substrate of SIRT2, and reduces cell viability of human breast cancer cells accompanied with a decrease in c-Myc expression[1].