Exact Mass: 325.1790178
Exact Mass Matches: 325.1790178
Found 500 metabolites which its exact mass value is equals to given mass value 325.1790178
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Cycloxydim
C17H27NO3S (325.17115520000004)
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3045
Bisoprolol
C18H31NO4 (325.22529660000004)
Bisoprolol is a cardioselective β1-adrenergic blocking agent used for secondary prevention of myocardial infarction (MI), heart failure, angina pectoris and mild to moderate hypertension. Bisoprolol is structurally similar to metoprolol, acebutolol and atenolol in that it has two substituents in the para position of the benzene ring. The β1-selectivity of these agents is thought to be due in part to the large substituents in the para position. At lower doses (less than 20 mg daily), bisoprolol selectively blocks cardiac β1-adrenergic receptors with little activity against β2-adrenergic receptors of the lungs and vascular smooth muscle. Receptor selectivity decreases with daily doses of 20 mg or greater. Unlike propranolol and pindolol, bisoprolol does not exhibit membrane-stabilizing or sympathomimetic activity. Bisoprolol possesses a single chiral centre and is administered as a racemic mixture. Only l-bisoprolol exhibits significant β-blocking activity. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3013 CONFIDENCE standard compound; INTERNAL_ID 8595 CONFIDENCE standard compound; INTERNAL_ID 2677
Monocrotaline
Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive disease Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive diseas CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2249 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 131 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 121 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 151 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 141 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 111 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 161 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 171 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 101 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].
galben
C20H23NO3 (325.16778480000005)
CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9755; ORIGINAL_PRECURSOR_SCAN_NO 9753 CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9633 CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9740; ORIGINAL_PRECURSOR_SCAN_NO 9738 CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9736; ORIGINAL_PRECURSOR_SCAN_NO 9733 CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9677; ORIGINAL_PRECURSOR_SCAN_NO 9675 CONFIDENCE standard compound; INTERNAL_ID 567; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9703; ORIGINAL_PRECURSOR_SCAN_NO 9701 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3035 CONFIDENCE standard compound; INTERNAL_ID 8447 CONFIDENCE standard compound; INTERNAL_ID 32
10-Nitrolinoleic acid
C18H31NO4 (325.22529660000004)
Nitrolinoleic acid is a nitrated fatty acid (or nitroalkene, a class of cell signaling mediators generated by Nitric Oxide (NO) and fatty acid-dependent redox reactions). Nitrated fatty acids such as 10- and 12-nitro-9,12-octadecadienoic acid exhibit pluripotent antiinflammatory cell signaling properties. (PMID 16537525) [HMDB] Nitrolinoleic acid is a nitrated fatty acid (or nitroalkene, a class of cell signaling mediators generated by Nitric Oxide (NO) and fatty acid-dependent redox reactions). Nitrated fatty acids such as 10- and 12-nitro-9,12-octadecadienoic acid exhibit pluripotent antiinflammatory cell signaling properties. (PMID 16537525).
Amdinocillin
Amdinocillin is only found in individuals that have used or taken this drug. It is an amidinopenicillanic acid derivative with broad spectrum antibacterial action. It is poorly absorbed if given orally and is used in urinary infections and typhus. [PubChem]Amdinocillin is a stong and specific antagonist of Penicillin Binding Protein-2 (PBP 2). It is active against gram negative bacteria, preventing cell wall synthesis by inhibiting the activity of PBP2. PBP2 is a peptidoglycan elongation initiating enzyme. Peptidoglycan is a polymer of sugars and amino acids that is the main component of bacterial cell walls. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Cheilanthifoline
Cheilanthifoline is a natural product found in Fumaria densiflora, Fumaria judaica, and other organisms with data available.
Ergonovine
Ergonovine is only found in individuals that have used or taken this drug. It is an ergot alkaloid with uterine and vascular smooth muscle contractile properties. [PubChem]Ergonovine directly stimulates the uterine muscle to increase force and frequency of contractions. With usual doses, these contractions precede periods of relaxation; with larger doses, basal uterine tone is elevated and these relaxation periods will be decreased. Contraction of the uterine wall around bleeding vessels at the placental site produces hemostasis. Ergonovine also induces cervical contractions. The sensitivity of the uterus to the oxytocic effect is much greater toward the end of pregnancy. The oxytocic actions of ergonovine are greater than its vascular effects. Ergonovine, like other ergot alkaloids, produces arterial vasoconstriction by stimulation of alpha-adrenergic and serotonin receptors and inhibition of endothelial-derived relaxation factor release. It is a less potent vasoconstrictor than ergotamine. As a diagnostic aid (coronary vasospasm), ergonovine causes vasoconstriction of coronary arteries. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AB - Ergot alkaloids C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D012102 - Reproductive Control Agents > D010120 - Oxytocics
bulbocapnine
An aporphine alkaloid that has been isolated from Corydalis and exhibits inhibitory activity against enzymes such as tyrosine 3-monooxygenase and diamine oxidase.
Cassythicine
Alkaloid from Laurus nobilis (bay laurel). Cassythicine is found in tea, sweet bay, and herbs and spices. Cassythicine is found in herbs and spices. Cassythicine is an alkaloid from Laurus nobilis (bay laurel).
Small bacteriocin
C18H31NO4 (325.22529660000004)
Bacteriocin. Small bacteriocin is produced by Rhizobium leguminosarum. Bacteriocin. Production by Rhizobium leguminosarum.
dinor-Levomethadyl acetate
dinor-Levomethadyl acetate is a metabolite of levomethadyl acetate. Levacetylmethadol, levomethadyl acetate, Orlaam (trade name) or levo-α-acetylmethadol (LAAM) is a synthetic opioid similar in structure to methadone. It has a long duration of action due to its active metabolites. (Wikipedia)
Farnesylcysteine
In patients with chronic fatigue syndrome (CFS) we found increased IgM levels to S-farnesyl-L-cysteine. S-farnesyl-L-cysteine plays a key role in regulating cell growth, differentiation and apoptosis through RAS protein activity. The latter depends on their anchorage to the inner surface of the plasma membrane, which is promoted by their common carboxy-terminal S-farnesyl-cysteine. The presence of antibodies to S-farnesyl-L-cysteine suggest that RAS functions may have undergone damage by oxidative/nitrosative stress, causing disturbed functional activity in the regulation of cell growth. (PMID 17159817).
Norpropoxyphene
Norpropoxyphene is a major metabolite of the opioid analgesic drug dextropropoxyphene, and is responsible for many of the side effects associated with use of this drug, especially the unusual toxicity seen during dextropropoxyphene overdose. It has weaker analgesic effects than dextropropoxyphene itself, but is a relatively potent pro-convulsant and blocker of sodium and potassium channels, particularly in heart tissue, which produces prolonged intracardiac conduction time and can lead to heart failure following even relatively minor overdoses. The toxicity of this metabolite makes dextropropoxyphene up to 10 times more likely to cause death following overdose compared to other similar mild opioid analgesics, and has led to dextropropoxyphene being withdrawn from the market in some countries.
Junosine
Junosine is found in citrus. Junosine is an alkaloid from the bark of Citrus junos (yuzu). Alkaloid from the bark of Citrus junos (yuzu). Junosine is found in citrus.
2-O-alpha-D-Galactopyranosyl-1-deoxynojirimycin
2-O-alpha-D-Galactopyranosyl-1-deoxynojirimycin is found in fruits. 2-O-alpha-D-Galactopyranosyl-1-deoxynojirimycin is from Morus alba (white mulberry). From Morus alba (white mulberry). 2-O-alpha-D-Galactopyranosyl-1-deoxynojirimycin is found in fruits.
Simulenoline
C20H23NO3 (325.16778480000005)
Simulenoline is found in fruits. Simulenoline is an alkaloid from the bark of Zanthoxylum simulans (Szechuan pepper
Glucopyranosylmoranoline
Glucopyranosylmoranoline, or 4-O-a-D-Glucopyranosylmoranoline (CAS Number 80312-32-9), is a white to off-white solid, soluble in methanol and water, with melting point 189-192C. It is a alpa-glucosidase inhibitor, also may prove to be an effective oral anti-diabetic agent. (PMID: 1794940) D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D004791 - Enzyme Inhibitors
(2E,4E,8E)-Piperamide-C9:3
C20H23NO3 (325.16778480000005)
(2E,4E,8E)-Piperamide-C9:3 is found in herbs and spices. (2E,4E,8E)-Piperamide-C9:3 is a constituent of pepper fruits (Piper nigrum, Piperaceae). Constituent of pepper fruits (Piper nigrum, Piperaceae). (2E,4E,8E)-Piperamide-C9:3 is found in herbs and spices and pepper (spice).
N-[[3-Hydroxy-2-(2-pentenyl)cyclopentyl]acetyl]isoleucine
C18H31NO4 (325.22529660000004)
N-[[3-Hydroxy-2-(2-pentenyl)cyclopentyl]acetyl]isoleucine is a constituent of the pollen of Pinus mugo (dwarf mountain pine). Constituent of the pollen of Pinus mugo (dwarf mountain pine)
Isodomesticine
Isodomesticine is found in herbs and spices. Isodomesticine is an alkaloid from the leaves of Laurus nobilis (bay laurel). Alkaloid from the leaves of Laurus nobilis (bay laurel). Isodomesticine is found in tea, sweet bay, and herbs and spices.
Nornantenine
Nornantenine is found in herbs and spices. Nornantenine is an alkaloid from Laurelia sempervirens (Peruvian nutmeg
Huajiaosimuline
C20H23NO3 (325.16778480000005)
Huajiaosimuline is found in fruits. Huajiaosimuline is an alkaloid from root bark of Zanthoxylum simulans (Szechuan pepper). Alkaloid from root bark of Zanthoxylum simulans (Szechuan pepper). Huajiaosimuline is found in herbs and spices and fruits.
Palaudine
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids Palaudine is a minor alkaloid from opium (Papaver somniferum
Romucosine A
Romucosine A is found in alcoholic beverages. Romucosine A is an alkaloid from Rollinia mucosa (biriba). Constituent of various plants including spinach. Pyropheophytin b is found in green vegetables.
N-[2-Ethoxy-2-(4-methoxyphenyl)ethyl]cinnamide
C20H23NO3 (325.16778480000005)
N-[2-Ethoxy-2-(4-methoxyphenyl)ethyl]cinnamide is found in fruits. N-[2-Ethoxy-2-(4-methoxyphenyl)ethyl]cinnamide is isolated from Aegle marmelos (bael). Isolated from Aegle marmelos (bael). N-[2-Ethoxy-2-(4-methoxyphenyl)ethyl]cinnamide is found in fruits.
Undeca-3,8-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-3,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-2,8-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-2,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-5,8-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-5,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-5,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-5,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-5,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-4,6-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-4,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-4,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-4,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-4,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-2,6-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-2,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-3,9-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-3,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-3,5-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-3,5-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,5-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,5-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,5-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-7,9-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-7,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-7,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-7,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-7,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-5,7-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-5,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-5,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-5,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-5,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-5,9-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-5,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-5,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-5,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-5,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-2,9-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-2,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-6,9-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-6,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-6,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-6,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-6,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-6,8-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-6,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-6,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-6,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-6,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-3,7-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-3,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-2,4-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-2,4-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,4-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,4-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,4-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-2,7-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-2,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-4,8-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-4,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-4,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-4,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-4,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-2,5-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-2,5-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-2,5-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-2,5-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-2,5-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-4,9-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-4,9-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-4,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-4,9-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-4,9-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-4,7-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-4,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-4,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-4,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-4,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-3,6-dienoylcarnitine
C18H31NO4 (325.22529660000004)
Undeca-3,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Nona-3,5,7-trienedioylcarnitine
nona-3,5,7-trienedioylcarnitine is an acylcarnitine. More specifically, it is an nona-3,5,7-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nona-3,5,7-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nona-3,5,7-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E,4E,7E)-Nona-2,4,7-trienedioylcarnitine
(2E,4E,7E)-nona-2,4,7-trienedioylcarnitine is an acylcarnitine. More specifically, it is an (2E,4E,7E)-nona-2,4,7-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E,4E,7E)-nona-2,4,7-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E,4E,7E)-nona-2,4,7-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Enpiperate
C20H23NO3 (325.16778480000005)
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
Aprofene
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent
Bulbocapnine
1-(4-Aminophenyl)-7,8-dimethoxy-3-methyl-5H-2,3-benzodiazepin-4-one
Carbamic acid, (5-amino-1,2-dihydro-3-(4-methylphenyl)pyrido(3,4-b)pyrazin-7-yl)-, ethyl ester
C17H19N5O2 (325.15386739999997)
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000970 - Antineoplastic Agents D002317 - Cardiovascular Agents
10-Piperazinylpropylphenothiazine
C19H23N3S (325.16125980000004)
Ergobasin
Isoleucyl-prolyl-proline
L-Proline, 1-(1-L-leucyl-L-prolyl)-
Ifenprodil
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators COVID info from DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Mrz 2266 BS
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists
Piritrexim
C17H19N5O2 (325.15386739999997)
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D000970 - Antineoplastic Agents
Pixantrone
C17H19N5O2 (325.15386739999997)
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DB - Anthracyclines and related substances D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors
18-Nitrooctadeca-9,12-dienoic acid
C18H31NO4 (325.22529660000004)
(3R-(3alpha,4alpha(2R*,3R*),5beta,6beta))-5-Methoxy-4-(2-methyl-3-(3-methyl-2-butenyl)oxiranyl)-1-oxaspiro(2.5)octan-6-ol carbamate
Monocrotaline
Monocrotaline is a pyrrolizidine alkaloid. Monocrotaline is a natural product found in Crotalaria novae-hollandiae, Crotalaria recta, and other organisms with data available. A pyrrolizidine alkaloid and a toxic plant constituent that poisons livestock and humans through the ingestion of contaminated grains and other foods. The alkaloid causes pulmonary artery hypertension, right ventricular hypertrophy, and pathological changes in the pulmonary vasculature. Significant attenuation of the cardiopulmonary changes are noted after oral magnesium treatment. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.154 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.142 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.145 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].
2,5-Dideoxy-2,5-imino-DL-glycero-D-manno-heptitol 7-beta-D-xylopyranoside
(Z)-3-(4-hydroxyphenyl)-2-methoxy-N-((E)-4-methoxystyryl)acrylamide|Botryllamide E
(+)-trans-Deacetoxyerioaustralasine
C20H23NO3 (325.16778480000005)
Awajanomycin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Tumonoic acid E
C18H31NO4 (325.22529660000004)
A natural product found particularly in Oscillatoria margaritifera and Oscillatoria margaritifera.
3-(2-((2-Methoxybenzyl)amino)ethyl)quinazoline-2,4(1H,3H)-dione
ifenprodil
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators COVID info from DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
N-3-oxo-tetradecanoyl-L-Homoserine lactone
C18H31NO4 (325.22529660000004)
Thalmin|Thalmin; 3,5-Dimethoxy-N-methyl-11-hydroxy-hexahydro-triphenylindin
C20H23NO3 (325.16778480000005)
(+)-O-methylisothebaine|1,2,11-Trimethoxy-6-methyl-6aalpha-aporphan|1,2,11-trimethoxy-6-methyl-6aalpha-aporphane
C20H23NO3 (325.16778480000005)
15,16-methanediyldioxy-3alpha-methoxy-11a-homo-erythrina-1,6-dien-8-one|8-Oxschelhammeridine|Alkaloid K|alkaloid-K (Schelhammera pedunculata)
(S)-3-methoxy-5,8,14,14a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[2,1-b]isoquinolin-2-ol|DC037029|S-(-)-2-hydroxy-3-methoxy-10,11-methylenedioxy-5,8,13,13a-tetrahydro-6H-dibenzo[a,g]quinolizine
N-<9,10-dihydrojasmonoyl>-(S)-isoleucine
C18H31NO4 (325.22529660000004)
4-ethyl-11,15-dihydroxy-12-methoxy-5-methyl-13-oxa-4-aza-tricyclo[10.2.1.02,5]-pentadec-1-en-3-one|phyllostictine A
11a-Oxoschelhammeridine|15,16-methanediyldioxy-3alpha-methoxy-11a-homo-erythrina-1,6-dien-11a-one|Alkaloid J|alkaloid-J (Schelhammera pedunculata)
3-O-alpha-D-glucopyranosyl-1-deoxynojirimycin|4-O-alpha-D-glucopyranosyl-(1->4)-1-deoxynojirimycin
(+-)-Amurensin|(+-)-amurensine|7-methoxy-13-methyl-10,11-dihydro-5H-11c,5r-azaethano-benzo[4,5]cyclohepta[1,2:4,5]benzo[1,2-d][1,3]dioxol-8-ol|Amurensin|Amurensine
1,1-diphenyl-2,2-piperidine-2,6-diyl-bis-ethanol|2,6-Bis-(beta-hydroxy-phenaethyl)-piperidin|2,6-bis-(beta-hydroxy-phenethyl)-piperidine|Norlobelamidin|Norlobelanidin
2,5-dideoxy-2,5-imino-(3-O-beta-D-glucopyranosyl)-D-mannitol|3-O-beta-D-glucopyranosyl-2R,5R-dihydroxymethyl-3R,4R-dihydroxypyrrolidine
6,7-dimethoxy 4-(3-methoxy 4-hydroxy benzyl)isoquinoline
(7aS)-8c,10-dimethoxy-(7ar)-6,7,7a,8-tetrahydro-5H-benzo[g][1,3]dioxolo[4,5:4,5]benzo[1,2,3-de]quinoline|Nor-oliverin|Noroliverine|O-methyl-noroliveridine
5H-Pyrano(3,2-c)quinolin-5-one, 2,6-dihydro-2,2,6-trimethyl-7-((3-methyl-2-butenyl)oxy)-
C20H23NO3 (325.16778480000005)
1-methyl-2-[7?-oxo-(E)-5?-undecenyl]-4(1H)-quinolone|euocarpine A
1-methyl-2-[6?-oxo-(E)-7?-undecenyl]-4(1H)-quinolone|euocarpine B
(7aXi,8R)-4-methoxy-7-methyl-6,7,7a,8-tetrahydro-5H-benzo[g][1,3]dioxolo[4,5:4,5]benzo[1,2,3-de]quinolin-8-ol|Guatterin
6,7-dimethoxy 4-(4-methoxy 3-hydroxy benzyl)isoquinoline
1,2,10-trimethoxy-6-methyl-5,6,6a,7-tetrahydro-4h-dibenzo[de,g]quinoline
C20H23NO3 (325.16778480000005)
(+-)-litsedine|11,12-dimethoxy-6,7,7a,8-tetrahydro-5H-benzo[g][1,3]dioxolo[4,5:4,5]benzo[1,2,3-de]quinoline|Litsedin|Litsedine|O-Methyl-nandigerin|O-Methylnandigerin
6-methoxy-7-hydroxy 4-(3,4-dimethoxybenzyl)isoquinoline
1,3-dihydroxy-4-[(Z)-3-hydroxy-3-methylbuten-1-yl]-N-methylacridone
N-demethyl-2-methoxyatherosperminine
C20H23NO3 (325.16778480000005)
(7aS)-8c-methoxy-7-methyl-(7ar)-6,7,7a,8-tetrahydro-5H-benzo[g][1,3]dioxolo[4,5:4,5]benzo[1,2,3-de]quinolin-10-ol|Polysuavin|Polysuavine
BISOPROLOL
C18H31NO4 (325.22529660000004)
C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE Reference Standard (Level 1)
Ergonovine
A monocarboxylic acid amide that is lysergamide in which one of the hydrogens attached to the amide nitrogen is substituted by a 1-hydroxypropan-2-yl group (S-configuration). An ergot alkaloid that has a particularly powerful action on the uterus, its maleate (and formerly tartrate) salt is used in the active management of the third stage of labour, and to prevent or treat postpartum of postabortal haemorrhage caused by uterine atony: by maintaining uterine contraction and tone, blood vessels in the uterine wall are compressed and blood flow reduced. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AB - Ergot alkaloids C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D012102 - Reproductive Control Agents > D010120 - Oxytocics CONFIDENCE Claviceps purpurea sclerotia relative retention time with respect to 9-anthracene Carboxylic Acid is 0.382 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.380 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.373 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.375
Dyclonine hydrochloride
C18H28ClNO2 (325.18084580000004)
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Dyclonine (Dyclocaine) hydrochloride is an orally effective ALDH covalent inhibitor (crosses blood-brain barrier), with an IC50 of 35 μM for ALDH2 and 76 μM for ALDH3A1. Dyclonine hydrochloride has sensitizing activities for targeted cancer cells and antibacterial. Dyclonine hydrochloride is also a local anesthetic that blocks the transmission of various nerve impulses or stimuli and inhibits the sensation of touch and pain[1][2][3].
Mecillinam
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
C16H23NO6_2H-[1,6]Dioxacycloundecino[2,3,4-gh]pyrrolizine-2,6(3H)-dione, 4,5,8,10,12,13,13a,13b-octahydro-3,4-dihydroxy-3,4,5-trimethyl
C19H23N3O2_(3S,6S)-3-Methyl-6-{[2-(2-methyl-3-buten-2-yl)-1H-indol-3-yl]methyl}-2,5-piperazinedione
4,5-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione
3-oxo-C14 homoserine lactone
C18H31NO4 (325.22529660000004)
INTERNAL_ID 212; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 212
(+)-Benalaxyl
C20H23NO3 (325.16778480000005)
CONFIDENCE standard compound; INTERNAL_ID 2622
N-(3-Oxotetradecanoyl)-L-homoserine lactone
C18H31NO4 (325.22529660000004)
4,5-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹?]hexadec-10-ene-3,7-dione
N-3-oxo-myristoyl-L-Homoserine lactone
C18H31NO4 (325.22529660000004)
10-nitro,9Z,12Z-octadecadienoic acid
C18H31NO4 (325.22529660000004)
Nornantenine
Simulenoline
C20H23NO3 (325.16778480000005)
Isodomesticine
Small bacteriocin
C18H31NO4 (325.22529660000004)
Romucosine A
Piperamide-C9:3 (2E,4E,8E)
C20H23NO3 (325.16778480000005)
Aegle marmelos alkaloid b
C20H23NO3 (325.16778480000005)
Huajiaosimuline
C20H23NO3 (325.16778480000005)
N-(7-Isocucurbinoyl)isoleucine
C18H31NO4 (325.22529660000004)
2-O-a-D-Galactopyranosyl-1-deoxynojirimycin
Glucopyranosylmoranoline
D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D004791 - Enzyme Inhibitors
N-[9,10-Dihydrojasmonoyl]isoleucine
C18H31NO4 (325.22529660000004)
N-(3R-hydroxy-7Z-tetradecenoyl)-homoserine lactone
C18H31NO4 (325.22529660000004)
clemizole
C19H20ClN3 (325.13456700000006)
C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist
3,5-Difluoro-4-Morpholinophenylboronic Acid Pinacol Ester
3-[[2-(5,6,7,8-tetrahydronaphthalen-2-yloxy)acetyl]amino]benzoic acid
3-[[3-oxo-3-(4-propan-2-ylphenyl)propanoyl]amino]benzoic acid
3-[3-(3-ethylphenoxy)-2-oxopyrrolidin-1-yl]benzoic acid
3-[3-(4-ethylphenoxy)-2-oxopyrrolidin-1-yl]benzoic acid
3-[3-(3,4-dimethylphenoxy)-2-oxopyrrolidin-1-yl]benzoic acid
Benzeneacetic acid, a-(hydroxymethyl)-,(3-endo)-8-methyl-8-azabicyclo[3.2.1]oct-3-yl ester, hydrochloride (1:1), (aS)-
C17H24ClNO3 (325.14446240000007)
tert-Butyl 4-(2-fluoro-4-nitrophenyl)piperazine-1-carboxylate
C15H20FN3O4 (325.14377720000005)
6H-Purin-6-one, 2-amino-9-[(2R)-4,4-diethoxy-2-(hydroxymethyl)butyl]-1,9-dihydro-
C14H23N5O4 (325.17499580000003)
8-(Phenylmethyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-8-azabicyclo[3.2.1]oct-2-ene
tert-butyl 9-(2-methoxy-2-oxoethyl)-3-azaspiro[5.5]undecane-3-carboxylate
C18H31NO4 (325.22529660000004)
methyl 1-benzyl-4-(4-methoxyphenyl)pyrrolidine-3-carboxylate
C20H23NO3 (325.16778480000005)
(S)-BENZYL 3-((TERT-BUTOXYCARBONYL)AMINO)-4-FLUORO-4-OXOBUTANOATE
1,4,7,10-Tetraoxa-13-azacyclopentadecane, 13-(2-methoxyphenyl)
3-(2-ETHOXYCARBONYL-ETHYL)-5-METHYL-1H-PYRROLE-2,4-DICARBOXYLICACIDDIETHYLESTER
2-O-(2-Methoxyethyl)adenosine
2′-O-(2-Methoxyethyl)adenosine is a compound can be used in the synthesis of oligonucleotides[1].
(S)-1-((1,3,2-DIOXABOROLAN-2-YL)OXY)-3-METHYL-1,1-DIPHENYLBUTAN-2-AMINE
(betaR)-beta-[[(1,1-Dimethylethoxy)carbonyl]amino]-3,5-dimethoxybenzenepropanoic acid
9-(6-methoxynaphthalen-2-yl)oxy-3-azaspiro[5.5]undecane
6-amino-3-methyl-1,4-diphenylpyrazolo[3,4-b]pyridine-5-carbonitrile
1-(2-FLUORO-PHENYL)-5-OXO-PYRROLIDINE-3-CARBOXYLICACID
4-Piperidinecarbonitrile,4-[(3-chlorophenyl)amino]-1-(phenylmethyl)-
C19H20ClN3 (325.13456700000006)
(S)-3-((TERT-BUTOXYCARBONYL)AMINO)-3-(3,4-DIMETHOXYPHENYL)PROPANOIC ACID
2-[2-hydroxy-6-methyl-2-(4-methylphenyl)-3H-imidazo[1,2-a]pyridin-3-yl]-N,N-dimethylacetamide
tert-Butyl 4-(2,4-difluorobenzoyl)piperidin-1-carboxylate
C17H21F2NO3 (325.14894200000003)
1-BENZYL-3-(2,2-DIFLUORO-ETHYL)-4-OXO-PIPERIDINE-3-CARBOXYLIC ACID ETHYL ESTER
C17H21F2NO3 (325.14894200000003)
(2S)-2-{Diphenyl[(trimethylsilyl)oxy]methyl}pyrrolidine
tert-Butyl 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)piperazine-1-carboxylate
C14H23N5O4 (325.17499580000003)
[(1R)-1-(benzyloxycarbonylamino)-2-cyclohexyl-ethyl]phosphinic ac id
5,6-Dimethoxy-2-(4-piperidinylmethyl)-1-indanone hydrochloride
C17H24ClNO3 (325.14446240000007)
3-TERT-BUTOXYCARBONYLAMINO-3-(3,4-DIMETHOXY-PHENYL)-PROPIONIC ACID
etafenone
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
((R)-2-biphenyl-4-yl-1-formylethyl)carbamic acid t-butyl ester
C20H23NO3 (325.16778480000005)
9-Amino(9-deoxy)epi-diquinidine trihydrochloride
C20H27N3O (325.21540120000003)
1-(Isopropylamino)-3-{4-[(2-propoxyethoxy)methyl]phenoxy}-2-propanol
C18H31NO4 (325.22529660000004)
2-[2-[4-(2-methylpropyl)phenyl]propanoylamino]benzoic acid
C20H23NO3 (325.16778480000005)
PHENYLETHYL 2-ACETAMIDO-2-DEOXY-BETA-D-GLUCOPYRANOSIDE
1-Boc-4-[(4-chlorophenyl)hydroxyMethyl]piperidine
C17H24ClNO3 (325.14446240000007)
3-((TERT-BUTOXYCARBONYL)AMINO)-2-(3,4-DIMETHOXYPHENYL)PROPANOIC ACID
N-(4-ethoxyphenyl)-2-(3-oxo-2,4-dihydro-1H-quinoxalin-2-yl)acetamide
Capobenic acid
C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent
3-(Aminomethyl)-7,9,12-trimethyl-2H-[1,4]oxazino[2,3,4-ij]pyrido[3,2-g]quinoline-5,11(3H,12H)-dione
SR-59230A free base
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists
(3,4-Dihydro-2h-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone
C20H23NO3 (325.16778480000005)
JNJ16259685 is a selective antagonist of mGlu1 receptor, and inhibits the synaptic activation of mGlu1 in a concentration-dependent manner with IC50 of 19 nM.
4-[4-[(2-chlorophenyl)methyl]-1-piperazinyl]-1H-indole
C19H20ClN3 (325.13456700000006)
N-[1-(4-nitrophenyl)ethylidene]-4-(2-pyridinyl)-1-piperazinamine
C17H19N5O2 (325.15386739999997)
Pro-Pro-Ile
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
N-(3-Hydroxy-7-cis-tetradecenoyl)homoserine lactone
C18H31NO4 (325.22529660000004)
1-(8-Methyl-2,5,11,14-tetraoxa-8-azabicyclo[13.4.0]nonadeca-1(15),16,18-trien-17-yl)ethanol
N-[5-(5,6,7,8-tetrahydronaphthalen-2-yl)-1,3,4-oxadiazol-2-yl]cyclohexanecarboxamide
2-imino-N,8-dimethyl-5-oxo-1-propan-2-yl-3-dipyrido[1,2-d:3,4-f]pyrimidinecarboxamide
C17H19N5O2 (325.15386739999997)
Butanoic acid [2-oxo-2-(4-phenyldiazenylanilino)ethyl] ester
N-(3-Oxotetradecanoyl)-DL-homoserine lactone
C18H31NO4 (325.22529660000004)
N-(3-Oxotetradecanoyl)-DL-homoserine lactone, a member of N-Acyl homoserine lactone (AHL) from gram-negative bacteria, is a quorum sensing (QS) signaling molecule[1][2].
N-[4-(2,4-Dimethyl-thiazol-5-YL)-pyrimidin-2-YL]-N,N-dimethyl-benzene-1,4-diamine
1-cyclobutyl-3-(3,4-dimethoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine
C17H19N5O2 (325.15386739999997)
N-anthracen-2-yl-5-methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine
8-Benzo[1,3]dioxol-,5-ylmethyl-9-butyl-9H-
C17H19N5O2 (325.15386739999997)
Pixantrone
C17H19N5O2 (325.15386739999997)
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DB - Anthracyclines and related substances D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors
4,5-Dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.013,16]hexadec-10-ene-3,7-dione
N-(2,6-dimethylphenyl)-4-[[2-(ethylamino)acetyl]amino]benzamide
1-methyl-3-(1-methyl-1H-indol-3-yl)-4-(pentylamino)-1H-pyrrole-2,5-dione
3-oxo-N-[(3S)-2-oxotetrahydrofuran-3-yl]tetradecanamide
C18H31NO4 (325.22529660000004)
(3R-(3alpha,4alpha(2R*,3R*),5beta,6beta))-5-Methoxy-4-(2-methyl-3-(3-methyl-2-butenyl)oxiranyl)-1-oxaspiro(2.5)octan-6-ol carbamate
Quinine(1+)
C20H25N2O2+ (325.19159299999995)
The monoprotonated form of quinine, the predominant species at pH7.3.
(S)-[(2S,4R,5R)-5-ethenyl-1-azoniabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol
C20H25N2O2+ (325.19159299999995)
9-[6(RS)-8-diamino-5,6,7,8-tetradeoxy-beta-D-ribo-octofuranosyl]-9H-purin-6-amine
(9E,12E)-2-nitrooctadeca-9,12-dienoic acid
C18H31NO4 (325.22529660000004)
2-amino-3-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl]sulfanylpropanoic acid
18-Nitrooctadeca-9,12-dienoic acid
C18H31NO4 (325.22529660000004)
1-[(2E,4E,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine
C20H23NO3 (325.16778480000005)
A natural product found in Piper boehmeriaefolium.
1-(4-methoxyphenyl)-N-(4-methylpyridin-2-yl)-5-oxopyrrolidine-3-carboxamide
1-[(2E,4Z,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine
C20H23NO3 (325.16778480000005)
A natural product found in Piper boehmeriaefolium.
1-[[(5-Hex-1-ynyl-2-furanyl)-oxomethyl]amino]-3-phenylurea
N-(1-adamantyl)-6-(3,5-dimethyl-1-pyrazolyl)-1,2,4,5-tetrazin-3-amine
1-(4-methoxyphenyl)-N,N-dipropyl-4-pyrazolo[3,4-d]pyrimidinamine
1-[2-[3-(Dimethylamino)phenyl]-4-pyrimidinyl]-4-piperidinecarboxamide
1-[4-[3-(Dimethylamino)phenyl]-2-pyrimidinyl]-4-piperidinecarboxamide
1-[5-[3-(Dimethylamino)phenyl]-2-pyrimidinyl]-4-piperidinecarboxamide
4-Phenoxy-1-[4-(2-pyridinyl)-1-piperazinyl]-1-butanone
N-[2-(1-cyclohexenyl)ethyl]-2,5-dimethoxybenzenesulfonamide
1-(4-methoxyphenyl)-N-(2-oxolanylmethyl)-4-pyrazolo[3,4-d]pyrimidinamine
C17H19N5O2 (325.15386739999997)
2-(6-Ethyl-4-methyl-quinazolin-2-ylamino)-6-methoxymethyl-1H-pyrimidin-4-one
C17H19N5O2 (325.15386739999997)
N-[(1,5-dimethyl-2-pyrrolyl)methyl]-1-(4-methylphenyl)-5-oxo-3-pyrrolidinecarboxamide
1-Azepanyl-[4-[(phenylthio)methyl]phenyl]methanone
C20H23NOS (325.15002680000003)
2-[4-(heptylthio)-2,5-dimethoxyphenyl]-N-methylethanamine
1-(4-Methoxyphenyl)-3-(4-morpholinyl)-2-phenyl-1-propanone
C20H23NO3 (325.16778480000005)
(16S)-deshydroxymethyl-stemmadenine
C20H25N2O2+ (325.19159299999995)
(16R)-deshydroxymethyl-stemmadenine
C20H25N2O2+ (325.19159299999995)
3-[5-cyano-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-1-yl]-N,N-dimethylpropan-1-aminium
C20H22FN2O+ (325.17160739999997)
1-[3-(4-Butoxyphenyl)-3-oxopropyl]piperidinium chloride
C18H28ClNO2 (325.18084580000004)
N-ethyl-N-[[(2R,3S,4S)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide
N-ethyl-N-[[(2S,3S,4S)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide
N-ethyl-N-[[(2S,3R,4S)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide
N-ethyl-N-[[(2R,3S,4R)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide
N-ethyl-N-[[(2S,3R,4R)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide
N-ethyl-N-[[(2R,3R,4R)-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-4-pyridinecarboxamide
N(2)-[(R)-2-amino-2-(4-hydroxyphenyl)acetyl]-N-butyl-L-cysteinamide
2-amino-6,7-dimethyl-4-oxo-8-(1-D-ribityl)-4,8-dihydropteridine
6-({[3,5-Dimethyl-4-(methylthio)phenoxy]carbonyl}amino)hexanoic acid
(3R,5R,7S,8E,10E,12E)-3-amino-5,7-dihydroxyoctadeca-8,10,12-trienoic acid
C18H31NO4 (325.22529660000004)
(2S)-1-[(E)-3-hydroxy-2,4,6-trimethyldec-4-enoyl]pyrrolidine-2-carboxylic acid
C18H31NO4 (325.22529660000004)
(3R,13aR)-4,5-dihydroxy-3,4,5-trimethyl-4,5,8,10,12,13,13a,13b-octahydro-2H-[1,6]dioxacycloundecino[2,3,4-gh]pyrrolizine-2,6(3H)-dione
3-(Diethoxyphosphinyl)methyl-5-phenethyl-2-isoxazoline
N-[3-(Acetyloxy)-2,2-dimethylpropionyl]-N-butyl-2,3-dimethyl-4-pentenamide
C18H31NO4 (325.22529660000004)
2-(2,3-Dihydroxybutoxy)-N-(2-(diethylamino)ethyl)-3-pyridinecarboxamide
(1R,4R,5R,6S,16R)-5,6-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.013,16]hexadec-10-ene-3,7-dione
N-(1-hydroxypropan-2-yl)-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide
D012102 - Reproductive Control Agents > D010120 - Oxytocics
4-O-alpha-D-Glucopyranosylmoranoline
A monosaccharide derivative that is (2R,3R,4R,5S)-2-(hydroxymethyl)piperidine-3,4,5-triol having an alpha-D-glucosyl residue attached at position 4. D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D004791 - Enzyme Inhibitors
N-[[3-Hydroxy-2-(2-pentenyl)cyclopentyl]acetyl]isoleucine
C18H31NO4 (325.22529660000004)
(16S)-deshydroxymethyl-stemmadenine(1+)
C20H25N2O2 (325.19159299999995)
An ammonium ion resulting from the protonation of the tertiary amino group of (16S)-deshydroxymethyl-stemmadenine.
(16R)-deshydroxymethyl-stemmadenine(1+)
C20H25N2O2 (325.19159299999995)
An ammonium ion resulting from the protonation of the tertiary amino group of (16R)-deshydroxymethyl-stemmadenine.
S-[(2E,6E)-farnesyl]-L-cysteine zwitterion
An amino acid zwitterion arising from transfer of a proton from the carboxy to the amino group of S-[(2E,6E)]-farnesyl-L-cysteine; major species at pH 7.3.
S-[(2E,6E)-farnesyl]-L-cysteine
An S-farnesyl-L-cysteine where the C=C double bonds at the 2- and 6-positions both have (E)-configuration.
AcCa(11:2)
C18H31NO4 (325.22529660000004)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
SPHP(14:0)
C14H32NO5P (325.20179920000004)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
5,9,9,18-tetramethyl-4,10-dioxa-18-azapentacyclo[9.8.0.0²,⁸.0³,⁵.0¹²,¹⁷]nonadeca-1(11),12,14,16-tetraen-19-one
C20H23NO3 (325.16778480000005)
(2r,3r,4s,5s,6r)-2-{[(2r,3r,4r,5s)-3,5-dihydroxy-2-(hydroxymethyl)piperidin-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(9s)-3,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene
C20H23NO3 (325.16778480000005)
3-methyl-6-{[7-(3-methylbut-2-en-1-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol
(2e,4e)-n-[(2r,4r)-4-amino-5-[(2-carbamimidoylethyl)-c-hydroxycarbonimidoyl]-2-hydroxypentyl]hexa-2,4-dienimidic acid
(2e)-n-[(2s)-2-ethoxy-2-(4-methoxyphenyl)ethyl]-3-phenylprop-2-enimidic acid
C20H23NO3 (325.16778480000005)
n-(1-hydroxy-3-methylpentan-2-yl)-3-[2-methyl-3-(4-oxohexan-2-yl)oxiran-2-yl]prop-2-enimidic acid
C18H31NO4 (325.22529660000004)
(2s)-1-[(4e)-3-hydroxy-2,4,6-trimethyldec-4-enoyl]pyrrolidine-2-carboxylic acid
C18H31NO4 (325.22529660000004)
(3s,6r)-3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-3,6-dihydropyrazine-2,5-diol
(4r,7r)-n-[(2r)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboximidic acid
2-(2-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-1-hydroxyethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol
2-[(2e)-5-[(2r)-3,3-dimethyloxiran-2-yl]-3-methylpent-2-en-1-yl]-1,3-dimethylquinolin-4-one
6-hydroxy-8-methyl-7-[(2-methylpropanoyl)oxy]-8-azabicyclo[3.2.1]octan-3-yl (2e)-2-methylbut-2-enoate
n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-3-[(2r,3s)-2-methyl-3-[(2s)-4-oxohexan-2-yl]oxiran-2-yl]prop-2-enimidic acid
C18H31NO4 (325.22529660000004)
(1s,4s,5r,6r,16s)-5,6-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione
2-{7-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]heptyl}cyclohex-2-en-1-one
C18H31NO4 (325.22529660000004)
9-(2h-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)nona-2,4,8-trien-1-one
C20H23NO3 (325.16778480000005)
(1s,9s,13s,14r,16r,17s)-4-ethenyl-13,17-dimethyl-11-azapentacyclo[12.3.1.0¹,⁵.0⁹,¹⁷.0¹¹,¹⁶]octadec-4-ene-6,18-dione
2-{[3,5-dihydroxy-2-(hydroxymethyl)piperidin-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2e,7e,9e)-6-ethoxy-11-hydroxy-n-(2-hydroxy-2-methylpropyl)dodeca-2,7,9-trienimidic acid
C18H31NO4 (325.22529660000004)
(2s,3r)-2-({1-hydroxy-2-[(1r,2s)-3-oxo-2-pentylcyclopentyl]ethylidene}amino)-3-methylpentanoic acid
C18H31NO4 (325.22529660000004)
5,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene
C20H23NO3 (325.16778480000005)