Exact Mass: 169.0306
Exact Mass Matches: 169.0306
Found 500 metabolites which its exact mass value is equals to given mass value 169.0306
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Accent
One of the FLAVORING AGENTS used to impart a meat-like flavor. See also: Monosodium Glutamate (preferred); Glutamic Acid (has active moiety) ... View More ... D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
Glyphosate
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals Glyphosate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1071-83-6 (retrieved 2024-09-27) (CAS RN: 1071-83-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Cysteic acid
Cysteic acid is a crystalline amino acid formed in the oxidation of cysteine; it is a precursor of taurine. A crystalline amino acid formed in the oxidation of cysteine; it is a precursor of taurine. [HMDB]
2-Amino-3-phosphonopropionic acid
2-Amino-3-phosphonopropionic acid (AP-3 or 2-AP3), also known as 3-phosphonoalanine, is a non-proteinogenc alpha-amino acid that is alanine in which one of the hydrogens of the terminal methyl group has been replaced by a dihydroxy(oxido)-lambda(5)-phosphanyl group. It is found in many organisms ranging from microbes to invertebrates to animals. In humans AP-3 is found in diverse tissues, such as liver, intestine and spleen. (PMID: 2627760). 2-Amino-3-phosphonopropionic acid is a ubiquitous naturally occurring phosphonate used as a source of phosphorus by many prokaryotic organisms (PMID: 30119975). The natural occurrence of 2-amino-3-phosphonopropionic acid. the phosphonate analogue of aspartic acid, was first reported by Kittredge & Hughes (PMID: 14214094) in the sea anemone Zoanthus sociatus and the protozoon Tetrahymena pyriformis. It has since been established to be one of the most widely distributed of the biogenic C–P compounds, particularly among the lower marine invertebrates (PMID: 19191873). AP-3 has been determined to be a metabotropic glutamate receptor agonist (PMID: 8836635). It has been shown to block the amyloid precursor protein (APP) release evoked by glutamate receptor stimulation in neurons of the cortex and hippocampus. APP accumulation is believed to produce the damage in Alzheimer’s disease (PMID: 7644542). 2-Amino-3-phosphonopropionic acid (AP-3)is a normal human metabolite found in diverse tissues, such as liver, intestine and spleen. (PMID 2627760) AP-3 is a metabotropic glutamate receptor agonist (PMID 8836635) shown to block the amyloid precursor protein (APP) release evoked by glutamate receptor stimulation in neurons of the cortex and hippocampus; APP accumulation is believed to produce the damage in Alzheimer disease (PMID 7644542) [HMDB] D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists KEIO_ID A131 DL-AP3 is a competitive mGluR1 and mGluR5 antagonist. DL-AP3 is also an inhibitor of phosphoserine phosphatase. DL-AP3 has neuroprotective effect[1][2][3].
L-2,3-Dihydrodipicolinate
L-2,3-Dihydrodipicolinate is involved in the lysine biosynthesis I pathway. L-2,3-Dihydrodipicolinate is produced from a reaction between pyruvate and L-aspartate-semialdehyde, with water as a byproduct. The reaction is catalyzed by dihydrodipicolinate synthase. L-2,3-dihydrodipicolinate reacts with NAD(P)H and H+ to produce tetrahydrodipicolinate and NAD(P)+. The reaction is catalyzed by dihydrodipicolinate reductase. L-2,3-Dihydrodipicolinate is involved in the lysine biosynthesis I pathway. L-2,3-Dihydrodipicolinate is produced from a reaction between pyruvate and L-aspartate-semialdehyde, with water as a byproduct. The reaction is catalyzed by dihydrodipicolinate synthase.
4-Methyl-5-nitrocatechol
A nitrotoluene that is 2-nitrotoluene carrying two hydroxy substituents at positions 4 and 5.
2-Furoylglycine
2-Furoylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:. acyl-CoA + glycine < -- > CoA + N-acylglycine. Dietary studies show that 2-Furoylglycine precursors are of exogenous origin. Most probably from furan derivatives found in food prepared by strong heating. This may explain the absence of 2-furoylglycine in urine of breastfed children (PMID 4630229). 2-Furoylglycine is also a microbial metabolite. 2-Furoylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: 2-Furoylglycine, a urinary metabolite in human, is a putative biomarker for coffee consumption[1].
Phosphodimethylethanolamine
Phosphomonomethylethanolamine, phosphodimethylethanolamine and phosphocholine were weak competitive inhibitors of the cytidylyltransferase catalyzed reaction when phosphoethanolamine was used as a substrate, with Ki values of 7.0, 6.8 and 52.9 mM, respectively. (PMID: 8130268) Unlike the plant and Plasmodium PEAMT, which catalyze all three methylations in the pathway, PMT-2 catalyzes only the last two steps in the pathway, i.e., the methylation of phosphomonomethylethanolamine (P-MME) to phosphodimethylethanolamine (P-DME) and of P-DME to phosphocholine. (PMID: 16681378)
Monosodium glutamate
Food flavour enhancer. Monosodium glutamate, also known as sodium glutamate or MSG, is the sodium salt of glutamic acid, one of the most abundant naturally occurring non-essential amino acids. It has been classified by the U.S. Food and Drug Administration as generally recognized as safe (GRAS) and by the European Union as a food additive. MSG has the HS code 29224220 and the E number E621. The glutamate of MSG confers the same umami taste of glutamate from other foods, being chemically identical. Industrial food manufacturers market and use MSG as a flavor enhancer because it balances, blends and rounds the total perception of other tastes. Trade names of monosodium glutamate include AJI-NO-MOTO®, Vetsin, and Accent. [Wikipedia]. Food flavour enhancer
L-Cysteic acid
Cysteinesulfonic acid, also known as (2r)-2-amino-3-sulfopropanoic acid or 3-sulfoalanine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Cysteinesulfonic acid is soluble (in water) and an extremely strong acidic compound (based on its pKa). Cysteinesulfonic acid can be found in a number of food items such as roman camomile, pili nut, chicory, and garden tomato, which makes cysteinesulfonic acid a potential biomarker for the consumption of these food products.
(S)-2,3,4,5-tetrahydrodipicolinate
(s)-2,3,4,5-tetrahydrodipicolinate belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof (s)-2,3,4,5-tetrahydrodipicolinate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). (s)-2,3,4,5-tetrahydrodipicolinate can be found in a number of food items such as wasabi, java plum, tarragon, and scarlet bean, which makes (s)-2,3,4,5-tetrahydrodipicolinate a potential biomarker for the consumption of these food products (s)-2,3,4,5-tetrahydrodipicolinate may be a unique E.coli metabolite.
L-Cysteic acid
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051
DCA_170.0367_15.5
CONFIDENCE Probable structure via diagnostic evidence, tentative identification (Level 2b); INTERNAL_ID 403
2-Amino-3-phosphonopropionic acid
DL-AP3 is a competitive mGluR1 and mGluR5 antagonist. DL-AP3 is also an inhibitor of phosphoserine phosphatase. DL-AP3 has neuroprotective effect[1][2][3].
2-Furoylglycine
A glycine derivative that is the carboxamide obtained by the formal condensation of the amino group of glycine with 2-furoic acid. 2-Furoylglycine, a urinary metabolite in human, is a putative biomarker for coffee consumption[1].
1H-Imidazole-4-carbonyl chloride, 5-cyano-1-methyl- (9CI)
(2S,4R)-4-FLUOROPYRROLIDINE-2-CARBOXYLIC ACID HYDROCHLORIDE
4-Chloro-1,5,6,7-tetrahydro-pyrido[2,3-d]pyrimidine
2-Chloro-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine
5-chloro-2,4-diazabicyclo[4.3.0]nona-2,4,10-trien-3-amine
4-Chloro-5,6,7,8-tetrahydropyrido[3,4-d]pyrimidine
2-Pyrimidineacetamide,1,6-dihydro-4-hydroxy-6-oxo-
1,2-Dihydro-6-hydroxy-2-oxo-4-pyridinecarboxylic acid methyl ester
8-((4-bromophenyl)sulfonyl)-1,4-dioxa-8-azaspiro[4.5]decane
1H-Imidazole-4-carboxylicacid,5-[(methylamino)carbonyl]-(9CI)
1H-1,2,4-Triazole-3-carboxylic acid, 1-acetyl-5-methyl- (7CI)
4-Amino-2-methylsulfanyl-pyrimidine-5-carbaldehyde
2,3-dihydroxy-4-[(hydroxyamino)methylidene]cyclohexa-2,5-dien-1-one
6,7-DIHYDRO-5H-CYCLOPENTA[C]PYRIDIN-5-ONE HYDROCHLORIDE
7-CHLORO-3-METHYL-3H-1,2,3-TRIAZOLO[4,5-D]PYRIMIDINE
3-(5,7-DIMETHYL-[1,2,4]TRIAZOLO[1,5-A]PYRIMIDIN-6-YL)-PROPIONIC ACID
Methyl 4,6-dioxo-1,4,5,6-tetrahydropyridine-3-carboxylate
4-CHLORO-6,7-DIHYDRO-5H-CYCLOPENTA[B]PYRIDINE 1-OXIDE
1-METHYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDINE-5-CARBOXAMIDE
trisodium hydrogen bis[N-(phosphonatomethyl)aminoacetate]
2-AMINO-6,7-DIHYDROTHIAZOLO[5,4-C]PYRIDIN-4(5H)-ONE
6-CHLORO-3,4-DIHYDRO-2H-BENZO[1,4]OXAZINE HYDROCHLORIDE
2-chloro-5,6,7,8-tetrahydropyrido[3,4-d]pyrimidine
1-Cyclopentene-1-carbonyl chloride, 2-(cyanomethyl)- (8CI)
3-chloro-5,6,7,8-tetrahydropyrido[4,3-c]pyridazine
4-Chloro-5,6,7,8-tetrahydro-pyrido[4,3-d]pyrimidine
3-Chloro-5,6,7,8-tetrahydropyrido[3,4-c]pyridazine
3-Pyridinecarboxylic acid, 1,2-dihydro-2-thioxo-, Methyl ester
(3R,4R)-3-AMINO-4-HYDROXYPENTANOIC ACID HYDROCHLORIDE
3-Ethyl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-amine
3-Amino-2,4-dihydroxybenzoic acid
An aminobenzoic acid that is benzoic acid substituted by hydroxy groups at positions 2 and 4, and by an amino group at position 3.
1,6-Dihydroxy-2-methylcyclohexa-2,4-diene-1-carboxylate
cis-1,2-Dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate
Monosodium Glutamate
D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
Glutamate monosodium salt
D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
(1R,6S)-1,6-dihydroxy-4-methylcyclohexa-2,4-diene-1-carboxylate
glyphosate
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
DL-AP3
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists DL-AP3 is a competitive mGluR1 and mGluR5 antagonist. DL-AP3 is also an inhibitor of phosphoserine phosphatase. DL-AP3 has neuroprotective effect[1][2][3].
Phosphodimethylethanolamine
The N,N-dimethyl derivative of ethanolamine phosphate.
O,O-Diethyl thiophosphate
An organic phosphorothioate anion that is the conjugate base of O,O-diethyl hydrogen thiophosphate, resulting from the deprotonation of the thiophosphate group. Major species at pH 7.3.
4-Chlorophenylacetate
A monocarboxylic acid anion that results from the removal of a proton from the carboxylic acid group of 4-chlorophenylacetic acid.
2,3,4,5-tetrahydrodipicolinate(2-)
A dicarboxylic acid dianion resulting from deprotonation of both carboxy groups of 2,3,4,5-tetrahydrodipicolinic acid.
2-Amino-3-phosphonopropanoic acid
A non-proteinogenc alpha-amino acid that is alanine in which one of the hydrogens of the terminal methyl group has been replaced by a dihydroxy(oxido)-lambda(5)-phosphanyl group.
5-hydroxycampsiside
{"Ingredient_id": "HBIN011678","Ingredient_name": "5-hydroxycampsiside","Alias": "NA","Ingredient_formula": "C3H8NO5P","Ingredient_Smile": "C(C(=O)COP(=O)(O)O)N","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "32282","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}