Mannose 6-phosphate (BioDeep_00000014397)
Secondary id: BioDeep_00000229003, BioDeep_00000400316, BioDeep_00000400403, BioDeep_00000405414, BioDeep_00001868677
natural product human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019
代谢物信息卡片
化学式: C6H13O9P (260.0297178)
中文名称: 甘露糖-6-磷酸, D-甘露糖-6-磷酸
谱图信息:
最多检出来源 Homo sapiens(feces) 0.21%
Last reviewed on 2024-09-14.
Cite this Page
Mannose 6-phosphate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/mannose_6-phosphate (retrieved
2024-11-05) (BioDeep RN: BioDeep_00000014397). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C1C(C(C(C(O1)O)O)O)O)OP(=O)(O)O
InChI: InChI=1S/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)5(9)4(3)8/h2-10H,1H2,(H2,11,12,13)/t2-,3-,4+,5+,6-/m1/s1
描述信息
Mannose 6-phosphate, also known as alpha-D-mannose-6-p or man-6-p, belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. Mannose 6-phosphate exists in all eukaryotes, ranging from yeast to humans. Within humans, mannose 6-phosphate participates in a number of enzymatic reactions. In particular, mannose 6-phosphate can be converted into fructose 6-phosphate through its interaction with the enzyme mannose-6-phosphate isomerase. In addition, mannose 6-phosphate can be biosynthesized from D-mannose through the action of the enzyme hexokinase-1. Mannose 6-phosphate is a potent competitive inhibitor of pinocytosis of human platelet beta-glucuronidase and it is a necessary component of the recognition marker on the enzyme for pinocytosis by human fibroblasts as well (PMID 908752). In humans, mannose 6-phosphate is involved in fructose intolerance, hereditary.
Mannose-6-phosphate is a potent competitive inhibitor of pinocytosis of human platelet beta-glucuronidase and it is a necessary component of the recognition marker on the enzyme for pinocytosis by human fibroblasts as well (PMID 908752). [HMDB]
Acquisition and generation of the data is financially supported in part by CREST/JST.
KEIO_ID M008
同义名列表
19 个代谢物同义名
{[(2R,3S,4S,5S,6R)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxy}phosphonic acid; Mannose-6-phosphate sodium salt, (D)-isomer; D-Mannose-6-phosphate barium salt hydrate; D-Mannose-6-phosphate mono sodium salt; Mannose-6-phosphate dilithium salt; Mannose-6-phosphate disodium salt; alpha-delta-Mannose-6-phosphate; alpha-D-Mannose-6-phosphate; delta-Mannose 6-phosphate; Mannose 6-phosphoric acid; alpha-delta-Mannose-6-p; D-Mannose-6-phosphate; D-Mannose 6-phosphate; alpha-D-Mannose-6-p; Mannose-6-phosphate; mannose 6 phosphate; Mannose 6-phosphate; Man-6-p; Mannose 6-phosphate
数据库引用编号
38 个数据库交叉引用编号
- ChEBI: CHEBI:48066
- KEGG: C00275
- PubChem: 439198
- PubChem: 65127
- HMDB: HMDB0001078
- Metlin: METLIN5987
- ChEMBL: CHEMBL4296692
- Wikipedia: Mannose 6-phosphate
- foodb: FDB022411
- chemspider: 388338
- CAS: 3672-15-9
- MoNA: PS078508
- MoNA: PS078509
- MoNA: PS022107
- MoNA: PS022112
- MoNA: PS078501
- MoNA: PS022109
- MoNA: PS022101
- MoNA: PS022110
- MoNA: PS022111
- MoNA: PR100335
- MoNA: PR100551
- MoNA: KO001324
- MoNA: PS078507
- MoNA: KO001325
- MoNA: PR100776
- MoNA: KO001326
- MoNA: PS078510
- MoNA: PS022108
- MoNA: KO001327
- ChEBI: CHEBI:17369
- PubChem: 3572
- PDB-CCD: M6D
- PDB-CCD: M6P
- 3DMET: B01204
- NIKKAJI: J817.412A
- RefMet: Mannose 6-phosphate
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-215
分类词条
相关代谢途径
Reactome(0)
BioCyc(9)
- β-(1,4)-mannan degradation
- superpathway of hexitol degradation (bacteria)
- D-sorbitol degradation II
- superpathway of CMP-sialic acids biosynthesis
- superpathway of central carbon metabolism
- colanic acid building blocks biosynthesis
- GDP-mannose biosynthesis
- superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis
- CMP-2-keto-3-deoxy-D-glycero-D-galacto-nononate biosynthesis
PlantCyc(0)
代谢反应
163 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(76)
- 1,5-anhydrofructose degradation:
1,5-anhydro-D-mannitol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ D-mannopyranose + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of CMP-sialic acids biosynthesis:
ATP + D-mannopyranose ⟶ ADP + D-mannopyranose 6-phosphate + H+
- CMP-2-keto-3-deoxy-D-glycero-D-galacto-nononate biosynthesis:
ATP + D-mannopyranose ⟶ ADP + D-mannopyranose 6-phosphate + H+
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannose degradation:
ATP + D-mannopyranose ⟶ ADP + D-mannopyranose 6-phosphate + H+
- GDP-mannose metabolism:
ATP + D-mannopyranose ⟶ ADP + D-mannopyranose 6-phosphate + H+
- GDP-mannose metabolism:
ATP + D-mannopyranose ⟶ ADP + D-mannopyranose 6-phosphate + H+
- mannogen metabolism:
[mannose β-1,2]n+1-mannose ⟶ D-mannose + [mannose β-1,2]n-mannose
- superpathway of central carbon metabolism:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- GDP-mannose biosynthesis:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
- colanic acid building blocks biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ascorbate biosynthesis I (L-galactose pathway):
GDP-L-galactose + phosphate ⟶ α-L-galactose-1-phosphate + GDP + H+
- GDP-mannose metabolism:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
- GDP-mannose biosynthesis:
α-D-mannose 1-phosphate + GTP + H+ ⟶ GDP-α-D-mannose + diphosphate
- colanic acid building blocks biosynthesis:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-mannopyranose 6-phosphate ⟶ F6P
- superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- colanic acid building blocks biosynthesis:
GDP-β-L-fucose + NADP+ ⟶ GDP-4-dehydro-6-deoxy-β-L-galactose + H+ + NADPH
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- β-(1,4)-mannan degradation:
β-1,4-D-mannobiose ⟶ β-D-mannosyl-(1→4)-D-glucose
- L-ascorbate biosynthesis I (L-galactose pathway):
L-galactopyranose + NAD+ ⟶ H+ + L-galactono-1,4-lactone + NADH
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- 2-O-α-mannosyl-D-glycerate degradation:
2-O-(6-phospho-α-D-mannosyl)-D-glycerate + H2O ⟶ (R)-glycerate + D-mannopyranose 6-phosphate
- β-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation:
4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine + phosphate ⟶ α-D-mannose 1-phosphate + N-acetyl-D-glucosamine
- 2-O-α-mannosyl-D-glycerate degradation:
2-O-(6-phospho-α-D-mannosyl)-D-glycerate + H2O ⟶ (R)-glycerate + D-mannopyranose 6-phosphate
- dolichyl phosphate D-mannose biosynthesis:
α-D-mannose 1-phosphate ⟶ D-mannopyranose 6-phosphate
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- L-ascorbate biosynthesis I (L-galactose pathway):
L-galactopyranose + NAD+ ⟶ H+ + L-galactono-1,4-lactone + NADH
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannose 6-phosphate ⟶ D-fructose-6-phosphate
- D-mannose degradation:
D-mannose 6-phosphate ⟶ D-fructose-6-phosphate
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- 2-O-α-mannosyl-D-glycerate degradation:
2-O-(6-phospho-α-D-mannosyl)-D-glycerate + H2O ⟶ (R)-glycerate + D-mannopyranose 6-phosphate
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- colanic acid building blocks biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- colanic acid building blocks biosynthesis:
GDP-β-L-fucose + NADP+ ⟶ GDP-4-dehydro-6-deoxy-α-D-mannose + H+ + NADPH
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- colanic acid building blocks biosynthesis:
GDP-β-L-fucose + NADP+ ⟶ GDP-4-dehydro-6-deoxy-α-D-mannose + H+ + NADPH
- 2-O-α-mannosyl-D-glycerate degradation:
2-O-(6-phospho-α-D-mannosyl)-D-glycerate + H2O ⟶ D-glycerate + D-mannopyranose 6-phosphate
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- 2-O-α-mannosyl-D-glycerate degradation:
2-O-(6-phospho-α-D-mannosyl)-D-glycerate + H2O ⟶ D-glycerate + D-mannopyranose 6-phosphate
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
Plant Reactome(0)
INOH(3)
- Fructose and Mannose metabolism ( Fructose and Mannose metabolism ):
D-Sorbitol + NADP+ ⟶ D-Glucose + NADPH
- D-Mannose 1-phosphate = D-Mannose 6-phosphate ( Fructose and Mannose metabolism ):
D-Mannose 6-phosphate ⟶ D-Mannose 1-phosphate
- D-Mannose 6-phosphate = D-Fructose 6-phosphate ( Fructose and Mannose metabolism ):
D-Mannose 6-phosphate ⟶ D-Fructose 6-phosphate
PlantCyc(69)
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- L-ascorbate biosynthesis I (L-galactose pathway):
L-galactopyranose + NAD+ ⟶ H+ + L-galactono-1,4-lactone + NADH
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- L-ascorbate biosynthesis I (L-galactose pathway):
L-galactopyranose + NAD+ ⟶ H+ + L-galactono-1,4-lactone + NADH
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- L-ascorbate biosynthesis I (L-galactose pathway):
L-galactopyranose + NAD+ ⟶ H+ + L-galactono-1,4-lactone + NADH
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- L-ascorbate biosynthesis I (L-galactose pathway):
L-galactopyranose + NAD+ ⟶ H+ + L-galactono-1,4-lactone + NADH
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- mannitol biosynthesis:
D-mannitol 1-phosphate + NADP+ ⟶ D-mannopyranose 6-phosphate + H+ + NADPH
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- L-ascorbate biosynthesis I (L-galactose pathway):
L-galactopyranose + NAD+ ⟶ H+ + L-galactono-1,4-lactone + NADH
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- L-ascorbate biosynthesis I (L-galactose pathway):
L-galactopyranose + NAD+ ⟶ H+ + L-galactono-1,4-lactone + NADH
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- GDP-mannose biosynthesis:
α-D-mannose 1-phosphate + GTP + H+ ⟶ GDP-α-D-mannose + diphosphate
- L-ascorbate biosynthesis I (L-galactose pathway):
GDP-α-D-mannose ⟶ GDP-β-L-galactose
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- L-ascorbate biosynthesis I (L-galactose pathway):
L-galactopyranose + NAD+ ⟶ H+ + L-galactono-1,4-lactone + NADH
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- D-mannose degradation:
D-mannopyranose 6-phosphate ⟶ F6P
- mannitol biosynthesis:
D-mannitol 1-phosphate + H2O ⟶ D-mannitol + phosphate
- L-ascorbate biosynthesis I (L-galactose pathway):
L-galactopyranose + NAD+ ⟶ H+ + L-galactono-1,4-lactone + NADH
- GDP-mannose biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
COVID-19 Disease Map(0)
PathBank(14)
- Fructose and Mannose Degradation:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructosuria:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose Intolerance, Hereditary:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Mannose Metabolism:
Adenosine triphosphate + D-Mannose ⟶ Adenosine diphosphate + Hydrogen Ion + Mannose 6-phosphate
- Amino Sugar and Nucleotide Sugar Metabolism:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Mannose Metabolism:
ADP-Mannose + Water ⟶ Adenosine monophosphate + D-Mannose 1-phosphate
- Fructose and Mannose Degradation:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose Intolerance, Hereditary:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructosuria:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose Intolerance, Hereditary:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose and Mannose Degradation:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose and Mannose Degradation:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructosuria:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- 2-O-alpha-Mannosyl-D-glycerate Degradation:
Adenosine triphosphate + Glyceric acid ⟶ 2-Phospho-D-glyceric acid + Adenosine diphosphate + Hydrogen Ion
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 2096 - Mycoplasma gallisepticum: 10.1128/MSYSTEMS.00055-17
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Nan Zhao, Gang Deng, Pei-Xin Yuan, Ya-Fen Zhang, Lu-Yi Jiang, Xiaolu Zhao, Bao-Liang Song. TMEM241 is a UDP-N-acetylglucosamine transporter required for M6P modification of NPC2 and cholesterol transport.
Journal of lipid research.
2023 Oct; ?(?):100465. doi:
10.1016/j.jlr.2023.100465
. [PMID: 37890669] - Romina I Minen, Jaina A Bhayani, Matías D Hartman, Antonela E Cereijo, Yuanzhang Zheng, Miguel A Ballicora, Alberto A Iglesias, Dali Liu, Carlos M Figueroa. Structural Determinants of Sugar Alcohol Biosynthesis in Plants: The Crystal Structures of Mannose-6-Phosphate and Aldose-6-Phosphate Reductases.
Plant & cell physiology.
2022 May; 63(5):658-670. doi:
10.1093/pcp/pcac029
. [PMID: 35243499] - Junfeng Huang, Danqing Wang, Richard David Shipman, Zexin Zhu, Yuan Liu, Lingjun Li. Simultaneous enrichment and separation of neutral and sialyl glycopeptides of SARS-CoV-2 spike protein enabled by dual-functionalized Ti-IMAC material.
Analytical and bioanalytical chemistry.
2021 Dec; 413(29):7295-7303. doi:
10.1007/s00216-021-03433-1
. [PMID: 34155551] - Olga A Mareninova, Eszter T Vegh, Natalia Shalbueva, Carli Jm Wightman, Dustin L Dillon, Sudarshan Malla, Yan Xie, Toshimasa Takahashi, Zoltan Rakonczay, Samuel W French, Herbert Y Gaisano, Fred S Gorelick, Stephen J Pandol, Steven J Bensinger, Nicholas O Davidson, David W Dawson, Ilya Gukovsky, Anna S Gukovskaya. Dysregulation of mannose-6-phosphate-dependent cholesterol homeostasis in acinar cells mediates pancreatitis.
The Journal of clinical investigation.
2021 08; 131(15):. doi:
10.1172/jci146870
. [PMID: 34128834] - Basudeb Mondal, Tahiti Dutta, Sayam Sen Gupta. Dual enzyme responsive mannose-6-phosphate based vesicle for controlled lysosomal delivery.
Chemical communications (Cambridge, England).
2021 Jan; 57(1):109-112. doi:
10.1039/d0cc06169g
. [PMID: 33290458] - Giorgia Di Lorenzo, Renata Voltolini Velho, Dominic Winter, Melanie Thelen, Shiva Ahmadi, Michaela Schweizer, Raffaella De Pace, Kerstin Cornils, Timur Alexander Yorgan, Saskia Grüb, Irm Hermans-Borgmeyer, Thorsten Schinke, Sven Müller-Loennies, Thomas Braulke, Sandra Pohl. Lysosomal Proteome and Secretome Analysis Identifies Missorted Enzymes and Their Nondegraded Substrates in Mucolipidosis III Mouse Cells.
Molecular & cellular proteomics : MCP.
2018 08; 17(8):1612-1626. doi:
10.1074/mcp.ra118.000720
. [PMID: 29773673] - Yuji Kondo, Jianxin Fu, Hua Wang, Christopher Hoover, J Michael McDaniel, Richard Steet, Debabrata Patra, Jianhua Song, Laura Pollard, Sara Cathey, Tadayuki Yago, Graham Wiley, Susan Macwana, Joel Guthridge, Samuel McGee, Shibo Li, Courtney Griffin, Koichi Furukawa, Judith A James, Changgeng Ruan, Rodger P McEver, Klaas J Wierenga, Patrick M Gaffney, Lijun Xia. Site-1 protease deficiency causes human skeletal dysplasia due to defective inter-organelle protein trafficking.
JCI insight.
2018 07; 3(14):. doi:
10.1172/jci.insight.121596
. [PMID: 30046013] - Stuart Kornfeld. A Lifetime of Adventures in Glycobiology.
Annual review of biochemistry.
2018 06; 87(?):1-21. doi:
10.1146/annurev-biochem-062917-011911
. [PMID: 29925256] - Rinku Dutta, Virender Kumar, Yang Peng, Ruby E Evande, Jean L Grem, Ram I Mahato. Pharmacokinetics and Biodistribution of GDC-0449 Loaded Micelles in Normal and Liver Fibrotic Mice.
Pharmaceutical research.
2017 03; 34(3):564-578. doi:
10.1007/s11095-016-2081-3
. [PMID: 27995525] - Jin-Song Shen, Andreas Busch, Taniqua S Day, Xing-Li Meng, Chun I Yu, Paulina Dabrowska-Schlepp, Benjamin Fode, Holger Niederkrüger, Sabrina Forni, Shuyuan Chen, Raphael Schiffmann, Thomas Frischmuth, Andreas Schaaf. Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme deficiency in Fabry mice.
Journal of inherited metabolic disease.
2016 Mar; 39(2):293-303. doi:
10.1007/s10545-015-9886-9
. [PMID: 26310963] - Dong-Sung Lee, Eun-Sol Lee, Md Morshedul Alam, Jun-Hyeog Jang, Ho-Sub Lee, Hyuncheol Oh, Youn-Chul Kim, Zahid Manzoor, Young-Sang Koh, Dae-Gil Kang, Dae Ho Lee. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate.
Metabolism: clinical and experimental.
2016 Feb; 65(2):89-101. doi:
10.1016/j.metabol.2015.10.002
. [PMID: 26773932] - Maria Fuller, Natalie Mellett, Leanne K Hein, Doug A Brooks, Peter J Meikle. Absence of α-galactosidase cross-correction in Fabry heterozygote cultured skin fibroblasts.
Molecular genetics and metabolism.
2015 Feb; 114(2):268-73. doi:
10.1016/j.ymgme.2014.11.005
. [PMID: 25468650] - Xu He, Owen Pierce, Thomas Haselhorst, Mark von Itzstein, Daniel Kolarich, Nicolle H Packer, Tracey M Gloster, David J Vocadlo, Yi Qian, Doug Brooks, Allison R Kermode. Characterization and downstream mannose phosphorylation of human recombinant α-L-iduronidase produced in Arabidopsis complex glycan-deficient (cgl) seeds.
Plant biotechnology journal.
2013 Dec; 11(9):1034-43. doi:
10.1111/pbi.12096
. [PMID: 23898885] - Ningguo Gao, Mark A Lehrman. Mannose-6-phosphate: a regulator of LLO destruction.
Methods in molecular biology (Clifton, N.J.).
2013; 1022(?):277-82. doi:
10.1007/978-1-62703-465-4_20
. [PMID: 23765668] - Abigail Cline, Ningguo Gao, Heather Flanagan-Steet, Vandana Sharma, Sabrina Rosa, Roberto Sonon, Parastoo Azadi, Kirsten C Sadler, Hudson H Freeze, Mark A Lehrman, Richard Steet. A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency.
Molecular biology of the cell.
2012 Nov; 23(21):4175-87. doi:
10.1091/mbc.e12-05-0411
. [PMID: 22956764] - Ningning Yang, Saurabh Singh, Ram I Mahato. Targeted TFO delivery to hepatic stellate cells.
Journal of controlled release : official journal of the Controlled Release Society.
2011 Oct; 155(2):326-30. doi:
10.1016/j.jconrel.2011.06.037
. [PMID: 21763370] - Alberto Ramírez-Mata, Colette Michalak, Guillermo Mendoza-Hernández, Alfonso León-Del-Río, Alfonso González-Noriega. Annexin VI is a mannose-6-phosphate-independent endocytic receptor for bovine β-glucuronidase.
Experimental cell research.
2011 Oct; 317(16):2364-73. doi:
10.1016/j.yexcr.2011.05.025
. [PMID: 21672540] - Ningguo Gao, Jie Shang, Dang Huynh, Vijaya L Manthati, Carolina Arias, Heather P Harding, Randal J Kaufman, Ian Mohr, David Ron, John R Falck, Mark A Lehrman. Mannose-6-phosphate regulates destruction of lipid-linked oligosaccharides.
Molecular biology of the cell.
2011 Sep; 22(17):2994-3009. doi:
10.1091/mbc.e11-04-0286
. [PMID: 21737679] - Marike Marjolijn van Beuge, Jai Prakash, Marie Lacombe, Eduard Post, Catharina Reker-Smit, Leonie Beljaars, Klaas Poelstra. Increased liver uptake and reduced hepatic stellate cell activation with a cell-specific conjugate of the Rho-kinase inhibitor Y27632.
Pharmaceutical research.
2011 Aug; 28(8):2045-54. doi:
10.1007/s11095-011-0430-9
. [PMID: 21442374] - Tina Rozaklis, Helen Beard, Sofia Hassiotis, Antony R Garcia, Matthew Tonini, Amanda Luck, Jing Pan, Justin C Lamsa, John J Hopwood, Kim M Hemsley. Impact of high-dose, chemically modified sulfamidase on pathology in a murine model of MPS IIIA.
Experimental neurology.
2011 Jul; 230(1):123-30. doi:
10.1016/j.expneurol.2011.04.004
. [PMID: 21515264] - Eline van Meel, Marielle Boonen, Haibo Zhao, Viola Oorschot, F Patrick Ross, Stuart Kornfeld, Judith Klumperman. Disruption of the Man-6-P targeting pathway in mice impairs osteoclast secretory lysosome biogenesis.
Traffic (Copenhagen, Denmark).
2011 Jul; 12(7):912-24. doi:
10.1111/j.1600-0854.2011.01203.x
. [PMID: 21466643] - Katrin Marschner, Katrin Kollmann, Michaela Schweizer, Thomas Braulke, Sandra Pohl. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism.
Science (New York, N.Y.).
2011 Jul; 333(6038):87-90. doi:
10.1126/science.1205677
. [PMID: 21719679] - M M van Beuge, J Prakash, M Lacombe, R Gosens, E Post, C Reker-Smit, L Beljaars, K Poelstra. Reduction of fibrogenesis by selective delivery of a Rho kinase inhibitor to hepatic stellate cells in mice.
The Journal of pharmacology and experimental therapeutics.
2011 Jun; 337(3):628-35. doi:
10.1124/jpet.111.179143
. [PMID: 21383021] - Russell Dahl, Yalda Bravo, Vandana Sharma, Mie Ichikawa, Raveendra-Panickar Dhanya, Michael Hedrick, Brock Brown, Justin Rascon, Michael Vicchiarelli, Arianna Mangravita-Novo, Li Yang, Derek Stonich, Ying Su, Layton H Smith, Eduard Sergienko, Hudson H Freeze, Nicholas D P Cosford. Potent, selective, and orally available benzoisothiazolone phosphomannose isomerase inhibitors as probes for congenital disorder of glycosylation Ia.
Journal of medicinal chemistry.
2011 May; 54(10):3661-8. doi:
10.1021/jm101401a
. [PMID: 21539312] - Coralie Bernon, Yoann Carré, Elina Kuokkanen, Marie-Christine Slomianny, Anne-Marie Mir, Frédéric Krzewinski, René Cacan, Pirkko Heikinheimo, Willy Morelle, Jean-Claude Michalski, François Foulquier, Sandrine Duvet. Overexpression of Man2C1 leads to protein underglycosylation and upregulation of endoplasmic reticulum-associated degradation pathway.
Glycobiology.
2011 Mar; 21(3):363-75. doi:
10.1093/glycob/cwq169
. [PMID: 20978011] - Linda J Olson, Francis C Peterson, Alicia Castonguay, Richard N Bohnsack, Mariko Kudo, Russell R Gotschall, William M Canfield, Brian F Volkman, Nancy M Dahms. Structural basis for recognition of phosphodiester-containing lysosomal enzymes by the cation-independent mannose 6-phosphate receptor.
Proceedings of the National Academy of Sciences of the United States of America.
2010 Jul; 107(28):12493-8. doi:
10.1073/pnas.1004232107
. [PMID: 20615935] - Jai Prakash, Leonie Beljaars, Akshay K Harapanahalli, Mieke Zeinstra-Smith, Alie de Jager-Krikken, Martin Hessing, Herman Steen, Klaas Poelstra. Tumor-targeted intracellular delivery of anticancer drugs through the mannose-6-phosphate/insulin-like growth factor II receptor.
International journal of cancer.
2010 Apr; 126(8):1966-1981. doi:
10.1002/ijc.24914
. [PMID: 19795464] - Romesh I Angunawela, John Marshall. Inhibition of transforming growth factor-beta1 and its effects on human corneal fibroblasts by mannose-6-phosphate Potential for preventing haze after refractive surgery.
Journal of cataract and refractive surgery.
2010 Jan; 36(1):121-6. doi:
10.1016/j.jcrs.2009.07.042
. [PMID: 20117715] - Marielle Boonen, Peter Vogel, Kenneth A Platt, Nancy Dahms, Stuart Kornfeld. Mice lacking mannose 6-phosphate uncovering enzyme activity have a milder phenotype than mice deficient for N-acetylglucosamine-1-phosphotransferase activity.
Molecular biology of the cell.
2009 Oct; 20(20):4381-9. doi:
10.1091/mbc.e09-05-0398
. [PMID: 19710420] - Feng-Qian Li, Hua Su, Xu Chen, Xian-Ju Qin, Ji-Yong Liu, Quan-Gang Zhu, Jin-Hong Hu. Mannose 6-phosphate-modified bovine serum albumin nanoparticles for controlled and targeted delivery of sodium ferulate for treatment of hepatic fibrosis.
The Journal of pharmacy and pharmacology.
2009 Sep; 61(9):1155-61. doi:
10.1211/jpp/61.09.0004
. [PMID: 19703364] - Feng Li, Ji-yao Wang. Targeted delivery of drugs for liver fibrosis.
Expert opinion on drug delivery.
2009 May; 6(5):531-41. doi:
10.1517/17425240902936834
. [PMID: 19413460] - Friedemann Laube. Mannose-6-phosphate/insulin-like growth factor-II receptor in human melanoma cells: effect of ligands and antibodies on the receptor expression.
Anticancer research.
2009 Apr; 29(4):1383-8. doi:
NULL
. [PMID: 19414391] - Aya Higashidani, Lars Bode, Atsushi Nishikawa, Hudson H Freeze. Exogenous mannose does not raise steady state mannose-6-phosphate pools of normal or N-glycosylation-deficient human fibroblasts.
Molecular genetics and metabolism.
2009 Apr; 96(4):268-72. doi:
10.1016/j.ymgme.2008.12.005
. [PMID: 19157945] - Ningning Yang, Zhaoyang Ye, Feng Li, Ram I Mahato. HPMA polymer-based site-specific delivery of oligonucleotides to hepatic stellate cells.
Bioconjugate chemistry.
2009 Feb; 20(2):213-21. doi:
10.1021/bc800237t
. [PMID: 19133717] - Natalia Tkachuk, Julia Kiyan, Sergey Tkachuk, Roman Kiyan, Nelli Shushakova, Hermann Haller, Inna Dumler. Urokinase induces survival or pro-apoptotic signals in human mesangial cells depending on the apoptotic stimulus.
The Biochemical journal.
2008 Oct; 415(2):265-73. doi:
10.1042/bj20071652
. [PMID: 18564064] - Xiang Fei, Christopher M Connelly, Richard G MacDonald, David B Berkowitz. A set of phosphatase-inert 'molecular rulers' to probe for bivalent mannose 6-phosphate ligand-receptor interactions.
Bioorganic & medicinal chemistry letters.
2008 May; 18(10):3085-9. doi:
10.1016/j.bmcl.2007.11.094
. [PMID: 18068981] - Meiqian Qian, David E Sleat, Haiyan Zheng, Dirk Moore, Peter Lobel. Proteomics analysis of serum from mutant mice reveals lysosomal proteins selectively transported by each of the two mannose 6-phosphate receptors.
Molecular & cellular proteomics : MCP.
2008 Jan; 7(1):58-70. doi:
10.1074/mcp.m700217-mcp200
. [PMID: 17848585] - Kai Temming, Marjan M Fretz, Robbert J Kok. Organ- and cell-type specific delivery of kinase inhibitors: a novel approach in the development of targeted drugs.
Current molecular pharmacology.
2008 Jan; 1(1):1-12. doi:
10.2174/1874467210801010001
. [PMID: 20021419] - S Hambleton, S P Steinberg, M D Gershon, A A Gershon. Cholesterol dependence of varicella-zoster virion entry into target cells.
Journal of virology.
2007 Jul; 81(14):7548-58. doi:
10.1128/jvi.00486-07
. [PMID: 17494071] - Teresa Gonzalo, Leonie Beljaars, Marja van de Bovenkamp, Kai Temming, Anne-Miek van Loenen, Catharina Reker-Smit, Dirk K F Meijer, Marie Lacombe, Frank Opdam, György Kéri, László Orfi, Klaas Poelstra, Robbert J Kok. Local inhibition of liver fibrosis by specific delivery of a platelet-derived growth factor kinase inhibitor to hepatic stellate cells.
The Journal of pharmacology and experimental therapeutics.
2007 Jun; 321(3):856-65. doi:
10.1124/jpet.106.114496
. [PMID: 17369283] - Heni Rachmawati, Catharina Reker-Smit, Marjolijn N Lub-de Hooge, Annemiek van Loenen-Weemaes, Klaas Poelstra, Leonie Beljaars. Chemical modification of interleukin-10 with mannose 6-phosphate groups yields a liver-selective cytokine.
Drug metabolism and disposition: the biological fate of chemicals.
2007 May; 35(5):814-21. doi:
10.1124/dmd.106.013490
. [PMID: 17312017] - Rikke Nielsen, Pierre J Courtoy, Christian Jacobsen, Geneviève Dom, Wânia Rezende Lima, Michel Jadot, Thomas E Willnow, Olivier Devuyst, Erik I Christensen. Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells.
Proceedings of the National Academy of Sciences of the United States of America.
2007 Mar; 104(13):5407-12. doi:
10.1073/pnas.0700330104
. [PMID: 17369355] - Werner I Hagens, Adriana Mattos, Rick Greupink, Alie de Jager-Krikken, Catharina Reker-Smit, Annemiek van Loenen-Weemaes, I Annette S H Gouw, Klaas Poelstra, Leonie Beljaars. Targeting 15d-prostaglandin J2 to hepatic stellate cells: two options evaluated.
Pharmaceutical research.
2007 Mar; 24(3):566-74. doi:
10.1007/s11095-006-9175-2
. [PMID: 17245650] - David E Sleat, Haiyan Zheng, Peter Lobel. The human urine mannose 6-phosphate glycoproteome.
Biochimica et biophysica acta.
2007 Mar; 1774(3):368-72. doi:
10.1016/j.bbapap.2006.12.004
. [PMID: 17258946] - Joanna E Adrian, Jan A A M Kamps, Klaas Poelstra, Gerrit L Scherphof, Dirk K F Meijer, Yasufumi Kaneda. Delivery of viral vectors to hepatic stellate cells in fibrotic livers using HVJ envelopes fused with targeted liposomes.
Journal of drug targeting.
2007 Jan; 15(1):75-82. doi:
10.1080/10611860601141481
. [PMID: 17365276] - Maria Cecilia Della Valle, David E Sleat, Istvan Sohar, Ting Wen, John E Pintar, Michel Jadot, Peter Lobel. Demonstration of lysosomal localization for the mammalian ependymin-related protein using classical approaches combined with a novel density shift method.
The Journal of biological chemistry.
2006 Nov; 281(46):35436-45. doi:
10.1074/jbc.m606208200
. [PMID: 16954209] - Juliana Degenhardt, Annika Poppe, Jurith Montag, Iris Szankowski. The use of the phosphomannose-isomerase/mannose selection system to recover transgenic apple plants.
Plant cell reports.
2006 Nov; 25(11):1149-56. doi:
10.1007/s00299-006-0179-5
. [PMID: 16770626] - William S Sly, Carole Vogler, Jeffrey H Grubb, Beth Levy, Nancy Galvin, Yun Tan, Tatsuo Nishioka, Shunji Tomatsu. Enzyme therapy in mannose receptor-null mucopolysaccharidosis VII mice defines roles for the mannose 6-phosphate and mannose receptors.
Proceedings of the National Academy of Sciences of the United States of America.
2006 Oct; 103(41):15172-7. doi:
10.1073/pnas.0607053103
. [PMID: 17015822] - David E Sleat, Yanhong Wang, Istvan Sohar, Henry Lackland, Yan Li, Hong Li, Haiyan Zheng, Peter Lobel. Identification and validation of mannose 6-phosphate glycoproteins in human plasma reveal a wide range of lysosomal and non-lysosomal proteins.
Molecular & cellular proteomics : MCP.
2006 Oct; 5(10):1942-56. doi:
10.1074/mcp.m600030-mcp200
. [PMID: 16709564] - Rick Greupink, Hester I Bakker, Wilma Bouma, Catharina Reker-Smit, Dirk K F Meijer, Leonie Beljaars, Klaas Poelstra. The antiproliferative drug doxorubicin inhibits liver fibrosis in bile duct-ligated rats and can be selectively delivered to hepatic stellate cells in vivo.
The Journal of pharmacology and experimental therapeutics.
2006 May; 317(2):514-21. doi:
10.1124/jpet.105.099499
. [PMID: 16439617] - Zhaoyang Ye, Kun Cheng, Ramareddy V Guntaka, Ram I Mahato. Receptor-mediated hepatic uptake of M6P-BSA-conjugated triplex-forming oligonucleotides in rats.
Bioconjugate chemistry.
2006 May; 17(3):823-30. doi:
10.1021/bc060006z
. [PMID: 16704223] - Alfonso González-Noriega, Daniel D Ortega Cuellar, Colette Michalak. 78 kDa receptor for Man6P-independent lysosomal enzyme targeting: biosynthetic transport from endoplasmic reticulum to 'high-density vesicles'.
Experimental cell research.
2006 Apr; 312(7):1065-78. doi:
10.1016/j.yexcr.2005.12.019
. [PMID: 16438964] - Rick Greupink, Hester I Bakker, Catharina Reker-Smit, Anne-miek van Loenen-Weemaes, Robbert-Jan Kok, Dirk K F Meijer, Leonie Beljaars, Klaas Poelstra. Studies on the targeted delivery of the antifibrogenic compound mycophenolic acid to the hepatic stellate cell.
Journal of hepatology.
2005 Nov; 43(5):884-92. doi:
10.1016/j.jhep.2005.04.014
. [PMID: 16083988] - Catherina H Bird, Jiuru Sun, Kheng Ung, Diana Karambalis, James C Whisstock, Joseph A Trapani, Phillip I Bird. Cationic sites on granzyme B contribute to cytotoxicity by promoting its uptake into target cells.
Molecular and cellular biology.
2005 Sep; 25(17):7854-67. doi:
10.1128/mcb.25.17.7854-7867.2005
. [PMID: 16107729] - Ningguo Gao, Jie Shang, Mark A Lehrman. Analysis of glycosylation in CDG-Ia fibroblasts by fluorophore-assisted carbohydrate electrophoresis: implications for extracellular glucose and intracellular mannose 6-phosphate.
The Journal of biological chemistry.
2005 May; 280(18):17901-9. doi:
10.1074/jbc.m500510200
. [PMID: 15708848] - Zhaoyang Ye, Kun Cheng, Ramareddy V Guntaka, Ram I Mahato. Targeted delivery of a triplex-forming oligonucleotide to hepatic stellate cells.
Biochemistry.
2005 Mar; 44(11):4466-76. doi:
10.1021/bi047529j
. [PMID: 15766277] - Jodi L Kreiling, James C Byrd, Robert J Deisz, Ikuko F Mizukami, Robert F Todd, Richard G MacDonald. Binding of urokinase-type plasminogen activator receptor (uPAR) to the mannose 6-phosphate/insulin-like growth factor II receptor: contrasting interactions of full-length and soluble forms of uPAR.
The Journal of biological chemistry.
2003 Jun; 278(23):20628-37. doi:
10.1074/jbc.m302249200
. [PMID: 12665524] - Nicole Muschol, Ulrich Matzner, Stephan Tiede, Volkmar Gieselmann, Kurt Ullrich, Thomas Braulke. Secretion of phosphomannosyl-deficient arylsulphatase A and cathepsin D from isolated human macrophages.
The Biochemical journal.
2002 Dec; 368(Pt 3):845-53. doi:
10.1042/bj20020249
. [PMID: 12296771] - Ana Maria S Assreuy, Juan J Calvete, Nylane M N Alencar, Benildo S Cavada, Duílio R Rocha-Filho, Sabrina C Melo, Fernando Q Cunha, Ronaldo A Ribeiro. Spermadhesin PSP-I/PSP-II heterodimer and its isolated subunits induced neutrophil migration into the peritoneal cavity of rats.
Biology of reproduction.
2002 Dec; 67(6):1796-803. doi:
10.1095/biolreprod.102.007013
. [PMID: 12444055] - Jian Zhang, Qi-Sheng Zhang, Xiao-Ming Chen, Geng-Yuan Tian. Synthesis of a targeting drug for antifibrosis of liver; a conjugate for delivering glycyrrhetin to hepatic stellate cells.
Glycoconjugate journal.
2002 Jul; 19(6):423-9. doi:
10.1023/b:glyc.0000004014.89506.22
. [PMID: 14707489] - James Haorah, Daniel L McVicker, James C Byrd, Richard G MacDonald, Terrence M Donohue. Chronic ethanol administration decreases the ligand binding properties and the cellular content of the mannose 6-phosphate/insulin-like growth factor II receptor in rat hepatocytes.
Biochemical pharmacology.
2002 Apr; 63(7):1229-39. doi:
10.1016/s0006-2952(02)00877-8
. [PMID: 11960599] - A Suter, V Everts, A Boyde, S J Jones, R Lüllmann-Rauch, D Hartmann, A R Hayman, T M Cox, M J Evans, T Meister, K von Figura, P Saftig. Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice.
Development (Cambridge, England).
2001 Dec; 128(23):4899-910. doi:
10.1242/dev.128.23.4899
. [PMID: 11731469] - L Beljaars, P Olinga, G Molema, P de Bleser, A Geerts, G M Groothuis, D K Meijer, K Poelstra. Characteristics of the hepatic stellate cell-selective carrier mannose 6-phosphate modified albumin (M6P(28)-HSA).
Liver.
2001 Oct; 21(5):320-8. doi:
10.1034/j.1600-0676.2001.210504.x
. [PMID: 11589768] - J Rohrer, R Kornfeld. Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network.
Molecular biology of the cell.
2001 Jun; 12(6):1623-31. doi:
10.1091/mbc.12.6.1623
. [PMID: 11408573] - S Singh, P P Singh. Serum amyloid P-component-induced colony-stimulating factors production by macrophages.
Scandinavian journal of immunology.
2001 Feb; 53(2):155-61. doi:
10.1046/j.1365-3083.2001.00850.x
. [PMID: 11169219] - B Motyka, G Korbutt, M J Pinkoski, J A Heibein, A Caputo, M Hobman, M Barry, I Shostak, T Sawchuk, C F Holmes, J Gauldie, R C Bleackley. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis.
Cell.
2000 Oct; 103(3):491-500. doi:
10.1016/s0092-8674(00)00140-9
. [PMID: 11081635] - A Dragonetti, M Baldassarre, R Castino, M Démoz, A Luini, R Buccione, C Isidoro. The lysosomal protease cathepsin D is efficiently sorted to and secreted from regulated secretory compartments in the rat basophilic/mast cell line RBL.
Journal of cell science.
2000 Sep; 113 ( Pt 18)(?):3289-98. doi:
10.1242/jcs.113.18.3289
. [PMID: 10954426] - Z H Wang, M D Gershon, O Lungu, Z Zhu, A A Gershon. Trafficking of varicella-zoster virus glycoprotein gI: T(338)-dependent retention in the trans-Golgi network, secretion, and mannose 6-phosphate-inhibitable uptake of the ectodomain.
Journal of virology.
2000 Jul; 74(14):6600-13. doi:
10.1128/jvi.74.14.6600-6613.2000
. [PMID: 10864674] - J C Byrd, R G MacDonald. Mechanisms for high affinity mannose 6-phosphate ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor.
The Journal of biological chemistry.
2000 Jun; 275(25):18638-46. doi:
10.1074/jbc.m000010200
. [PMID: 10764735] - D F Bainton. Distinct granule populations in human neutrophils and lysosomal organelles identified by immuno-electron microscopy.
Journal of immunological methods.
1999 Dec; 232(1-2):153-68. doi:
10.1016/s0022-1759(99)00173-8
. [PMID: 10618517] - D Tarrago, I Aguilera, J Melero, I Wichmann, A Nuñez-Roldan, B Sanchez. Identification of cation-independent mannose 6-phosphate receptor/insulin-like growth factor type-2 receptor as a novel target of autoantibodies.
Immunology.
1999 Dec; 98(4):652-62. doi:
10.1046/j.1365-2567.1999.00889.x
. [PMID: 10594701] - G R Devi, A T De Souza, J C Byrd, R L Jirtle, R G MacDonald. Altered ligand binding by insulin-like growth factor II/mannose 6-phosphate receptors bearing missense mutations in human cancers.
Cancer research.
1999 Sep; 59(17):4314-9. doi:
NULL
. [PMID: 10485478] - P Lemansky, K Brix, V Herzog. Subcellular distribution, secretion, and posttranslational modifications of clusterin in thyrocytes.
Experimental cell research.
1999 Aug; 251(1):147-55. doi:
10.1006/excr.1999.4555
. [PMID: 10438580] - J C Byrd, G R Devi, A T de Souza, R L Jirtle, R G MacDonald. Disruption of ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor by cancer-associated missense mutations.
The Journal of biological chemistry.
1999 Aug; 274(34):24408-16. doi:
10.1074/jbc.274.34.24408
. [PMID: 10446221] - L Beljaars, G Molema, B Weert, H Bonnema, P Olinga, G M Groothuis, D K Meijer, K Poelstra. Albumin modified with mannose 6-phosphate: A potential carrier for selective delivery of antifibrotic drugs to rat and human hepatic stellate cells.
Hepatology (Baltimore, Md.).
1999 May; 29(5):1486-93. doi:
10.1002/hep.510290526
. [PMID: 10216133] - M Z Jones, L K Brumfield, B M King, J J Hopwood, S Byers. Recombinant caprine 3H-[N-acetylglucosamine-6-sulfatase] and human 3H-[N-acetylgalactosamine-4-sulfatase]: plasma clearance, tissue distribution, and cellular uptake in the rat.
Journal of molecular neuroscience : MN.
1998 Dec; 11(3):223-32. doi:
10.1385/jmn:11:3:223
. [PMID: 10344792] - J Cacia, C P Quan, R Pai, J Frenz. Human DNase I contains mannose 6-phosphate and binds the cation-independent mannose 6-phosphate receptor.
Biochemistry.
1998 Oct; 37(43):15154-61. doi:
10.1021/bi981465t
. [PMID: 9790679] - C R Morales. Role of sialic acid in the endocytosis of prosaposin by the nonciliated cells of the rat efferent ducts.
Molecular reproduction and development.
1998 Oct; 51(2):156-66. doi:
10.1002/(sici)1098-2795(199810)51:2<156::aid-mrd5>3.0.co;2-p
. [PMID: 9740323] - D Solís, A Romero, M Jiménez, T Díaz-Mauriño, J J Calvete. Binding of mannose-6-phosphate and heparin by boar seminal plasma PSP-II, a member of the spermadhesin protein family.
FEBS letters.
1998 Jul; 431(2):273-8. doi:
10.1016/s0014-5793(98)00772-8
. [PMID: 9708918] - M Takigawa, T Okawa, H Pan, C Aoki, K Takahashi, J Zue, F Suzuki, A Kinoshita. Insulin-like growth factors I and II are autocrine factors in stimulating proteoglycan synthesis, a marker of differentiated chondrocytes, acting through their respective receptors on a clonal human chondrosarcoma-derived chondrocyte cell line, HCS-2/8.
Endocrinology.
1997 Oct; 138(10):4390-400. doi:
10.1210/endo.138.10.5265
. [PMID: 9322955] - K Denzer, B Weber, A Hille-Rehfeld, K V Figura, R Pohlmann. Identification of three internalization sequences in the cytoplasmic tail of the 46 kDa mannose 6-phosphate receptor.
The Biochemical journal.
1997 Sep; 326 ( Pt 2)(?):497-505. doi:
10.1042/bj3260497
. [PMID: 9291124] - B Rigat, W Wang, A Leung, D J Mahuran. Two mechanisms for the recapture of extracellular GM2 activator protein: evidence for a major secretory form of the protein.
Biochemistry.
1997 Jul; 36(27):8325-31. doi:
10.1021/bi970571c
. [PMID: 9204879] - D E Sleat, S R Kraus, I Sohar, H Lackland, P Lobel. alpha-Glucosidase and N-acetylglucosamine-6-sulphatase are the major mannose-6-phosphate glycoproteins in human urine.
The Biochemical journal.
1997 May; 324 ( Pt 1)(?):33-9. doi:
10.1042/bj3240033
. [PMID: 9164838] - K Fukushima, S Hara-Kuge, T Ohkura, A Seko, H Ideo, T Inazu, K Yamashita. Lectin-like characteristics of recombinant human interleukin-1beta recognizing glycans of the glycosylphosphatidylinositol anchor.
The Journal of biological chemistry.
1997 Apr; 272(16):10579-84. doi:
10.1074/jbc.272.16.10579
. [PMID: 9099704] - T Nishiura, T Karasuno, H Yoshida, H Nakao, M Ogawa, Y Horikawa, M Yoshimura, Y Okajima, Y Kanakura, Y Kanayama, Y Matsuzawa. Functional role of cation-independent mannose 6-phosphate/insulin-like growth factor II receptor in cell adhesion and proliferation of a human myeloma cell line OPM-2.
Blood.
1996 Nov; 88(9):3546-54. doi:
10.1182/blood.v88.9.3546.bloodjournal8893546
. [PMID: 8896422] - M A Barbieri, M L Veisaga, F Paolicchi, M W Fornes, M A Sosa, L S Mayorga, E Bustos-Obregón, F Bertini. Affinity sites for beta-glucuronidase on the surface of human spermatozoa.
Andrologia.
1996 Nov; 28(6):327-33. doi:
10.1111/j.1439-0272.1996.tb02810.x
. [PMID: 9021045] - D E Sleat, I Sohar, H Lackland, J Majercak, P Lobel. Rat brain contains high levels of mannose-6-phosphorylated glycoproteins including lysosomal enzymes and palmitoyl-protein thioesterase, an enzyme implicated in infantile neuronal lipofuscinosis.
The Journal of biological chemistry.
1996 Aug; 271(32):19191-8. doi:
10.1074/jbc.271.32.19191
. [PMID: 8702598] - A P West, K R Willison. Brefeldin A and mannose 6-phosphate regulation of acrosomic related vesicular trafficking.
European journal of cell biology.
1996 Aug; 70(4):315-21. doi:
NULL
. [PMID: 8864659] - T Ludwig, J Eggenschwiler, P Fisher, A J D'Ercole, M L Davenport, A Efstratiadis. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds.
Developmental biology.
1996 Aug; 177(2):517-35. doi:
10.1006/dbio.1996.0182
. [PMID: 8806828] - R Bresciani, K Von Figura. Dephosphorylation of the mannose-6-phosphate recognition marker is localized in later compartments of the endocytic route. Identification of purple acid phosphatase (uteroferrin) as the candidate phosphatase.
European journal of biochemistry.
1996 Jun; 238(3):669-74. doi:
10.1111/j.1432-1033.1996.0669w.x
. [PMID: 8706666] - R Malhotra, N R Taylor, M I Bird. Anionic phospholipids bind to L-selectin (but not E-selectin) at a site distinct from the carbohydrate-binding site.
The Biochemical journal.
1996 Feb; 314 ( Pt 1)(?):297-303. doi:
10.1042/bj3140297
. [PMID: 8660298] - A M Barbieri, M A Sosa, P Grimalt, L S Mayorga, F Bertini. Phosphomannosyl receptors on the surface of spermatozoa from the cauda epididymis of the rat.
International journal of andrology.
1995 Jun; 18(3):113-9. doi:
10.1111/j.1365-2605.1995.tb00396.x
. [PMID: 7558373] - M Nimtz, V Wray, A Rüdiger, H S Conradt. Identification and structural characterization of a mannose-6-phosphate containing oligomannosidic N-glycan from human erythropoietin secreted by recombinant BHK-21 cells.
FEBS letters.
1995 May; 365(2-3):203-8. doi:
10.1016/0014-5793(95)00473-m
. [PMID: 7781780] - K Panneerselvam, H H Freeze. Enzymes involved in the synthesis of mannose-6-phosphate from glucose are normal in carbohydrate deficient glycoprotein syndrome fibroblasts.
Biochemical and biophysical research communications.
1995 Mar; 208(2):517-22. doi:
10.1006/bbrc.1995.1369
. [PMID: 7695602] - F Schmitz, R Bresciani, H Hartmann, T Braulke. Effect of insulin-like growth factor II on uptake of arylsulfatase A by cultured rat hepatocytes and Kupffer cells.
Journal of hepatology.
1995 Mar; 22(3):356-63. doi:
10.1016/0168-8278(95)80290-8
. [PMID: 7608488] - A Köster, K von Figura, R Pohlmann. Mistargeting of lysosomal enzymes in M(r) 46,000 mannose 6-phosphate receptor-deficient mice is compensated by carbohydrate-specific endocytotic receptors.
European journal of biochemistry.
1994 Sep; 224(2):685-9. doi:
10.1111/j.1432-1033.1994.00685.x
. [PMID: 7925385] - M Edbladh, A Fex-Svenningsen, P A Ekström, A Edström. Insulin and IGF-II, but not IGF-I, stimulate the in vitro regeneration of adult frog sciatic sensory axons.
Brain research.
1994 Mar; 641(1):76-82. doi:
10.1016/0006-8993(94)91817-1
. [PMID: 8019854] - R H Davis, J J Donato, G M Hartman, R C Haas. Anti-inflammatory and wound healing activity of a growth substance in Aloe vera.
Journal of the American Podiatric Medical Association.
1994 Feb; 84(2):77-81. doi:
10.7547/87507315-84-2-77
. [PMID: 8169808] - D A O'Brien, C A Gabel, E M Eddy. Mouse Sertoli cells secrete mannose 6-phosphate containing glycoproteins that are endocytosed by spermatogenic cells.
Biology of reproduction.
1993 Nov; 49(5):1055-65. doi:
10.1095/biolreprod49.5.1055
. [PMID: 8286571]