Ethylketocyclazocine (BioDeep_00000008877)

 

Secondary id: BioDeep_00001870392


代谢物信息卡片


Ethylketocyclazocine

化学式: C19H25NO2 (299.1885)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(not specific) 50%

分子结构信息

SMILES: CCC12CCN(C(C1C)C(=O)C3=C2C=C(C=C3)O)CC4CC4
InChI: InChI=1S/C19H25NO2/c1-3-19-8-9-20(11-13-4-5-13)17(12(19)2)18(22)15-7-6-14(21)10-16(15)19/h6-7,10,12-13,17,21H,3-5,8-9,11H2,1-2H3/t12?,17-,19+/m0/s1

描述信息

D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics

同义名列表

5 个代谢物同义名

Ethylketocyclazocine; CHEMBL55033; CID 443409; EKC; Ethylketocyclazocine



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 CA1, CDC42, POMC, RAC1, TRIM13
Endoplasmic reticulum membrane 3 CDC42, RAC1, TRIM13
Nucleus 1 RAC1
cytosol 5 AVP, CA1, CDC42, RAC1, SST
dendrite 5 ADORA1, AVP, OPRM1, PDYN, RAC1
phagocytic vesicle 1 CDC42
trans-Golgi network 1 RAC1
centrosome 1 CDC42
nucleoplasm 1 ATP2B1
Cell membrane 8 ADORA1, ATP2B1, CDC42, GPRC5A, OPRD1, OPRM1, RAC1, SCN4A
Lipid-anchor 2 CDC42, RAC1
Cytoplasmic side 2 CDC42, RAC1
lamellipodium 1 RAC1
ruffle membrane 1 RAC1
Cell projection, axon 1 OPRM1
Multi-pass membrane protein 7 ADORA1, ATP2B1, CACNA1I, GPRC5A, OPRD1, OPRM1, SCN4A
Synapse 7 ADORA1, ATP2B1, CRH, OPRM1, PDYN, RAC1, TAC1
cell cortex 1 RAC1
glutamatergic synapse 3 ATP2B1, CDC42, RAC1
Golgi apparatus 1 OPRM1
Golgi membrane 1 CDC42
neuronal cell body 5 ADORA1, CDC42, PDYN, SST, TAC1
postsynapse 1 RAC1
presynaptic membrane 3 ADORA1, ATP2B1, OPRD1
endosome 1 OPRM1
plasma membrane 10 ADORA1, ATP2B1, CACNA1I, CDC42, GPRC5A, OPRD1, OPRM1, PDYN, RAC1, SCN4A
presynaptic active zone 1 ADORA1
synaptic vesicle membrane 2 ATP2B1, OPRD1
terminal bouton 1 ADORA1
Membrane 7 ATP2B1, CACNA1I, CDC42, OPRD1, OPRM1, RAC1, SCN4A
axon 2 OPRM1, TAC1
basolateral plasma membrane 2 ADORA1, ATP2B1
extracellular exosome 5 ATP2B1, CA1, CDC42, GPRC5A, RAC1
endoplasmic reticulum 2 CSH1, OPRM1
extracellular space 7 AVP, CRH, CSH1, GNRH1, POMC, SST, TAC1
Schaffer collateral - CA1 synapse 1 CDC42
protein-containing complex 1 CDC42
intracellular membrane-bounded organelle 2 ATP2B1, GPRC5A
filopodium 1 CDC42
Secreted 8 AVP, CRH, CSH1, PDYN, POMC, RAC1, SST, TRH
extracellular region 10 AVP, CRH, CSH1, GNRH1, PDYN, POMC, RAC1, SST, TAC1, TRH
Single-pass membrane protein 1 TRIM13
hippocampal mossy fiber to CA3 synapse 1 PDYN
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 CDC42
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
varicosity 1 CRH
dendritic spine 3 ADORA1, CDC42, RAC1
neuronal dense core vesicle lumen 1 CRH
perikaryon 2 CRH, OPRM1
cytoplasmic vesicle 1 RAC1
nucleolus 1 GPRC5A
midbody 1 CDC42
apical part of cell 1 CDC42
cell-cell junction 1 CDC42
spindle midzone 1 CDC42
vesicle 2 CSH1, GPRC5A
postsynaptic membrane 1 ADORA1
Cell projection, lamellipodium 1 RAC1
Cytoplasm, cytoskeleton, spindle 1 CDC42
focal adhesion 2 CDC42, RAC1
axolemma 1 ADORA1
GABA-ergic synapse 1 SST
secretory granule 4 AVP, CDC42, POMC, TRH
lateral plasma membrane 1 ATP2B1
receptor complex 1 GPRC5A
neuron projection 3 CDC42, OPRD1, OPRM1
cell projection 1 ATP2B1
mitotic spindle 1 CDC42
cytoskeleton 1 RAC1
cytoplasmic ribonucleoprotein granule 2 CDC42, RAC1
Basolateral cell membrane 1 ATP2B1
Recycling endosome membrane 1 RAC1
endosome lumen 1 CSH1
leading edge membrane 1 CDC42
Cytoplasmic vesicle membrane 1 GPRC5A
Cell projection, dendrite 3 CDC42, OPRM1, RAC1
Melanosome 1 RAC1
Presynaptic cell membrane 1 ATP2B1
secretory granule lumen 1 POMC
endoplasmic reticulum quality control compartment 1 TRIM13
secretory granule membrane 1 RAC1
axon terminus 2 OPRD1, PDYN
voltage-gated calcium channel complex 1 CACNA1I
postsynaptic density membrane 1 OPRD1
immunological synapse 1 ATP2B1
neuronal dense core vesicle 4 AVP, OPRD1, PDYN, SST
perinuclear endoplasmic reticulum 1 TRIM13
calyx of Held 1 ADORA1
clathrin-coated endocytic vesicle membrane 1 AVP
ficolin-1-rich granule membrane 1 RAC1
dendrite membrane 1 OPRD1
voltage-gated sodium channel complex 1 SCN4A
NADPH oxidase complex 1 RAC1
asymmetric synapse 1 ADORA1
photoreceptor ribbon synapse 1 ATP2B1
[Isoform 12]: Cytoplasm 1 OPRM1
spine apparatus 1 OPRD1
Golgi transport complex 1 CDC42
storage vacuole 1 CDC42


文献列表

  • Marilena Kampa, Evangelia A Papakonstanti, Vassilia-Ismini Alexaki, Anastassia Hatzoglou, Christos Stournaras, Elias Castanas. The opioid agonist ethylketocyclazocine reverts the rapid, non-genomic effects of membrane testosterone receptors in the human prostate LNCaP cell line. Experimental cell research. 2004 Apr; 294(2):434-45. doi: 10.1016/j.yexcr.2003.11.027. [PMID: 15023532]
  • Evangelia A Papakonstanti, Christos Stournaras. Association of PI-3 kinase with PAK1 leads to actin phosphorylation and cytoskeletal reorganization. Molecular biology of the cell. 2002 Aug; 13(8):2946-62. doi: 10.1091/mbc.02-01-0599. [PMID: 12181358]
  • E R Butelman, M C Ko, J R Traynor, J A Vivian, M J Kreek, J H Woods. GR89,696: a potent kappa-opioid agonist with subtype selectivity in rhesus monkeys. The Journal of pharmacology and experimental therapeutics. 2001 Sep; 298(3):1049-59. doi: . [PMID: 11504802]
  • J A Vivian, M B DeYoung, T L Sumpter, J R Traynor, J W Lewis, J H Woods. kappa-Opioid receptor effects of butorphanol in rhesus monkeys. The Journal of pharmacology and experimental therapeutics. 1999 Jul; 290(1):259-65. doi: NULL. [PMID: 10381785]
  • S Panagiotou, E Bakogeorgou, E Papakonstanti, A Hatzoglou, F Wallet, C Dussert, C Stournaras, P M Martin, E Castanas. Opioid agonists modify breast cancer cell proliferation by blocking cells to the G2/M phase of the cycle: involvement of cytoskeletal elements. Journal of cellular biochemistry. 1999 May; 73(2):204-11. doi: 10.1002/(sici)1097-4644(19990501)73:2<204::aid-jcb6>3.0.co;2-v. [PMID: 10227383]
  • S Panagiotou, A Hatzoglou, F Calvo, P M Martin, E Castanas. Modulation of the estrogen-regulated proteins cathepsin D and pS2 by opioid agonists in hormone-sensitive breast cancer cell lines (MCF7 and T47D): evidence for an interaction between the two systems. Journal of cellular biochemistry. 1998 Dec; 71(3):416-28. doi: 10.1002/(sici)1097-4644(19981201)71:3<416::aid-jcb10>3.0.co;2-y. [PMID: 9831078]
  • T Kshirsagar, A H Nakano, P Y Law, R Elde, P S Portoghese. NTI4F: a non-peptide fluorescent probe selective for functional delta opioid receptors. Neuroscience letters. 1998 Jun; 249(2-3):83-6. doi: 10.1016/s0304-3940(98)00379-6. [PMID: 9682822]
  • M Mosaddeghi, D R Kapusta, L D Minor, N Duan, D Paul. Effects of kappa-opioid receptor agonists on stimulated phosphoinositide hydrolysis in rat kidney. European journal of pharmacology. 1995 May; 289(3):411-7. doi: 10.1016/0922-4106(95)90149-3. [PMID: 7556409]
  • A Ray, K Gulati, S Puri, P Sen. Role of kappa opioid receptors during stress responsiveness in rats. Indian journal of experimental biology. 1993 Feb; 31(2):116-9. doi: NULL. [PMID: 8388852]
  • A Petit, N Gallo-Payet, D Bellabarba, J G Lehoux, S Bélisle. The modulation of placental lactogen release by opioids: a role for extracellular calcium. Molecular and cellular endocrinology. 1993 Jan; 90(2):165-70. doi: 10.1016/0303-7207(93)90148-d. [PMID: 7684340]
  • R M Craft, L A Dykstra. Agonist and antagonist activity of kappa opioids in the squirrel monkey: I. Antinociception and urine output. The Journal of pharmacology and experimental therapeutics. 1992 Jan; 260(1):327-33. doi: . [PMID: 1309876]
  • D B Vaupel, E J Cone. Pharmacodynamic and pharmacokinetic actions of ketocyclazocine enantiomers in the dog: absence of sigma- or phencyclidine-like activity. The Journal of pharmacology and experimental therapeutics. 1991 Jan; 256(1):211-21. doi: NULL. [PMID: 1846414]
  • D R Kapusta, S Y Jones, G F DiBona. Role of renal nerves in excretory responses to administration of kappa agonists in conscious spontaneously hypertensive rats. The Journal of pharmacology and experimental therapeutics. 1989 Oct; 251(1):230-7. doi: NULL. [PMID: 2552076]
  • H N Bhargava, P Ramarao, A Gulati. Changes in multiple opioid receptors in regions of the brain in rats treated chronically with thyroxine. Neuropharmacology. 1989 Sep; 28(9):955-60. doi: 10.1016/0028-3908(89)90195-0. [PMID: 2554187]
  • H G Hassan, C W Pilcher, B Akerman, H Renck. Antinociceptive effects of localized administration of opioids compared with lidocaine. Regional anesthesia. 1989 May; 14(3):138-44. doi: ". [PMID: 2577247]
  • S Benyhe, T Farkas, M Wollemann. Effect of sodium on [3H]ethylketocyclazocine binding to opioid receptors in frog brain membranes. Neurochemical research. 1989 Mar; 14(3):205-10. doi: 10.1007/bf00971311. [PMID: 2542822]
  • K M Kumor, C A Haertzen, D R Jasinski, R E Johnson. The psychopharmacologic and prolactin response after large doses of naloxone in man. Pharmacology, biochemistry, and behavior. 1988 Aug; 30(4):967-75. doi: 10.1016/0091-3057(88)90128-1. [PMID: 3227043]
  • M Gue, C Honde, X Pascaud, J L Junien, M Alvinerie, L Bueno. CNS blockade of acoustic stress-induced gastric motor inhibition by kappa-opiate agonists in dogs. The American journal of physiology. 1988 Jun; 254(6 Pt 1):G802-7. doi: 10.1152/ajpgi.1988.254.6.g802. [PMID: 2897797]
  • S Belisle, A Petit, N Gallo-Payet, D Bellabarba, J G Lehoux, S Lemaire. Functional opioid receptor sites in human placentas. The Journal of clinical endocrinology and metabolism. 1988 Feb; 66(2):283-9. doi: 10.1210/jcem-66-2-283. [PMID: 2892853]
  • H N Bhargava, P Ramarao, A Gulati. Effect of methimazole-induced hypothyroidism on multiple opioid receptors in rat brain regions. Pharmacology. 1988; 37(6):356-64. doi: 10.1159/000138489. [PMID: 2854273]
  • L A Dykstra, D E Gmerek, G Winger, J H Woods. Kappa opioids in rhesus monkeys. II. Analysis of the antagonistic actions of quadazocine and beta-funaltrexamine. The Journal of pharmacology and experimental therapeutics. 1987 Aug; 242(2):421-7. doi: . [PMID: 3302207]
  • J D Leander, J C Hart, R L Zerbe. Kappa agonist-induced diuresis: evidence for stereoselectivity, strain differences, independence of hydration variables and a result of decreased plasma vasopressin levels. The Journal of pharmacology and experimental therapeutics. 1987 Jul; 242(1):33-9. doi: . [PMID: 3039112]
  • P J Vaysse, E L Gardner, R S Zukin. Modulation of rat brain opioid receptors by cannabinoids. The Journal of pharmacology and experimental therapeutics. 1987 May; 241(2):534-9. doi: . [PMID: 3033219]
  • E J Cone, D Yousefnejad, W D Buchwald, K Kumor. Determination of ketocyclazocine in human plasma by gas chromatography-negative-ion chemical-ionization mass spectrometry. Journal of chromatography. 1986 Nov; 383(1):158-65. doi: 10.1016/s0378-4347(00)83455-6. [PMID: 3818834]
  • T P Blackburn, K R Borkowski, J Friend, M J Rance. On the mechanisms of kappa-opioid-induced diuresis. British journal of pharmacology. 1986 Nov; 89(3):593-8. doi: 10.1111/j.1476-5381.1986.tb11160.x. [PMID: 3542107]
  • G R Slizgi, J H Ludens. Role of ADH in ethylketocyclazocine-induced diuresis: studies in the Brattleboro rat. Life sciences. 1986 Jun; 38(26):2437-40. doi: 10.1016/0024-3205(86)90613-2. [PMID: 3014247]
  • E Castanas, N Bourhim, P Giraud, F Boudouresque, P Cantau, C Oliver. Interaction of opiates with opioid binding sites in the bovine adrenal medulla: II. Interaction with kappa sites. Journal of neurochemistry. 1985 Sep; 45(3):688-99. doi: 10.1111/j.1471-4159.1985.tb04047.x. [PMID: 2993510]
  • G R Slizgi, J H Ludens. Displacement of 3H-EKC binding by opioids in rat kidney: a correlate to diuretic activity. Life sciences. 1985 Jun; 36(23):2189-93. doi: 10.1016/0024-3205(85)90328-5. [PMID: 2860552]
  • R M Eisenberg. Plasma corticosterone changes in response to central or peripheral administration of kappa and sigma opiate agonists. The Journal of pharmacology and experimental therapeutics. 1985 Jun; 233(3):863-9. doi: NULL. [PMID: 2989500]
  • R Pechnick, R George, R E Poland. Identification of multiple opiate receptors through neuroendocrine responses. II. Antagonism of mu, kappa and sigma agonists by naloxone and WIN 44,441-3. The Journal of pharmacology and experimental therapeutics. 1985 Jan; 232(1):170-7. doi: NULL. [PMID: 2981314]
  • R Pechnick, R George, R E Poland. Identification of multiple opiate receptors through neuroendocrine responses. I. Effects of agonists. The Journal of pharmacology and experimental therapeutics. 1985 Jan; 232(1):163-9. doi: NULL. [PMID: 2981313]
  • J P Huidobro-Toro, S Parada. Kappa-opiates and urination: pharmacological evidence for an endogenous role of the kappa-opiate receptor in fluid and electrolyte balance. European journal of pharmacology. 1984 Dec; 107(1):1-10. doi: 10.1016/0014-2999(84)90084-0. [PMID: 6098480]
  • T W Smith, P Buchan. Peripheral opioid receptors located on the rat saphenous nerve. Neuropeptides. 1984 Dec; 5(1-3):217-20. doi: 10.1016/0143-4179(84)90066-0. [PMID: 6099501]
  • J D Leander. Effects of full and partial kappa agonists and mu agonists on urine output of normally hydrated rats. Neuropeptides. 1984 Dec; 5(1-3):283-6. doi: 10.1016/0143-4179(84)90083-0. [PMID: 6099514]
  • H Ensinger, L Hedler, C Schurr, K Starke. Ethylketocyclazocine decreases noradrenaline release and blood pressure in the rabbit at a peripheral opioid receptor. Naunyn-Schmiedeberg's archives of pharmacology. 1984 Nov; 328(1):20-3. doi: 10.1007/bf00496099. [PMID: 6096725]
  • G J Gwynn, E F Domino. Genotype-dependent behavioral sensitivity to mu vs. kappa opiate agonists. II. Antinociceptive tolerance and physical dependence. The Journal of pharmacology and experimental therapeutics. 1984 Nov; 231(2):312-6. doi: NULL. [PMID: 6092614]
  • T J Cicero, D P Owens, P F Schmoeker, E R Meyer. Opiate-induced enhancement of the effects of naloxone on serum luteinizing hormone levels in the male rat: specificity for Mu agonists. The Journal of pharmacology and experimental therapeutics. 1983 Sep; 226(3):770-5. doi: . [PMID: 6310081]
  • J D Leander. A kappa opioid effect: increased urination in the rat. The Journal of pharmacology and experimental therapeutics. 1983 Jan; 224(1):89-94. doi: . [PMID: 6294284]
  • M T Curtis, A M Lefer. Effectiveness of ethylketocyclazocine in hemorrhagic shock. Advances in shock research. 1983; 10(?):101-9. doi: NULL. [PMID: 6308972]
  • G R Slizgi, J H Ludens. Studies on the nature and mechanism of the diuretic activity of the opioid analgesic ethylketocyclazocine. The Journal of pharmacology and experimental therapeutics. 1982 Mar; 220(3):585-91. doi: . [PMID: 6121047]