4-Chlorocatechol (BioDeep_00000004909)

 

Secondary id: BioDeep_00001868371

human metabolite Endogenous


代谢物信息卡片


4-Chloro-benzene-1,2-diol

化学式: C6H5ClO2 (143.99780600000003)
中文名称: 4-氯邻苯二酚
谱图信息: 最多检出来源 Homo sapiens(blood) 2.55%

分子结构信息

SMILES: C1=CC(=C(C=C1Cl)O)O
InChI: InChI=1S/C6H5ClO2/c7-4-1-2-5(8)6(9)3-4/h1-3,8-9H

描述信息

4-chlorocatechol belongs to the family of Catechols. These are compounds containing a 1,2-benzenediol moeity.

同义名列表

6 个代谢物同义名

4-Chloro-benzene-1,2-diol; 4-Chloro-1,2-benzenediol; 4-Chlorobenzene-1,2-diol; 4-Chloro-pyrocatechol; 4-Chloropyrocatechol; 4-Chlorocatechol



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

9 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(9)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Namadev K Pujar, H G Premakshi, Shruti Laad, Shridhar V Pattar, Manisha Mirjankar, Chandrappa M Kamanavalli. Biodegradation of chlorpropham and its major products by Bacillus licheniformis NKC-1. World journal of microbiology & biotechnology. 2018 Jul; 34(8):112. doi: 10.1007/s11274-018-2494-8. [PMID: 29980862]
  • Pankaj Kumar Arora, Alok Srivastava, Vijay Pal Singh. Novel degradation pathway of 4-chloro-2-aminophenol via 4-chlorocatechol in Burkholderia sp. RKJ 800. Environmental science and pollution research international. 2014 Feb; 21(3):2298-2304. doi: 10.1007/s11356-013-2167-y. [PMID: 24057966]
  • Hamid Sobhanian, Roya Razavizadeh, Yohei Nanjo, Ali Akbar Ehsanpour, Ferdous Rastgar Jazii, Nasrin Motamed, Setsuko Komatsu. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome science. 2010 Mar; 8(?):19. doi: 10.1186/1477-5956-8-19. [PMID: 20350314]
  • Cláudia Gomes Silva, Joaquim Luís Faria. Anatase vs. rutile efficiency on the photocatalytic degradation of clofibric acid under near UV to visible irradiation. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. 2009 May; 8(5):705-11. doi: 10.1039/b817364h. [PMID: 19424546]
  • Ignasi Sirés, Conchita Arias, Pere Lluís Cabot, Francesc Centellas, José Antonio Garrido, Rosa María Rodríguez, Enric Brillas. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere. 2007 Jan; 66(9):1660-9. doi: 10.1016/j.chemosphere.2006.07.039. [PMID: 16938340]
  • Takashi Hatta, Gouri Mukerjee-Dhar, Jiri Damborsky, Hohzoh Kiyohara, Kazuhide Kimbara. Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8. The Journal of biological chemistry. 2003 Jun; 278(24):21483-92. doi: 10.1074/jbc.m210240200. [PMID: 12672826]
  • U Knecht, H J Woitowitz. Human toxicokinetics of inhaled monochlorobenzene: latest experimental findings regarding re-evaluation of the biological tolerance value. International archives of occupational and environmental health. 2000 Nov; 73(8):543-54. doi: 10.1007/s004200000171. [PMID: 11100949]
  • S J Noh, Y Kim, K H Min, T B Karegoudar, C K Kim. Cloning and nucleotide sequence analysis of xylE gene responsible for meta-cleavage of 4-chlorocatechol from Pseudomonas sp. S-47. Molecules and cells. 2000 Aug; 10(4):475-9. doi: . [PMID: 10987148]
  • X Guan, S Ramanathan, J P Garris, R S Shetty, M Ensor, L G Bachas, S Daunert. Chlorocatechol detection based on a clc operon/reporter gene system. Analytical chemistry. 2000 Jun; 72(11):2423-7. doi: 10.1021/ac9913917. [PMID: 10857616]
  • R Blasco, R M Wittich, M Mallavarapu, K N Timmis, D H Pieper. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. The Journal of biological chemistry. 1995 Dec; 270(49):29229-35. doi: 10.1074/jbc.270.49.29229. [PMID: 7493952]
  • S Kumagai, I Matsunaga. Effect of variation of exposure to airborne chlorobenzene on internal exposure and concentrations of urinary metabolite. Occupational and environmental medicine. 1995 Jan; 52(1):65-70. doi: 10.1136/oem.52.1.65. [PMID: 7697144]
  • S Kumagai, I Matsunaga. Concentrations of urinary metabolites in workers exposed to monochlorobenzene and variation in the concentration during a workshift. Occupational and environmental medicine. 1994 Feb; 51(2):120-4. doi: 10.1136/oem.51.2.120. [PMID: 8111459]
  • M Ogata, T Taguchi, N Hirota, Y Shimada, S Nakae. Quantitation of urinary chlorobenzene metabolites by HPLC: concentrations of 4-chlorocatechol and chlorophenols in urine and of chlorobenzene in biological specimens of subjects exposed to chlorobenzene. International archives of occupational and environmental health. 1991; 63(2):121-8. doi: 10.1007/bf00379075. [PMID: 1889881]
  • E Kusters, R Lauwerys. Biological monitoring of exposure to monochlorobenzene. International archives of occupational and environmental health. 1990; 62(4):329-31. doi: 10.1007/bf00640842. [PMID: 2379965]
  • M Ogata, Y Shimada. Differences in urinary monochlorobenzene metabolites between rats and humans. International archives of occupational and environmental health. 1983; 53(1):51-7. doi: 10.1007/bf00406177. [PMID: 6654502]