D-myo-Inositol 1,4-bisphosphate (BioDeep_00000001739)

 

Secondary id: BioDeep_00001869383

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


{[(1R,2R,3R,4R,5R,6S)-2,3,5,6-tetrahydroxy-4-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

化学式: C6H14O12P2 (339.9961)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(plant) 5.9%

分子结构信息

SMILES: C1(C(C(C(C(C1OP(=O)(O)O)O)O)OP(=O)(O)O)O)O
InChI: InChI=1S/C6H14O12P2/c7-1-2(8)6(18-20(14,15)16)4(10)3(9)5(1)17-19(11,12)13/h1-10H,(H2,11,12,13)(H2,14,15,16)/t1-,2-,3-,4+,5+,6+/m1/s1

描述信息

D-myo-Inositol 1,4-bisphosphate belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,4-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). D-myo-Inositol 1,4-bisphosphate is a substrate for several proteins including inositol polyphosphate 1-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, skeletal muscle and kidney enriched inositol phosphatase, and type I inositol-1,4,5-trisphosphate 5-phosphatase.
1D-Myo-inositol 1,4-bisphosphate is a substrate for Inositol polyphosphate 1-phosphatase, Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, Skeletal muscle and kidney enriched inositol phosphatase and Type I inositol-1,4,5-trisphosphate 5-phosphatase. [HMDB]

同义名列表

14 个代谢物同义名

{[(1R,2R,3R,4R,5R,6S)-2,3,5,6-tetrahydroxy-4-(phosphonooxy)cyclohexyl]oxy}phosphonic acid; [(1R,2R,3R,4R,5R,6S)-2,3,5,6-tetrahydroxy-4-(phosphonooxy)cyclohexyl]oxyphosphonic acid; 1D-Myo-inositol 1,4-bisphosphoric acid; D-MYO-inositol-1,4-bisphosphoric acid; D-Myo-inositol 1,4-bisphosphoric acid; Myo-inositol 1,4-bisphosphoric acid; 1D-myo-inositol 1,4-bisphosphate; Inositol 1,4-bisphosphoric acid; D-MYO-inositol-1,4-bisphosphATE; D-myo-Inositol 1,4-bisphosphate; Myo-inositol 1,4-bisphosphate; Inositol 1,4-bisphosphate; Inositol 1,4-diphosphate; 1D-myo-Inositol 1,4-bisphosphate



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(3)

BioCyc(0)

PlantCyc(0)

代谢反应

69 个相关的代谢反应过程信息。

Reactome(54)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(1)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(14)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ADRA1A, EDN1, IKBKG, ITPR3, PLA2G12A, PRKX, PRL
Endoplasmic reticulum membrane 2 HSP90B1, ITPR3
Nucleus 6 ADRA1A, HSP90B1, IKBKG, PLCZ1, PRKX, PRL
cytosol 7 ADRA1A, HSP90B1, IKBKG, INPP1, PLCE1, PLCZ1, PRKCQ
dendrite 1 INPP5A
nucleoplasm 6 ADRA1A, IKBKG, ITPR3, PLCZ1, PRKX, PRL
RNA polymerase II transcription regulator complex 1 PRL
Cell membrane 2 ADRA1A, INPP5A
Lipid-anchor 1 INPP5A
lamellipodium 1 PLCE1
Multi-pass membrane protein 2 ADRA1A, ITPR3
Golgi membrane 2 INS, PLCE1
lysosomal membrane 1 EGF
neuronal cell body 1 ITPR3
smooth endoplasmic reticulum 1 HSP90B1
plasma membrane 10 ADRA1A, EGF, F2, GCG, IFNLR1, INPP5A, ITPR3, KNG1, PLCE1, PRKCQ
Membrane 5 EGF, HSP90B1, IFNLR1, INPP5A, ITPR3
brush border 1 ITPR3
caveola 1 ADRA1A
extracellular exosome 4 EGF, F2, HSP90B1, KNG1
endoplasmic reticulum 2 HSP90B1, ITPR3
extracellular space 8 CHGB, EDN1, EGF, F2, GCG, INS, KNG1, PRL
perinuclear region of cytoplasm 2 HSP90B1, PLCZ1
protein-containing complex 2 HSP90B1, IKBKG
intracellular membrane-bounded organelle 1 ADRA1A
pronucleus 1 PLCZ1
Single-pass type I membrane protein 1 IFNLR1
Secreted 7 CHGB, EDN1, F2, GCG, INS, PLA2G12A, PRL
extracellular region 10 CHGB, EDN1, EGF, F2, GCG, HSP90B1, INS, KNG1, PLA2G12A, PRL
basal part of cell 1 EDN1
centriolar satellite 1 PRKCQ
Nucleus membrane 1 ADRA1A
nuclear membrane 1 ADRA1A
nucleolus 2 ITPR3, PLCZ1
midbody 1 HSP90B1
apical part of cell 1 ITPR3
Cell projection, lamellipodium 1 PLCE1
Cytoplasm, perinuclear region 1 PLCZ1
focal adhesion 1 HSP90B1
sarcoplasmic reticulum 1 ITPR3
collagen-containing extracellular matrix 3 F2, HSP90B1, KNG1
secretory granule 1 CHGB
nuclear outer membrane 1 ITPR3
receptor complex 1 ITPR3
chromatin 1 PRL
mitotic spindle 1 IKBKG
Secreted, extracellular space 1 KNG1
spindle pole 1 IKBKG
blood microparticle 2 F2, KNG1
endosome lumen 2 INS, PRL
Membrane, caveola 1 ADRA1A
Cell projection, dendrite 1 INPP5A
Melanosome 1 HSP90B1
sperm plasma membrane 1 HSP90B1
ubiquitin ligase complex 1 IKBKG
secretory granule lumen 2 GCG, INS
secretory granule membrane 1 ITPR3
Golgi lumen 2 F2, INS
endoplasmic reticulum lumen 6 CHGB, F2, GCG, HSP90B1, INS, KNG1
platelet alpha granule lumen 2 EGF, KNG1
transport vesicle 2 EDN1, INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
IkappaB kinase complex 1 IKBKG
clathrin-coated endocytic vesicle membrane 1 EGF
Sarcoplasmic reticulum lumen 1 HSP90B1
platelet dense tubular network membrane 1 ITPR3
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
endocytic vesicle lumen 1 HSP90B1
[Glucagon-like peptide 1]: Secreted 1 GCG
transport vesicle membrane 1 ITPR3
rough endoplasmic reticulum lumen 1 EDN1
sperm head 1 PLCZ1
Weibel-Palade body 1 EDN1
endoplasmic reticulum chaperone complex 1 HSP90B1
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
interleukin-28 receptor complex 1 IFNLR1


文献列表

  • Ju He, Joanna Gajewiak, Jordan L Scott, Denghuang Gong, Muzaffar Ali, Michael D Best, Glenn D Prestwich, Robert V Stahelin, Tatiana G Kutateladze. Metabolically stabilized derivatives of phosphatidylinositol 4-phosphate: synthesis and applications. Chemistry & biology. 2011 Oct; 18(10):1312-9. doi: 10.1016/j.chembiol.2011.07.022. [PMID: 22035800]
  • Jing Zhang, Steffen Vanneste, Philip B Brewer, Marta Michniewicz, Peter Grones, Jürgen Kleine-Vehn, Christian Löfke, Thomas Teichmann, Agnieszka Bielach, Bernard Cannoot, Klára Hoyerová, Xu Chen, Hong-Wei Xue, Eva Benková, Eva Zažímalová, Jiří Friml. Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity. Developmental cell. 2011 Jun; 20(6):855-66. doi: 10.1016/j.devcel.2011.05.013. [PMID: 21664582]
  • Judith Hirsch, Julie Misson, Peter A Crisp, Pascale David, Vincent Bayle, Gonzalo M Estavillo, Hélène Javot, Serge Chiarenza, Allison C Mallory, Alexis Maizel, Marie Declerck, Barry J Pogson, Hervé Vaucheret, Martin Crespi, Thierry Desnos, Marie-Christine Thibaud, Laurent Nussaume, Elena Marin. A novel fry1 allele reveals the existence of a mutant phenotype unrelated to 5'->3' exoribonuclease (XRN) activities in Arabidopsis thaliana roots. PloS one. 2011 Feb; 6(2):e16724. doi: 10.1371/journal.pone.0016724. [PMID: 21304819]
  • Florian Vogel, Daniel Hofius, Kathrin Elisabeth Paulus, Isabel Jungkunz, Uwe Sonnewald. The second face of a known player: Arabidopsis silencing suppressor AtXRN4 acts organ-specifically. The New phytologist. 2011 Jan; 189(2):484-93. doi: 10.1111/j.1469-8137.2010.03482.x. [PMID: 21039560]
  • Soonok Kim, Jinnan Hu, Yeonyee Oh, Jongsun Park, Jinhee Choi, Yong-Hwan Lee, Ralph A Dean, Thomas K Mitchell. Combining ChIP-chip and expression profiling to model the MoCRZ1 mediated circuit for Ca/calcineurin signaling in the rice blast fungus. PLoS pathogens. 2010 May; 6(5):e1000909. doi: 10.1371/journal.ppat.1000909. [PMID: 20502632]
  • Daniel J Smith, Rhiannon Evans, Nick Craddock. Predicting response to lithium in bipolar disorder: a critical review of pharmacogenetic studies. Journal of mental health (Abingdon, England). 2010 Apr; 19(2):142-56. doi: 10.3109/09638230903469103. [PMID: 20433322]
  • Pedro Robles, Delphine Fleury, Héctor Candela, Gerda Cnops, María Magdalena Alonso-Peral, Sylvester Anami, Andrea Falcone, Camila Caldana, Lothar Willmitzer, María Rosa Ponce, Mieke Van Lijsebettens, José Luis Micol. The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis. Plant physiology. 2010 Mar; 152(3):1357-72. doi: 10.1104/pp.109.149369. [PMID: 20044451]
  • Víctor M Rodríguez, Aurore Chételat, Paul Majcherczyk, Edward E Farmer. Chloroplastic phosphoadenosine phosphosulfate metabolism regulates basal levels of the prohormone jasmonic acid in Arabidopsis leaves. Plant physiology. 2010 Mar; 152(3):1335-45. doi: 10.1104/pp.109.150474. [PMID: 20053710]
  • Ivan Ivetac, Rajendra Gurung, Sandra Hakim, Kristy A Horan, David A Sheffield, Lauren C Binge, Philip W Majerus, Tony Tiganis, Christina A Mitchell. Regulation of PI(3)K/Akt signalling and cellular transformation by inositol polyphosphate 4-phosphatase-1. EMBO reports. 2009 May; 10(5):487-93. doi: 10.1038/embor.2009.28. [PMID: 19325558]
  • Andreas Knödler, Gerlinde Konrad, Peter Mayinger. Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate. BMC molecular biology. 2008 Jan; 9(?):16. doi: 10.1186/1471-2199-9-16. [PMID: 18226253]
  • Leandro Michelon, Ivanor Meira-Lima, Quirino Cordeiro, Karen Miguita, Gerome Breen, David Collier, Homero Vallada. Association study of the INPP1, 5HTT, BDNF, AP-2beta and GSK-3beta GENE variants and restrospectively scored response to lithium prophylaxis in bipolar disorder. Neuroscience letters. 2006 Aug; 403(3):288-93. doi: 10.1016/j.neulet.2006.05.001. [PMID: 16787706]
  • John F Andersen, José M C Ribeiro. A secreted salivary inositol polyphosphate 5-phosphatase from a blood-feeding insect: allosteric activation by soluble phosphoinositides and phosphatidylserine. Biochemistry. 2006 May; 45(17):5450-7. doi: 10.1021/bi052444j. [PMID: 16634626]
  • Liming Xiong, Hojoung Lee, Rongfeng Huang, Jian-Kang Zhu. A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance. The Plant journal : for cell and molecular biology. 2004 Nov; 40(4):536-45. doi: 10.1111/j.1365-313x.2004.02225.x. [PMID: 15500469]
  • Masaru Yamakoshi, Mamoru Takahashi, Takuji Kouzuma, Shigeyuki Imamura, Isami Tsuboi, Shoji Kawazu, Fumio Yamagata, Makoto Tominaga, Masayuki Noritake. Determination of urinary myo-inositol concentration by an improved enzymatic cycling method using myo-inositol dehydrogenase from Flavobacterium sp. Clinica chimica acta; international journal of clinical chemistry. 2003 Feb; 328(1-2):163-71. doi: 10.1016/s0009-8981(02)00426-6. [PMID: 12559613]
  • Maria Paola Piccardi, Raffaella Ardau, Caterina Chillotti, Jean Francois Deleuze, Jacques Mallet, Rolando Meloni, Antonio Oi, Giovanni Severino, Donatella Congiu, Michele Bayorek, Maria Del Zompo. Manic-depressive illness: an association study with the inositol polyphosphate 1-phosphatase and serotonin transporter genes. Psychiatric genetics. 2002 Mar; 12(1):23-7. doi: 10.1097/00041444-200203000-00003. [PMID: 11901356]
  • L Hunt, J E Gray. ABA signalling: a messenger's FIERY fate. Current biology : CB. 2001 Nov; 11(23):R968-70. doi: 10.1016/s0960-9822(01)00576-0. [PMID: 11728324]
  • L Xiong, Lee Bh, M Ishitani, H Lee, C Zhang, J K Zhu. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes & development. 2001 Aug; 15(15):1971-84. doi: 10.1101/gad.891901. [PMID: 11485991]
  • A J Smith, Z Surviladze, E A Gaudet, J M Backer, C A Mitchell, B S Wilson. p110beta and p110delta phosphatidylinositol 3-kinases up-regulate Fc(epsilon)RI-activated Ca2+ influx by enhancing inositol 1,4,5-trisphosphate production. The Journal of biological chemistry. 2001 May; 276(20):17213-20. doi: 10.1074/jbc.m100417200. [PMID: 11279065]
  • Y Tsujishita, S Guo, L E Stolz, J D York, J H Hurley. Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase. Cell. 2001 May; 105(3):379-89. doi: 10.1016/s0092-8674(01)00326-9. [PMID: 11348594]
  • B D Spiegelberg, J P Xiong, J J Smith, R F Gu, J D York. Cloning and characterization of a mammalian lithium-sensitive bisphosphate 3'-nucleotidase inhibited by inositol 1,4-bisphosphate. The Journal of biological chemistry. 1999 May; 274(19):13619-28. doi: 10.1074/jbc.274.19.13619. [PMID: 10224133]
  • E W Haeffner. Transient temporal relationship between 1-oleoyl-2-acetyl-sn-glycerol (OAG)-activated synthesis and hydrolysis of polyphosphoinositides: desensitization of phospholipase C and the inositol lipid kinases upon long-term treatment of ascites cells by exogenous OAG. Journal of lipid mediators. 1993 Jul; 7(3):239-52. doi: ". [PMID: 8219004]
  • K Enomoto, K Furuya, S Yamagishi, T Maeno. Proliferation-associated increase in sensitivity of mammary epithelial cells to inositol-1,4,5-trisphosphate. Cell biochemistry and function. 1993 Mar; 11(1):55-62. doi: 10.1002/cbf.290110107. [PMID: 8453737]
  • M G Thompson, J A Hickman. Doxorubicin interactions at the membrane: evidence for a biphasic modulation of inositol lipid metabolism. European journal of cancer (Oxford, England : 1990). 1991; 27(10):1263-8. doi: 10.1016/0277-5379(91)90094-t. [PMID: 1835596]
  • L Molina Y Vedia, R D Nolan, E G Lapetina. Subcellular localization of the enzymes that dephosphorylate myo-inositol polyphosphates in human platelets. The Biochemical journal. 1988 Nov; 255(3):795-800. doi: 10.1042/bj2550795. [PMID: 2850797]
  • G Guillemette, T Balla, A J Baukal, A Spät, K J Catt. Intracellular receptors for inositol 1,4,5-trisphosphate in angiotensin II target tissues. The Journal of biological chemistry. 1987 Jan; 262(3):1010-5. doi: . [PMID: 3027073]
  • A Kikuchi, O Kozawa, K Kaibuchi, T Katada, M Ui, Y Takai. Direct evidence for involvement of a guanine nucleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differentiated human leukemic (HL-60) cells. Reconstitution with Gi or Go of the plasma membranes ADP-ribosylated by pertussis toxin. The Journal of biological chemistry. 1986 Sep; 261(25):11558-62. doi: . [PMID: 3091591]
  • S K Joseph, R J Williams. Subcellular localization and some properties of the enzymes hydrolysing inositol polyphosphates in rat liver. FEBS letters. 1985 Jan; 180(2):150-4. doi: 10.1016/0014-5793(85)81061-9. [PMID: 2981714]