NCBI Taxonomy: 403032
Sideritis sventenii (ncbi_taxid: 403032)
found 25 associated metabolites at species taxonomy rank level.
Ancestor: Sideritis
Child Taxonomies: none taxonomy data.
Cirsimaritin
Cirsimaritin, also known as 4,5-dihydroxy-6,7-dimethoxyflavone or scrophulein, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsimaritin is considered to be a flavonoid lipid molecule. Cirsimaritin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsimaritin can be found in a number of food items such as italian oregano, lemon verbena, winter savory, and rosemary, which makes cirsimaritin a potential biomarker for the consumption of these food products.
Candol B
Candol B, also known as 4beta-kaur-16-en-19-ol, belongs to the class of organic compounds known as kaurane diterpenoids. These are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by the cyclization of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D. Candol B is an extremely weak basic (essentially neutral) compound (based on its pKa). Candol B is found in cereals and cereal products. Candol B is a constituent of barley. Constituent of barley. Candol B is found in cereals and cereal products.
skrofulein
Cirsimaritin is a dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5 and 4 respectively. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsimaritin is a natural product found in Achillea santolina, Schoenia cassiniana, and other organisms with data available. See also: Tangerine peel (part of).
ent-7alpha-hydroxykaur-16-en-19-oate
Ent-7alpha-hydroxykaur-16-en-19-oate is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D. Ent-7alpha-hydroxykaur-16-en-19-oate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Ent-7alpha-hydroxykaur-16-en-19-oate can be found in a number of food items such as greenthread tea, cardamom, agave, and hickory nut, which makes ent-7alpha-hydroxykaur-16-en-19-oate a potential biomarker for the consumption of these food products.
ent-7alpha-hydroxykaur-16-en-19-oate
Ent-7alpha-hydroxykaur-16-en-19-oate is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D. Ent-7alpha-hydroxykaur-16-en-19-oate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Ent-7alpha-hydroxykaur-16-en-19-oate can be found in a number of food items such as greenthread tea, cardamom, agave, and hickory nut, which makes ent-7alpha-hydroxykaur-16-en-19-oate a potential biomarker for the consumption of these food products. Ent-7α-hydroxykaur-16-en-19-oate is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D. Ent-7α-hydroxykaur-16-en-19-oate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Ent-7α-hydroxykaur-16-en-19-oate can be found in a number of food items such as greenthread tea, cardamom, agave, and hickory nut, which makes ent-7α-hydroxykaur-16-en-19-oate a potential biomarker for the consumption of these food products.