D-Fructose 2,6-bisphosphate (BioDeep_00000003381)
Secondary id: BioDeep_00001869047
human metabolite Endogenous
代谢物信息卡片
化学式: C6H14O12P2 (339.9961)
中文名称:
谱图信息:
最多检出来源 Rattus norvegicus(plant) 5.42%
分子结构信息
SMILES: C(C1C(C(C(O1)(CO)OP(=O)(O)O)O)O)OP(=O)(O)O
InChI: InChI=1S/C6H14O12P2/c7-2-6(18-20(13,14)15)5(9)4(8)3(17-6)1-16-19(10,11)12/h3-5,7-9H,1-2H2,(H2,10,11,12)(H2,13,14,15)/t3-,4-,5+,6+/m1/s1
描述信息
D-Fructose 2,6-bisphosphate (CAS: 77164-51-3), also known as phosphofructokinase activator, belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. D-Fructose 2,6-bisphosphate is a regulatory molecule controlling the activity of the enzyme phosphofructokinase-1 or PFK1 (in mammals). PFK1, in turn, is the key regulatory enzyme in the central metabolic pathway glycolysis. D-Fructose 2,6-bisphosphate has the effect of increasing the activity of PFK1, thus increasing the rate at which the principle food molecule glucose is broken down. At the same time, this regulatory molecule also inhibits the opposing enzyme (FBPase1) in the reverse pathway (gluconeogenesis) so that the synthesis of glucose is not taking place in the same cell where glucose is being broken down (which would be wasteful).
D-Fructose 2,6-bisphosphate is a regulatory molecule controlling the activity of the enzyme Phosphofructokinase-1 or PFK1 (in mammals). PFK1, in turn, is the key regulatory enzyme in the central metabolic pathway Glycolysis. D-Fructose 2,6-bisphosphate has the effect of increasing the activity of PFK1, thus increasing the rate at which the principle food molecule glucose is broken down. At the same time, this regulatory molecule also inhibits the opposing enzyme (FBPase1) in the reverse pathway (gluconeogenesis) so that the synthesis of glucose is not taking place in the same cell where glucose is being broken down (which would be wasteful) . [HMDB]
KEIO_ID F010
同义名列表
19 个代谢物同义名
[(2S,3S,4S,5R)-3,4-dihydroxy-2-(hydroxymethyl)-5-(phosphonooxymethyl)oxolan-2-yl] dihydrogen phosphate; {[(2R,3S,4S,5S)-3,4-dihydroxy-5-(hydroxymethyl)-5-(phosphonooxy)oxolan-2-yl]methoxy}phosphonic acid; 2,6-Di-O-phosphono-beta-D-fructofuranose; 2,6-Di-O-phosphono-b-D-fructofuranose; 2,6-Di-O-phosphono-β-D-fructofuranose; Phosphofructokinase activation factor; Fru 2,6-P2, fructose 2,6-diphosphate; D-Fructose 2,6-bisphosphoric acid; beta-D-Fructose 2,6-bisphosphate; beta-D-Fructose 2,6-diphosphate; b-D-Fructose 2,6-bisphosphate; Phosphofructokinase activator; β-D-Fructose 2,6-diphosphate; D-Fructose 2,6-bisphosphate; D-Fructose 2,6-diphosphate; Fructose 2,6-bisphosphate; Fructose-2,6-diphosphate; Fructose 2,6-biphosphate; Fructose 2,6-diphosphate
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:28602
- KEGG: C00665
- PubChem: 105021
- PubChem: 483
- HMDB: HMDB0001047
- Metlin: METLIN5964
- Wikipedia: Fructose_2,6-bisphosphate
- MetaCyc: CPD-535
- KNApSAcK: C00007441
- foodb: FDB022390
- chemspider: 94762
- CAS: 79082-92-1
- MoNA: KO000763
- MoNA: KO000762
- MoNA: KO000761
- MoNA: KO000760
- MoNA: KO000759
- PMhub: MS000009573
- PubChem: 3934
- PDB-CCD: FDP
- 3DMET: B01302
- NIKKAJI: J470.690K
- RefMet: Fructose 2,6-bisphosphate
分类词条
相关代谢途径
Reactome(8)
BioCyc(0)
PlantCyc(0)
代谢反应
150 个相关的代谢反应过程信息。
Reactome(136)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + D-Fructose 1,6-bisphosphate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + D-Fructose 1,6-bisphosphate
- Gene expression (Transcription):
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- RNA Polymerase II Transcription:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Generic Transcription Pathway:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Transcriptional Regulation by TP53:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- TP53 Regulates Metabolic Genes:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ADP + Glc ⟶ AMP + G6P
- Glycolysis:
ADP + Glc ⟶ AMP + G6P
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Regulation of glycolysis by fructose 2,6-bisphosphate metabolism:
ATP + Fru(6)P ⟶ ADP + D-Fructose 2,6-bisphosphate
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional Regulation by TP53:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- TP53 Regulates Metabolic Genes:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Gene expression (Transcription):
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- RNA Polymerase II Transcription:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Generic Transcription Pathway:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Transcriptional Regulation by TP53:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- TP53 Regulates Metabolic Genes:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional Regulation by TP53:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- TP53 Regulates Metabolic Genes:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Carbohydrate metabolism:
Glu + OAA ⟶ 2OG + L-Asp
- Glycolysis:
ADP + PEP ⟶ ATP + PYR
- Gluconeogenesis:
Glu + OAA ⟶ 2OG + L-Asp
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional Regulation by TP53:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- TP53 Regulates Metabolic Genes:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional Regulation by TP53:
Cytochrome c-Fe2+ + H+ + Oxygen ⟶ Cytochrome c-Fe3+ + H+ + H2O
- TP53 Regulates Metabolic Genes:
Cytochrome c-Fe2+ + H+ + Oxygen ⟶ Cytochrome c-Fe3+ + H+ + H2O
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional Regulation by TP53:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- TP53 Regulates Metabolic Genes:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional Regulation by TP53:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- TP53 Regulates Metabolic Genes:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional Regulation by TP53:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- TP53 Regulates Metabolic Genes:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional Regulation by TP53:
H2O2 + TXN ⟶ F6ZMN7 + H2O
- TP53 Regulates Metabolic Genes:
H2O2 + TXN ⟶ F6ZMN7 + H2O
BioCyc(0)
Plant Reactome(0)
INOH(1)
- Fructose and Mannose metabolism ( Fructose and Mannose metabolism ):
D-Sorbitol + NADP+ ⟶ D-Glucose + NADPH
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(12)
- Fructose and Mannose Degradation:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructosuria:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose Intolerance, Hereditary:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose and Mannose Degradation:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose Intolerance, Hereditary:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructosuria:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose Intolerance, Hereditary:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose and Mannose Degradation:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose and Mannose Degradation:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructosuria:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose Metabolism:
-D-fructofuranose + Adenosine triphosphate ⟶ -D-Fructose 6-phosphate + Adenosine triphosphate + Hydrogen Ion
- Fructose Metabolism:
Adenosine triphosphate + D-Fructose ⟶ -D-Fructose 6-phosphate + Adenosine diphosphate
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Kosaku Uyeda. Short- and Long-Term Adaptation to Altered Levels of Glucose: Fifty Years of Scientific Adventure.
Annual review of biochemistry.
2021 06; 90(?):31-55. doi:
10.1146/annurev-biochem-070820-125228
. [PMID: 34153217] - Robertino J Muchut, Claudia V Piattoni, Ezequiel Margarit, Karina E J Tripodi, Florencio E Podestá, Alberto A Iglesias. Heterologous expression and kinetic characterization of the α, β and αβ blend of the PPi-dependent phosphofructokinase from Citrus sinensis.
Plant science : an international journal of experimental plant biology.
2019 Mar; 280(?):348-354. doi:
10.1016/j.plantsci.2018.12.012
. [PMID: 30824014] - Jong-Ho Lee, Rui Liu, Jing Li, Yugang Wang, Lin Tan, Xin-Jian Li, Xu Qian, Chuanbao Zhang, Yan Xia, Daqian Xu, Wei Guo, Zhiyong Ding, Linyong Du, Yanhua Zheng, Qianming Chen, Philip L Lorenzi, Gordon B Mills, Tao Jiang, Zhimin Lu. EGFR-Phosphorylated Platelet Isoform of Phosphofructokinase 1 Promotes PI3K Activation.
Molecular cell.
2018 04; 70(2):197-210.e7. doi:
10.1016/j.molcel.2018.03.018
. [PMID: 29677490] - Iliana López-Soldado, Katrin Niisuke, Catarina Veiga, Anna Adrover, Anna Manzano, Vicente Martínez-Redondo, Marta Camps, Ramon Bartrons, Antonio Zorzano, Anna Gumà. Neuregulin improves response to glucose tolerance test in control and diabetic rats.
American journal of physiology. Endocrinology and metabolism.
2016 Mar; 310(6):E440-51. doi:
10.1152/ajpendo.00226.2015
. [PMID: 26714846] - Jose Cordoba-Chacon, Neena Majumdar, Edward O List, Alberto Diaz-Ruiz, Stuart J Frank, Anna Manzano, Ramon Bartrons, Michelle Puchowicz, John J Kopchick, Rhonda D Kineman. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice.
Diabetes.
2015 Sep; 64(9):3093-103. doi:
10.2337/db15-0370
. [PMID: 26015548] - Alistair J McCormick, Nicholas J Kruger. Lack of fructose 2,6-bisphosphate compromises photosynthesis and growth in Arabidopsis in fluctuating environments.
The Plant journal : for cell and molecular biology.
2015 Mar; 81(5):670-83. doi:
10.1111/tpj.12765
. [PMID: 25602028] - C E Basson, J-H Groenewald, J Kossmann, C Cronjé, R Bauer. Upregulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in strawberry.
Transgenic research.
2011 Aug; 20(4):925-31. doi:
10.1007/s11248-010-9451-0
. [PMID: 20960058] - Tiago C Leite, Raquel G Coelho, Daniel Da Silva, Wagner S Coelho, Monica M Marinho-Carvalho, Mauro Sola-Penna. Lactate downregulates the glycolytic enzymes hexokinase and phosphofructokinase in diverse tissues from mice.
FEBS letters.
2011 Jan; 585(1):92-8. doi:
10.1016/j.febslet.2010.11.009
. [PMID: 21074528] - Ylse Gutiérrez-Grobe, Guadalupe Ponciano-Rodríguez, Nahum Méndez-Sánchez. Viral hepatitis infection and insulin resistance: a review of the pathophysiological mechanisms.
Salud publica de Mexico.
2011; 53 Suppl 1(?):S46-51. doi:
"
. [PMID: 21877073] - Jacques Demongeot, Hedi Ben Amor, Adrien Elena, Pierre Gillois, Mathilde Noual, Sylvain Sené. Robustness in regulatory interaction networks. A generic approach with applications at different levels: physiologic, metabolic and genetic.
International journal of molecular sciences.
2009 Nov; 10(10):4437-4473. doi:
10.3390/ijms10104437
. [PMID: 20057955] - Kotaro Yamada, Masaya Hosokawa, Shimpei Fujimoto, Hideya Fujiwara, Yoshihito Fujita, Norio Harada, Chizumi Yamada, Mitsuo Fukushima, Naoya Ueda, Tetsuo Kaneko, Futoshi Matsuyama, Yuichiro Yamada, Yutaka Seino, Nobuya Inagaki. Effect of corosolic acid on gluconeogenesis in rat liver.
Diabetes research and clinical practice.
2008 Apr; 80(1):48-55. doi:
10.1016/j.diabres.2007.11.011
. [PMID: 18177973] - Chaodong Wu, Salmaan A Khan, Li-Jen Peng, Alex J Lange. Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes.
Advances in enzyme regulation.
2006; 46(?):72-88. doi:
10.1016/j.advenzreg.2006.01.010
. [PMID: 16860376] - Akiko Sakai, Aki Kusumoto, Yoshinobu Kiso, Eisuke Furuya. Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver.
Nutrition (Burbank, Los Angeles County, Calif.).
2004 Nov; 20(11-12):997-1002. doi:
10.1016/j.nut.2004.08.007
. [PMID: 15561490] - Tom Hamborg Nielsen, Jesper Henrik Rung, Dorthe Villadsen. Fructose-2,6-bisphosphate: a traffic signal in plant metabolism.
Trends in plant science.
2004 Nov; 9(11):556-63. doi:
10.1016/j.tplants.2004.09.004
. [PMID: 15501181] - Rui Zhou, Lailiang Cheng. Biochemical characterization of cytosolic fructose-1,6-bisphosphatase from apple (Malus domestica) leaves.
Plant & cell physiology.
2004 Jul; 45(7):879-86. doi:
10.1093/pcp/pch096
. [PMID: 15295071] - Sandra Matic, Hans-Erik Akerlund, Einar Everitt, Susanne Widell. Sucrose synthase isoforms in cultured tobacco cells.
Plant physiology and biochemistry : PPB.
2004 Apr; 42(4):299-306. doi:
10.1016/j.plaphy.2004.01.009
. [PMID: 15120114] - Chaodong Wu, David A Okar, Angela K Stoeckman, Li-Jen Peng, Amy H Herrera, Julio E Herrera, Howard C Towle, Alex J Lange. A potential role for fructose-2,6-bisphosphate in the stimulation of hepatic glucokinase gene expression.
Endocrinology.
2004 Feb; 145(2):650-8. doi:
10.1210/en.2003-1290
. [PMID: 14617577] - Toshiaki Banzai, Nobutaka Hanagata, Zvy Dubinsky, Isao Karube. Fructose-2,6-bisphosphate contents were increased in response to salt, water and osmotic stress in leaves of Bruguiera gymnorrhiza by differential changes in the activity of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase.
Plant molecular biology.
2003 Sep; 53(1-2):51-9. doi:
10.1023/b:plan.0000009264.06359.34
. [PMID: 14756306] - Eunsook S Jin, Kosaku Uyeda, Takumi Kawaguchi, Shawn C Burgess, Craig R Malloy, A Dean Sherry. Increased hepatic fructose 2,6-bisphosphate after an oral glucose load does not affect gluconeogenesis.
The Journal of biological chemistry.
2003 Aug; 278(31):28427-33. doi:
10.1074/jbc.m302134200
. [PMID: 12764148] - Daria Dziewulska-Szwajkowska, Małgorzata Łozińska-Gabska, Anna Adamowicz, Jan Wojtaszek, Andrzej Dzugaj. The effect of high dose of cortisol on glucose-6-phosphatase and fructose-1,6-bisphosphatase activity, and glucose and fructose-2,6-bisphosphate concentration in carp tissues (Cyprinus carpio L.).
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2003 Jul; 135(3):485-91. doi:
10.1016/s1096-4959(03)00112-x
. [PMID: 12831768] - Florencio E Podestá, William C Plaxton. Fluorescence study of ligand binding to potato tuber pyrophosphate-dependent phosphofructokinase: evidence for competitive binding between fructose-1,6-bisphosphate and fructose-2,6-bisphosphate.
Archives of biochemistry and biophysics.
2003 Jun; 414(1):101-7. doi:
10.1016/s0003-9861(03)00157-7
. [PMID: 12745260] - Tim Mentel, Carsten Duch, Heike Stypa, Gerhard Wegener, Uli Müller, Hans-Joachim Pflüger. Central modulatory neurons control fuel selection in flight muscle of migratory locust.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
2003 Feb; 23(4):1109-13. doi:
10.1523/jneurosci.23-04-01109.2003
. [PMID: 12598597] - Anja Schneider, Rainer E Häusler, Uner Kolukisaoglu, Reinhard Kunze, Eric van der Graaff, Rainer Schwacke, Elisabetta Catoni, Marcelo Desimone, Ulf-Ingo Flügge. An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished.
The Plant journal : for cell and molecular biology.
2002 Dec; 32(5):685-99. doi:
10.1046/j.1365-313x.2002.01460.x
. [PMID: 12472685] - S J Trevanion. Regulation of sucrose and starch synthesis in wheat (Triticum aestivum L.) leaves: role of fructose 2,6-bisphosphate.
Planta.
2002 Aug; 215(4):653-65. doi:
10.1007/s00425-002-0792-7
. [PMID: 12172849] - Chaodong Wu, David A Okar, Christopher B Newgard, Alex J Lange. Increasing fructose 2,6-bisphosphate overcomes hepatic insulin resistance of type 2 diabetes.
American journal of physiology. Endocrinology and metabolism.
2002 Jan; 282(1):E38-45. doi:
10.1152/ajpendo.2002.282.1.e38
. [PMID: 11739081] - D Villadsen, T H Nielsen. N-terminal truncation affects the kinetics and structure of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana.
The Biochemical journal.
2001 Nov; 359(Pt 3):591-7. doi:
10.1042/0264-6021:3590591
. [PMID: 11672433] - T H Nielsen, M Stitt. Tobacco transformants with strongly decreased expression of pyrophosphate:fructose-6-phosphate expression in the base of their young growing leaves contain much higher levels of fructose-2,6-bisphosphate but no major changes in fluxes.
Planta.
2001 Nov; 214(1):106-16. doi:
10.1007/s004250100591
. [PMID: 11762159] - M E Theodorou, N J Kruger. Physiological relevance of fructose 2,6-bisphosphate in the regulation of spinach leaf pyrophosphate:fructose 6-phosphate 1-phosphotransferase.
Planta.
2001 May; 213(1):147-57. doi:
10.1007/s004250000488
. [PMID: 11523651] - A Barberà, R R Gomis, N Prats, J E Rodríguez-Gil, M Domingo, R Gomis, J J Guinovart. Tungstate is an effective antidiabetic agent in streptozotocin-induced diabetic rats: a long-term study.
Diabetologia.
2001 Apr; 44(4):507-13. doi:
10.1007/s001250100479
. [PMID: 11357483] - A R Fernie, A Roscher, R G Ratcliffe, N J Kruger. Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells.
Planta.
2001 Jan; 212(2):250-63. doi:
10.1007/s004250000386
. [PMID: 11216846] - W Xie, T L Tran, D T Finegood, G van de Werve. Dietary P(i) deprivation in rats affects liver cAMP, glycogen, key steps of gluconeogenesis and glucose production.
The Biochemical journal.
2000 Nov; 352 Pt 1(?):227-32. doi:
10.1042/bj3520227
. [PMID: 11062077] - P Scott, A J Lange, N J Kruger. Photosynthetic carbon metabolism in leaves of transgenic tobacco (Nicotiana tabacum L.) containing decreased amounts of fructose 2,6-bisphosphate.
Planta.
2000 Nov; 211(6):864-73. doi:
10.1007/s004250000358
. [PMID: 11144272] - F Benigni, T Atsumi, T Calandra, C Metz, B Echtenacher, T Peng, R Bucala. The proinflammatory mediator macrophage migration inhibitory factor induces glucose catabolism in muscle.
The Journal of clinical investigation.
2000 Nov; 106(10):1291-300. doi:
10.1172/jci9900
. [PMID: 11086030] - S J Trevanion. Photosynthetic carbohydrate metabolism in wheat (Triticum aestivum L.) leaves: optimization of methods for determination of fructose 2, 6-bisphosphate.
Journal of experimental botany.
2000 Jun; 51(347):1037-45. doi:
10.1093/jexbot/51.347.1037
. [PMID: 10948231] - J G Cárcamo, A J Yañez, H C Ludwig, O León, R O Pinto, A M Reyes, J C Slebe. The C1-C2 interface residue lysine 50 of pig kidney fructose-1, 6-bisphosphatase has a crucial role in the cooperative signal transmission of the AMP inhibition.
European journal of biochemistry.
2000 Apr; 267(8):2242-51. doi:
10.1046/j.1432-1327.2000.01227.x
. [PMID: 10759847] - J C Sánchez-Gutiérrez, J A Sánchez-Arias, B Samper, J E Felíu. Modulation of gluconeogenesis by epinephrine in hepatocytes isolated from genetically obese (fa/fa) Zucker rats.
Archives of biochemistry and biophysics.
2000 Jan; 373(1):249-54. doi:
10.1006/abbi.1999.1533
. [PMID: 10620345] - T Ozeki, Y Mitsui, H Sugiya, S Furuyama. Ribose 1,5-bisphosphate regulates rat kidney cortex phosphofructokinase.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
1999 Nov; 124(3):327-32. doi:
10.1016/s0305-0491(99)00127-3
. [PMID: 10631808] - P Durante, M A Gueuning, M I Darville, L Hue, G G Rousseau. Apoptosis induced by growth factor withdrawal in fibroblasts overproducing fructose 2,6-bisphosphate.
FEBS letters.
1999 Apr; 448(2-3):239-43. doi:
10.1016/s0014-5793(99)00387-7
. [PMID: 10218483] - R J Hodgson, Z Jia, W C Plaxton. A fluorescence study of ligand-induced conformational changes in cytosolic fructose-1,6-bisphosphatase from germinating castor oil seeds.
Biochimica et biophysica acta.
1998 Nov; 1388(2):285-94. doi:
10.1016/s0167-4838(98)00176-9
. [PMID: 9858750] - Y Q Liu, K Tornheim, J L Leahy. Fatty acid-induced beta cell hypersensitivity to glucose. Increased phosphofructokinase activity and lowered glucose-6-phosphate content.
The Journal of clinical investigation.
1998 May; 101(9):1870-5. doi:
10.1172/jci1211
. [PMID: 9576750] - E Van Praag, P Gonzalez, A Brune, R Goren, U Zehavi, E Echeverria. Fru 2,6-P2 and citrate: intracellular distribution in citrus tissues and effect on grapefruit leaf PFP.
Biochemistry and molecular biology international.
1998 Jan; 44(1):117-25. doi:
10.1080/15216549800201122
. [PMID: 9503154] - D Dziewulska-Szwajkowska, M Lozińska-Gabska, A Dzugaj. Rana esculenta L. liver Fru-1,6-P2ase and G-6-Pase activity and Fru-2,6-P2 concentration after acclimation at 5 and 25 degrees C.
Comparative biochemistry and physiology. Part A, Physiology.
1997 Nov; 118(3):745-51. doi:
10.1016/s0300-9629(97)00013-3
. [PMID: 9406446] - D A Guseva, V K Gorodetskiĭ, S A Kraevoĭ, M S Markova, T B Tsyganova. [Effect of oral inulin administration on the fructose 2,6-biphosphate level in the liver tissue of rats with streptozocin diabetes].
Voprosy meditsinskoi khimii.
1997 Jul; 43(4):247-55. doi:
. [PMID: 9312940]
- A Okuno, K Ikeda, M Shiota, T Fujiwara, S Yoshioka, T Sugano, H Horikoshi. Acute effect of troglitazone on glucose metabolism in the absence or presence of insulin in perfused rat hindlimb.
Metabolism: clinical and experimental.
1997 Jun; 46(6):716-21. doi:
10.1016/s0026-0495(97)90019-6
. [PMID: 9186311] - G Dimitriadis, B Leighton, M Parry-Billings, S Sasson, M Young, U Krause, S Bevan, T Piva, G Wegener, E A Newsholme. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle.
The Biochemical journal.
1997 Feb; 321 ( Pt 3)(?):707-12. doi:
10.1042/bj3210707
. [PMID: 9032457] - R Hampp, E Hoffmann, K Schönherr, P Johann, L De Filippis. Fusion and metabolism of plant cells as affected by microgravity.
Planta.
1997; 203 Suppl(?):S42-53. doi:
10.1007/pl00008114
. [PMID: 9299795] - M Casada, M J Dìaz-Guerra, L Boscà, P Martìn-Sanz. Characterization of nitric oxide dependent changes in carbohydrate hepatic metabolism during septic shock.
Life sciences.
1996; 58(7):561-72. doi:
10.1016/0024-3205(95)02325-9
. [PMID: 8632709] - T Fujiwara, A Okuno, S Yoshioka, H Horikoshi. Suppression of hepatic gluconeogenesis in long-term Troglitazone treated diabetic KK and C57BL/KsJ-db/db mice.
Metabolism: clinical and experimental.
1995 Apr; 44(4):486-90. doi:
10.1016/0026-0495(95)90056-x
. [PMID: 7723671] - P Scott, A J Lange, S J Pilkis, N J Kruger. Carbon metabolism in leaves of transgenic tobacco (Nicotiana tabacum L.) containing elevated fructose 2,6-bisphosphate levels.
The Plant journal : for cell and molecular biology.
1995 Mar; 7(3):461-9. doi:
10.1046/j.1365-313x.1995.7030461.x
. [PMID: 7757117] - E Giroux, M K Williams, E R Kantrowitz. Shared active sites of fructose-1,6-bisphosphatase. Arginine 243 mediates substrate binding and fructose 2,6-bisphosphate inhibition.
The Journal of biological chemistry.
1994 Dec; 269(50):31404-9. doi:
10.1016/s0021-9258(18)31708-3
. [PMID: 7989306] - N J Kruger, P Scott. Manipulation of fructose-2,6-bisphosphate levels in transgenic plants.
Biochemical Society transactions.
1994 Nov; 22(4):904-9. doi:
10.1042/bst0220904
. [PMID: 7698482] - A M Vargas, M M Sola, A J Lange, G Poveda, S J Pilkis. cAMP-independent synergistic effects of insulin and dexamethasone on fructose 2,6-bisphosphate metabolism in H4IIE cells.
Diabetes.
1994 Jun; 43(6):792-9. doi:
10.2337/diab.43.6.792
. [PMID: 8194665] - K Murano, Y Inoue, M Emoto, K Kaku, T Kaneko. CS-045, a new oral antidiabetic agent, stimulates fructose-2,6-bisphosphate production in rat hepatocytes.
European journal of pharmacology.
1994 Mar; 254(3):257-62. doi:
10.1016/0014-2999(94)90462-6
. [PMID: 8013560] - W W Winder, J M Carling, C Duan, J P Jones, S L Palmer, M C Walker. Muscle fructose-2,6-bisphosphate and glucose-1,6-bisphosphate during insulin-induced hypoglycemia.
Journal of applied physiology (Bethesda, Md. : 1985).
1994 Feb; 76(2):853-8. doi:
10.1152/jappl.1994.76.2.853
. [PMID: 8175599] - C Duan, W W Winder. Effect of endurance training on activators of glycolysis in muscle during exercise.
Journal of applied physiology (Bethesda, Md. : 1985).
1994 Feb; 76(2):846-52. doi:
10.1152/jappl.1994.76.2.846
. [PMID: 8175598] - M M Sola, F J Oliver, R Salto, M Gutiérrez, A M Vargas. Regulation of rat-kidney cortex fructose-1,6-bisphosphatase activity. I. Effects of fructose-2,6-bisphosphate and divalent cations.
The International journal of biochemistry.
1993 Dec; 25(12):1963-8. doi:
10.1016/0020-711x(88)90332-1
. [PMID: 8138035] - N Z Baquer, M Sochor, S Kunjara, P McLean. Effect of oestradiol on the carbohydrate metabolism of immature rat uterus: the role of fructose-2, 6-bis-phosphate and of phosphoribosyl pyrophosphate.
Biochemistry and molecular biology international.
1993 Nov; 31(3):509-19. doi:
"
. [PMID: 7509681] - M M Sola, R Salto, F J Oliver, M Gutiérrez, A M Vargas. Effects of AMP and fructose 2,6-bisphosphate on fluxes between glucose 6-phosphate and triose-phosphate in renal cortical extracts.
The Journal of biological chemistry.
1993 Sep; 268(26):19352-7. doi:
. [PMID: 8396135]
- T P Kasten, G A Dunaway. Fructose 2,6-bisphosphate: changes during neonatal maturation and aging of rat and potential role in regulation of glucose utilization.
Mechanisms of ageing and development.
1993 May; 68(1-3):37-45. doi:
10.1016/0047-6374(93)90138-h
. [PMID: 8350662] - A M Reyes, N Bravo, H Ludwig, A Iriarte, J C Slebe. Modification of Cys-128 of pig kidney fructose 1,6-bisphosphatase with different thiol reagents: size dependent effect on the substrate and fructose-2,6-bisphosphate interaction.
Journal of protein chemistry.
1993 Apr; 12(2):159-68. doi:
10.1007/bf01026037
. [PMID: 8387793] - H Clayton, J Ranson, T ap Rees. Pyrophosphate: fructose-6-phosphate 1-phosphotransferase and fructose 2,6-bisphosphate in the bundle sheath of maize leaves.
Archives of biochemistry and biophysics.
1993 Feb; 301(1):151-7. doi:
10.1006/abbi.1993.1127
. [PMID: 8382905] - S Kowalczyk. Molecular diversity of the pyrophosphate-dependent phosphofructokinase isoforms differently activated by fructose 2,6-bisphosphate.
Acta biochimica Polonica.
1993; 40(1):109-12. doi:
10.18388/abp.1993_4862
. [PMID: 8396824] - S M Khoja, M S Ardawi. Effect of experimental hypothyroidism on the control of 6-phosphofructo-1-kinase activity in rat jejunal mucosa.
Biochimie.
1992 Nov; 74(11):989-93. doi:
10.1016/0300-9084(92)90019-b
. [PMID: 1477143] - M C Sugden, M J Holness, Y L Liu, D M Smith, L G Fryer, Y T Kruszynska. Mechanisms regulating cardiac fuel selection in hyperthyroidism.
The Biochemical journal.
1992 Sep; 286 ( Pt 2)(?):513-7. doi:
10.1042/bj2860513
. [PMID: 1530584] - J R De Oliveira, J L Rosa, S Ambrosio, R Bartrons. Effect of galactosamine on hepatic carbohydrate metabolism: protective role of fructose 1,6-bisphosphate.
Hepatology (Baltimore, Md.).
1992 Jun; 15(6):1147-53. doi:
10.1002/hep.1840150628
. [PMID: 1317340] - G Dimitriadis, M Parry-Billings, D Dunger, S Bevan, A Colquhoun, A Taylor, P Calder, U Krause, G Wegener, E A Newsholme. Effects of in-vivo administration of insulin-like growth factor-I on the rate of glucose utilization in the soleus muscle of the rat.
The Journal of endocrinology.
1992 Apr; 133(1):37-43. doi:
10.1677/joe.0.1330037
. [PMID: 1517705] - J Y Liang, S Huang, Y Zhang, H Ke, W N Lipscomb. Crystal structure of the neutral form of fructose 1,6-bisphosphatase complexed with regulatory inhibitor fructose 2,6-bisphosphate at 2.6-A resolution.
Proceedings of the National Academy of Sciences of the United States of America.
1992 Mar; 89(6):2404-8. doi:
10.1073/pnas.89.6.2404
. [PMID: 1312721] - F Kiss, M X Wu, J H Wong, A Balogh, B B Buchanan. Redox active sulfhydryls are required for fructose 2,6-bisphosphate activation of plant pyrophosphate fructose-6-phosphate 1-phosphotransferase.
Archives of biochemistry and biophysics.
1991 Jun; 287(2):337-40. doi:
10.1016/0003-9861(91)90487-4
. [PMID: 1654815] - J Arnold, M J Hamer, M Irving. Hepatic phosphofructokinase-1 activity and fructose 2,6-bisphosphate levels in patients with abdominal sepsis.
Clinical science (London, England : 1979).
1991 Mar; 80(3):213-7. doi:
10.1042/cs0800213
. [PMID: 1850680] - M M Sola, R Salto, J Oliver, A M Vargas. Kinetic characterization of phosphofructokinase isolated from rat kidney cortex.
Comparative biochemistry and physiology. B, Comparative biochemistry.
1991; 98(4):495-500. doi:
10.1016/0305-0491(91)90243-7
. [PMID: 1831095] - M J Hamer, A J Dickson. Control of glycolysis in cultured chick embryo hepatocytes. Fructose 2,6-bisphosphate content and phosphofructokinase-1 activity are stimulated by insulin and epidermal growth factor.
The Biochemical journal.
1990 Aug; 269(3):685-90. doi:
10.1042/bj2690685
. [PMID: 2143894] - T Kasten, J A Colliver, R D Montrey, G A Dunaway. The effects of various anesthetics on tissue levels of fructose-2,6-bisphosphate in rats.
Laboratory animal science.
1990 Jul; 40(4):399-401. doi:
NULL
. [PMID: 2166868] - H M Ke, C M Thorpe, B a Seaton, W N Lipscomb, F Marcus. Structure refinement of fructose-1,6-bisphosphatase and its fructose 2,6-bisphosphate complex at 2.8 A resolution.
Journal of molecular biology.
1990 Apr; 212(3):513-39. doi:
10.1016/0022-2836(90)90329-k
. [PMID: 2157849] - T Nakagawa, P J Butterworth. Studies of the regulation of renal gluconeogenesis in normal and Pi depleted proximal tubule cells.
Cell biochemistry and function.
1990 Jan; 8(1):31-8. doi:
10.1002/cbf.290080106
. [PMID: 2340630] - H Kiyokawa, N Kono, T Hamaguchi, M Kawachi, K Tajima, I Mineo, Y Yamada, T Shimizu, M Kuwajima, S Tarui. Hyperinsulinemia due to impaired insulin clearance associated with fasting hypoglycemia and postprandial hyperglycemia: an analysis of a patient with antiinsulin receptor antibodies.
The Journal of clinical endocrinology and metabolism.
1989 Sep; 69(3):616-21. doi:
10.1210/jcem-69-3-616
. [PMID: 2668322] - P Satabin, B Bois-Joyeux, M Chanez, C Y Guezennec, J Peret. Effects of long-term feeding of high-protein or high-fat diets on the response to exercise in the rat.
European journal of applied physiology and occupational physiology.
1989; 58(6):583-90. doi:
10.1007/bf00418503
. [PMID: 2731529] - H Tsuge, H Mimura, K Orita. Effects of bile duct ligation and dietary change on hepatic carbohydrate metabolism in rats.
The Journal of laboratory and clinical medicine.
1989 Jan; 113(1):34-40. doi:
NULL
. [PMID: 2909648] - T J French, A W Goode, M J Holness, P A MacLennan, M C Sugden. The relationship between changes in lipid fuel availability and tissue fructose 2,6-bisphosphate concentrations and pyruvate dehydrogenase complex activities in the fed state.
The Biochemical journal.
1988 Dec; 256(3):935-9. doi:
10.1042/bj2560935
. [PMID: 3223963] - Y Yamada, T Shimizu, N Hara, I Mineo, M Kawachi, H Kiyokawa, K Yamada, S Fujioka, Y Matsuzawa, N Kono. Increases in hepatic fructose-2,6-bisphosphate level and fructose-6-phosphate,2-kinase activity in rats with ventromedial lesions of the hypothalamus.
Journal of biochemistry.
1988 Oct; 104(4):576-9. doi:
10.1093/oxfordjournals.jbchem.a122513
. [PMID: 2853707] - T J French, M J Holness, P A MacLennan, M C Sugden. Effects of nutritional status and acute variation in substrate supply on cardiac and skeletal-muscle fructose 2,6-bisphosphate concentrations.
The Biochemical journal.
1988 Mar; 250(3):773-9. doi:
10.1042/bj2500773
. [PMID: 3291855] - J François, E Van Schaftigen, H G Hers. Characterization of phosphofructokinase 2 and of enzymes involved in the degradation of fructose 2,6-bisphosphate in yeast.
European journal of biochemistry.
1988 Feb; 171(3):599-608. doi:
10.1111/j.1432-1033.1988.tb13830.x
. [PMID: 2831055] - B Bois-Joyeux, M Chanez, J Peret. Changes in rat hepatic fructose 2,6-bisphosphate and 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase activity during three days of consumption of a high protein diet or starvation.
Diabete & metabolisme.
1987 Sep; 13(5):543-8. doi:
. [PMID: 2828129]
- H Niemeyer, C Cerpa, E Rabajille. Inhibition of hexokinase activity by a fructose 2,6-bisphosphate-dependent cytosolic protein from liver.
Archives of biochemistry and biophysics.
1987 Aug; 257(1):17-26. doi:
10.1016/0003-9861(87)90538-8
. [PMID: 3631962] - A Gualberto, P Molinero, F Sobrino. The effect of experimental hypothyroidism on phosphofructokinase activity and fructose 2,6-bisphosphate concentrations in rat heart.
The Biochemical journal.
1987 May; 244(1):137-42. doi:
10.1042/bj2440137
. [PMID: 2959271] - J François, P Eraso, C Gancedo. Changes in the concentration of cAMP, fructose 2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose.
European journal of biochemistry.
1987 Apr; 164(2):369-73. doi:
10.1111/j.1432-1033.1987.tb11067.x
. [PMID: 3032616] - J H Wong, B C Yee, B B Buchanan. A novel type of phosphofructokinase from plants.
The Journal of biological chemistry.
1987 Mar; 262(7):3185-91. doi:
10.1016/s0021-9258(18)61488-7
. [PMID: 2434498] - F Cadet, J C Meunier, N Ferté. Effects of pH and fructose 2,6-bisphosphate on oxidized and reduced spinach chloroplastic fructose-1,6-bisphosphatase.
European journal of biochemistry.
1987 Jan; 162(2):393-8. doi:
10.1111/j.1432-1033.1987.tb10614.x
. [PMID: 3026809] - F D Macdonald, Q Chou, B B Buchanan. Ion-exchange chromatography separates activities synthesizing and degrading fructose 2,6-bisphosphate from C3 and C4 leaves but not from rat liver.
Plant physiology.
1987; 85(?):13-6. doi:
10.1104/pp.85.1.13
. [PMID: 11539704] - D P Xu, S J Sung, C A Alvarez, C C Black. Pyrophosphate-dependent sucrose metabolism and its activation by fructose 2,6-bisphosphate in sucrose importing plant tissues.
Biochemical and biophysical research communications.
1986 Dec; 141(2):440-5. doi:
10.1016/s0006-291x(86)80192-9
. [PMID: 3026384] - P Bruni, V Vasta, M Farnararo. Regulation of fructose 2,6-bisphosphate metabolism in human fibroblasts.
Biochimica et biophysica acta.
1986 Jun; 887(1):23-8. doi:
10.1016/0167-4889(86)90117-5
. [PMID: 2939883] - H Mizunuma, Y Tashima. Characterization of rat muscle fructose 1,6-bisphosphatase.
Journal of biochemistry.
1986 Jun; 99(6):1781-8. doi:
10.1093/oxfordjournals.jbchem.a135656
. [PMID: 3017926] - R S Rana, M C Sekar, L E Hokin, M J MacDonald. A possible role for glucose metabolites in the regulation of inositol-1,4,5-trisphosphate 5-phosphomonoesterase activity in pancreatic islets.
The Journal of biological chemistry.
1986 Apr; 261(12):5237-40. doi:
. [PMID: 3007495]
- J C Slebe, A Reyes, E Hubert. Activation of fructose-1,6-bisphosphatases by monovalent cations and its relationship with a fructose-2,6-bisphosphate allosteric site.
Archivos de biologia y medicina experimentales.
1985 Dec; 18(3-4):309-15. doi:
NULL
. [PMID: 3019247] - D W Bannister, D I Sales, A Lee. Biotin deficiency and susceptibility to fatty liver and kidney syndrome in broiler chicks: reduced 6-phosphofructokinase (EC 2.7.1.11) activity but normal fructose 2,6-bisphosphate content in birds with hepatomegaly.
The British journal of nutrition.
1985 Sep; 54(2):535-43. doi:
10.1079/bjn19850138
. [PMID: 2933068] - T ap Rees, J H Green, P M Wilson. Pyrophosphate:fructose 6-phosphate 1-phosphotransferase and glycolysis in non-photosynthetic tissues of higher plants.
The Biochemical journal.
1985 Apr; 227(1):299-304. doi:
10.1042/bj2270299
. [PMID: 2986606] - A Reyes, E Hubert, J C Slebe. The reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase is related to a fructose 2,6-bisphosphate allosteric site.
Biochemical and biophysical research communications.
1985 Feb; 127(1):373-9. doi:
10.1016/s0006-291x(85)80169-8
. [PMID: 2983717] - K Muniyappa, J Mendicino. Binding and regulatory properties of phosphofructokinase from swine kidney.
Molecular and cellular biochemistry.
1984 Aug; 63(1):21-32. doi:
10.1007/bf00230158
. [PMID: 6092905] - J Sommercorn, T Steward, R A Freedland. Activation of phosphofructokinase from rat tissues by 6-phosphogluconate and fructose 2,6-bisphosphate.
Archives of biochemistry and biophysics.
1984 Aug; 232(2):579-84. doi:
10.1016/0003-9861(84)90576-9
. [PMID: 6235777] - B Lederer, H G Hers. On the mechanism by which noradrenaline increases the activity of phosphofructokinase in isolated rat adipocytes.
The Biochemical journal.
1984 Feb; 217(3):709-14. doi:
10.1042/bj2170709
. [PMID: 6231918]